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INFINITELY MANY SOLUTIONS FOR A
P -SUPERLINEAR P -LAPLACIAN PROBLEMS∗

Lijuan Yang1 and Ruyun Ma1,2,†

Abstract We are concerned with the existence of infinitely many solutions
for p-Laplacian problem−(ϕp(u′))′ = g(u) + h(x, u, u′), x ∈ (0, 1),

u(0) = u(1) = 0,
(P )

where ϕp(s) := |s|p−2 ·s, p > 1, g : R→ R is a continuous function and satisfies
p-superlinear growth at infinity, h : [0, 1] × R2 → R is a continuous function
satisfying |h(x, ξ, ξ1)| 6 C + 1

2
|ϕp(ξ)|. Based on global bifurcation techniques,

we obtain infinitely many solutions of (P ) having specified nodal properties.
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1. Introduction

We are concerned with the existence of infinitely many solutions for p-Laplacian
problem −(ϕp(u

′))′ = g(u) + h(x, u, u′), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where ϕp(s) := |s|p−2s, p > 1, nonlinear functions g and h satisfy
(H1) g : R→ R is continuous and satisfies

lim
|ξ|→∞

g(ξ)

ϕp(ξ)
=∞; (1.2)

(H2) h : [0, 1]× R2 → R is continuous and there exists C > 0 such that

|h(x, ξ, ξ1)| 6 C +
1

2
|ϕp(ξ)|. (1.3)
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Problems involving the p-Laplacian have been attracting the attention of many
researchers in the last few years due to its applicability in several areas of science,
such as electrorheological fluids and imagine processing, see [4]. Hence, problems
similar as (1.1) have been treated by many authors, the related researches can be
founded in Ambrosetti [3], del Pino and Manásevich [8], Naito and Tanaka [14], Dai
and Ma [6,7], and [2, 5, 9–12,14,15,19].

When h = 0 and g is of the form a(x)f(u), problem (1.1) were investigated by
Wang [20] under the condition:

f0 := lim
s→0+

f(s)

ϕp(s)
= 0, and f∞ := lim

s→∞

f(s)

ϕp(s)
=∞.

By using the fixed point theorem in cones, he obtained a positive solution of the
problem, and then, Dai and Ma [6] studied the existence of nodal solutions for
p-Laplacian problem −(ϕp(u

′))′ = f(x, u), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.4)

where f : [0, 1]× R→ R is a continuous function and satisfies

(F1) λk(p) 6 a(x) ≡ lim|s|→∞
f(x,s)
ϕp(s)

uniformly on [0,1], and the inequality is

strict on some subset of positive measure in (0,1);

(F2) 0 6 lim|s|→0
f(x,s)
ϕp(s)

≡ c(x) 6 λk(p) uniformly on [0,1], and the inequality is

strict on some subset of positive measure in (0,1);
(F3) f(x, s)ϕp(s) > 0 for a.e. x ∈ (0, 1) and s 6= 0,

where λk(p) is the k-th eigenvalue of eigenvalue problem of (1.4). They obtained
the result as follows:

Theorem A [6, Theorem 4.1] Suppose that f(x, u) satisfies (F1), (F2) and (F3),
then problem (1.4) possesses two solutions u+k and u−k such that u+k has exactly k−1
zeros in (0, 1) and is positive near 0, and u−k has exactly k− 1 zeros in (0, 1) and is
negative near 0.

Noting that in the works we mentioned above, the asymptotic behavior of non-
linearity near 0 is crucial. The assumption f0 = 0 in [20] can ensure that f satisfies
the conditions of fixed point theorem in cones near 0. As for (F3) in [6], which en-
sures that f(0) = 0 and f have constant sign when s > 0 or s < 0, then combining
the other assumptions and bifurcation technology, there is a component of solutions
of (1.4), which bifurcates from trivial solution.

Going back to problem (1.1) and letting F (s) = g(s) + h(x, s, v), we observe
that there is a possibility of F (0) 6= 0. This means one could not treat the case in
the same way with (1.4). Now it motivates the question: how do we deal with the
case F (0) 6= 0?

With respect to the case F (0) < 0, finding solutions to the problem similar as
(1.1) has been actively studied for a long time, and it is not an easy task, we can
refer to Alotaibi et al. [2], Agarwal et al. [1], Chu et al. [5] and Morres et al. [13],
but they only obtained the existence of positive solutions, and no one got the result
about nodal solutions. The likely reason is that due to F (0) < 0, it is difficult to
give the nodal properties and bifurcation behavior of solution near 0.
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Incidentally, let us mention that an important work of Rynne [17], he established
a result of nodal solutions about fourth-order problem when F (0) 6= 0. Motivated
by [6] and [17], we attempt to investigate the nodal solutions for (1.1). But it
is well-known that there are many differences between fourth-order problem and
p-Laplacian problem, for example, the Green functions of (1.1) do not exist and
the p-Laplacian operator is not self-adjoint, then the techniques in [17] are not
applicable to (1.1), such as the proof of Lemmas 2.1-2.3 and 3.8.

For any integer r > 0, let Cr[0, 1] denote the standard Banach space of real
valued, r-times continuously differentiable functions defined on [0, 1], with the norm

‖u‖r =

r∑
i=0

‖u(i)‖0,

where ‖ · ‖0 denotes by ‖u‖0 = max
x∈[0,1]

|u(x)|.

Let

E = {u ∈ C1[0, 1] : u(0) = u(1) = 0}, X = E ∩{u : ϕp(u
′) ∈ C1[0, 1]}, Y = C[0, 1].

In what follows, we use the terminology of Rabinowitz [16]. Let Sk,+ denote the set
of functions in E which have exactly k−1 interior nodal (i.e. non-degenerate) zeros
in (0,1) and are positive near t = 0, and set Sk,− = −Sk,+, and Sk = Sk,+ ∪ Sk,−.
It is clear that Sk,+ and Sk,− are disjoint and open in E. A solution of (1.1) is a
function u ∈ X satisfying (1.1).

Theorem 1.1. There exists an integer k0 > 1, such that for all integers k > k0,
the problem (1.1) have the solutions uk,+ ∈ Sk,+ and uk,− ∈ Sk,−.

Remark 1.2. Observed that Theorem A shows all solutions of (1.4) having nodal
properties for all k ∈ N+. Compared with the case of F (0) = 0, the effect of putting
no restrictions on F near 0 is that the solutions of (1.1) have nodal properties only
when k > k0 and ‖u‖0 > ζ3(λ) (defined in (2.8)).

2. Auxiliary results

For any u ∈ X we define e(u)(x) : [0, 1]→ R by

e(u)(x) = h(x, u(x), u′(x)), x ∈ [0, 1].

It follows from (1.3) that

|e(u)(x)| 6 C +
1

2
|ϕp(u(x))|, x ∈ [0, 1]. (2.1)

Define continuous functions γ,Φ, G as follows:

γ(s) = max{|g(ξ)| : |ξ| 6 s, s > 0}, (2.2)

Φ(u(x)) =

∫ x

0

|ϕp(u(t))|dt, t ∈ [0, 1], (2.3)

G(u(x)) =

∫ x

0

|g(u(t))|dt, t ∈ [0, 1]. (2.4)
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We now consider the boundary value problem−(ϕp(u
′))′ = λϕp(u) + α(g(u) + e(u)), x ∈ (0, 1),

u(0) = u(1) = 0,
(2.5)

where α ∈ [0, 1] is an arbitrary fixed number and λ ∈ R. Obviously, u is a solution
of (1.1) if and only if u is a solution of (2.5) when λ = 0 and α = 1. In the following
lemmas, (λ, u) ∈ R ×X will be supposed an arbitrary solution of (2.5) and R > 0
will be an constant. Also, η1, η2 will be positive constants and ζi : [0,∞)→ [0,∞)
(i = 1, 2, · · · ) will be continuous functions.

By the boundary condition of (1.1) and Role’s theorem, for any u ∈ X, there
exists a τ ∈ (0, 1) such that u′(τ) = 0, then

|u(x)| = |
∫ x

0

u′(t)dt| 6
∫ 1

0

|u′(t)|dt 6 ‖u′‖0,

|u′(x)| = |
∫ x

τ

u′′(t)dt| 6
∫ 1

0

|u′′(t)|dt 6 ‖u′′‖0.

Hence

‖u‖0 6 ‖u′‖0 6 ‖u′′‖0. (2.6)

Lemma 2.1. If
0 6 λ 6 R, ‖u‖0 6 R,

then there exists a ζ1 such that

‖u‖1 6 ζ1(R).

Proof. Integrate (2.5) over [τ, x] we get

−ϕp(u′(x)) =

∫ x

τ

[λϕp(u(t)) + αg(u(t)) + αe(u)(t)]dt,

Combining with (2.2) we get

| − ϕp(u′(x))| = |ϕp(u′(x))|

6

∣∣∣∣∫ x

τ

[λ|ϕp(u(t))|+ α|g(u(t))|+ α|e(u)(t)|]dt
∣∣∣∣

6

∣∣∣∣∫ 1

0

[λ|ϕp(u(t))|+ α|g(u(t))|+ α|e(u)(t)|]dt
∣∣∣∣

6

∣∣∣∣∫ 1

0

[R ·Rp−1 + γ(R) + C +
1

2
Rp−1]dt

∣∣∣∣
= Rp + γ(R) + C +

1

2
Rp−1.

Moreover,

|ϕp(u′(x))| = ϕp(|u′(x)|) 6 Rp + γ(R) + C +
1

2
Rp−1,
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then we get

|u′(x)| 6 ϕ−1p (Rp + γ(R) + C +
1

2
Rp−1).

Define ζ1(R)/2 := ϕ−1p (Rp + γ(R) + C +Rp−1/2), this shows ‖u‖1 6 ζ1(R).

Lemma 2.2. For any x0, x1 ∈ [0, 1] and x0 > x1, then there exists an increasing
function ζ2 such that if 0 6 λ 6 R, and |u(x0)|+ |u′(x0)| 6 R, then ‖u‖0 6 ζ2(R).

Proof. Choose x1 ∈ [0, 1] such that |u′(x1)| = ‖u′‖0, then we get

ϕp(u
′(x1)) = λ

∫ x0

x1

ϕp(u)dx+ α

∫ x0

x1

g(u(x))dx+ α

∫ x0

x1

e(u(x))dx+ ϕp(u
′(x0)).

We can choose x0 = x1 when x1 = 1 (the conclusion clearly holds) and x0 > x1
when x1 ∈ [0, 1), then by (2.1), (2.3), (2.4) and (2.6), we obtain

|ϕp(u′(x1))|
= |u′(x1)|p−1

6 λ

∫ x0

x1

|ϕp(u(t))|dt+ α

∫ x0

x1

|g(u(t))|dt+ α

∫ x0

x1

|e(u)(t)|dt+ |ϕp(u′(x0))|

= λΦ(u(x0))− λΦ(u(x1)) + αG(u(x0))− αG(u(x1))

+ α

∫ x0

x1

|e(u)(t)|dt+ |ϕp(u′(x0))|,

that is,

|u′(x1)|p−1 + λΦ(u(x1)) + αG(u(x1))

6λΦ(u(x0)) + αG(u(x0)) + α

∫ x0

x1

|e(u)(t)|dt+ |ϕp(u′(x0))|,

then we get

|u′(x1)|p−1 6 λΦ(u(x0)) +G(u(x0)) +

∫ x0

x1

|e(u)(t)|dx+ |ϕp(u′(x0))|

6 RΦ(R) +Rp−1 +G(R) + C +
1

2
‖u‖p−10

6 RΦ(R) +Rp−1 +G(R) + C +
1

2
‖u′‖p−10 .

Let
K(R) := RΦ(R) +Rp−1 +G(R) + C.

If ‖u′‖0 6 1, then ‖u‖0 6 1, and if ‖u′‖0 > 1, then

|u′(x1)|p−1 = ‖u′‖p−10 6 K(R) +
1

2
‖u′‖p−10 ,

then

‖u‖0 6 ‖u′‖0 6 (2K(R))
1

p−1 .
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Define ζ2(R) := max{1, (2K(R))
1

p−1 }, then ‖u‖0 6 ζ2(R).

By (1.2) we can choose η1 > 1 such that if |ξ| > η1, then

|g(ξ)| > C +
1

2
|ϕp(ξ)|. (2.7)

We also define function ζ3 : R→ [η1,∞) by

ζ3(ξ) =

 ζ2(ξ + ξ2) + η1, ξ > η1,

ζ3(η1), ξ < η1.
(2.8)

Clearly, ζ3 is increasing.

Lemma 2.3. If R > η1, 0 6 λ 6 R and ‖u‖0 > ζ3(R), then for any x0 ∈ [0, 1]
with |u(x0)| 6 R, we have |u′(x0)| > R2.

Proof. Suppose that for some R > η1 there exists x0 ∈ [0, 1] such that |u(x0)| 6 R
and |u′(x0)| < R2. Then Lemma 2.2 shows

‖u‖0 6 ζ2(R+R2).

This is a contradiction!

3. Proof of main result

We now consider the problem

−(ϕp(u
′))′ = λϕp(u) + ρ(

‖u‖0
ζ3(λ)

)(g(u) + e(u)), u ∈ X, (3.1)

where ρ : R → R is an increasing C∞ function with ρ(s) = 0, s 6 1 and ρ(s) = 1,

s > 2. Note that we have replaced α in (2.5) with the function ρ( ‖u‖0ζ3(λ)
). The

nonlinearity in (3.1) is a continuous function of (λ, u) ∈ R×X, and the nonlinearity
becomes zero if ‖u‖0 6 ζ3(λ). So (3.1) becomes a linear eigenvalue problem, and
we can regard (3.1) as a bifurcation problem bifurcating from u ≡ 0.

Consider the eigenvalue problem−(ϕp(u
′))′ = µϕp(u), x ∈ (0, 1),

u(0) = u(1) = 0.
(3.2)

Letting h = 1 in [11] we can obtain the following lemma:

Lemma 3.1. [11, Proposition 2.6] (i) The set of all eigenvalues of (3.2) is a
countable set {µk | k ∈ N} satisfying

0 < µ1 < µ2 < · · · < µk < · · · → ∞;

(ii) Let φk be a corresponding eigenfunction to µk, then the number of interior
zeros of φk is k − 1.
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Definition ν ∈ {+,−}, which is used throughout the rest of the paper. The
following lemma follows directly from the above statement.

Lemma 3.2. The set of solutions (λ, u) of (3.1) with ‖u‖0 6 ζ3(λ) is

{(λ, 0)} ∪ {(µk, tφk) : k > 1, |t| 6 ζ3(λ)/‖φk‖0}.

Lemma 3.3. For each k > 1 and ν ∈ {+,−}, there exists a connected set Ck,ν ⊂
R×E of non-trivial solutions of (3.1) such that Ck,ν∪(µk, 0) is closed and connected.
Moreover,

(i) there exists a neighbourhood Uk of (µk, 0) in R × E such that Uk ∪ Ck,ν ⊂
R× Sk,ν ;

(ii) either Ck,ν ∩ Ck′,ν′ 6= ∅, for some (k, ν) 6= (k′, ν′), or Ck,ν meets infinity in
R×E, that is, there exists a sequence (λn, un) ∈ Ck,ν , n = 1, 2, · · · such that
|λn|+ ‖un‖1 →∞ as n→∞.

Proof. Since ϕ−1p : Y → X exists and is bounded, (3.1) can be rewritten of the
form

u(x) =

∫ x

0

ϕ−1p

(∫ τ

t

λu(s) + ρ(‖u‖0/ζ3(λ))[g(u(s)) + e(u)(s)]ds

)
dt := Fu(x).

(3.3)

It is easy to verify F : Y → X is a compact operator, and a solution of (3.1)
is equivalent to a solution of (3.3). Applying the Rabinowitz global bifurcation
theorem [16] to operator equation (3.3), by a similar argument with [6], one has
that there exists a component Ck,ν of Sk,ν and either Ck,ν is unbounded or passes
through (µ′k, 0)(µ′k 6= µk). [16, Lemma 1.24] implies Uk ∪ Ck,ν ⊂ R× Sk,ν .

Lemma 3.4. [6, Lemma 2.3] The first alternative in part (ii) of Lemma 3.3 is
impossible.

Lemma 3.4 shows Ck,ν must be unbounded. By a same argument with [16,
Lemma 2.7] we obtain the following lemma:

Lemma 3.5. If (λ, u) is a solution of (3.1) with λ > 0 and ‖u‖0 > ζ3(λ) then
u ∈ Sk,ν for some k > 1 and ν.

In view of Lemmas 3.2 and 3.5, in the following lemmas we suppose that (λ, u)
is an arbitrary non-trivial solution of (3.1) with λ > 0 and u ∈ Sk,ν , for some k > 1
and ν. And if ‖u‖0 > ζ3(λ), then (0, u) is a solution of (1.1).

Lemma 3.6. There exists an integer k0 > 1 (depending only on ζ3(0)) such that if
λ = 0 and ζ3(0) 6 ‖u‖0 6 2ζ3(0) then k < k0.

Proof. Let xi0 , xi0+1 ∈ (0, 1), i0 ∈ {0, 1, 2, · · · , k − 1}, be consecutive zeros of u.
Then there exists xj ∈ (xi0 , xi0+1) such that u′(xj) = 0, and hence, by Lemma 2.3
(with R = η1), |u(xj)| > R > 1. Hence,

‖u′‖0(xi0+1 − xi0) = ‖u′‖0(xj − xi0) + ‖u′‖0(xi0+1 − xj)
> |u(xj)− u(xi0)|+ |u(xi0+1)− u(xj)|
> 2,
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that is

(xi0+1 − xi0) >
2

‖u′‖0
. (3.4)

Since ‖u‖0 6 2ζ3(0), then from Lemma 2.1,

‖u‖1 = ‖u‖0 + ‖u′‖0 6 ζ1(2ζ3(0)),

then

‖u′‖0 6 ζ1(2ζ3(0))− ‖u‖0 6 ζ1(2ζ3(0))− ζ3(0).

From (3.4)

(xi0+1 − xi0) >
2

‖u′‖0
>

2

ζ1(2ζ3(0))− ζ3(0)
.

And let

1 = (1− xk−1) + (xk−1 − xk−2) + · · ·+ (xi0+1 − xi0) + · · ·+ (x2 − x1) + (x1 − 0),

then we get

1 >
2k

ζ1(2ζ3(0))− ζ3(0)
> 1

if we take k > ζ1(2ζ3(0))−ζ3(0)
2 + 1. This is a contradiction! Hence k < k0 :=

ζ1(2ζ3(0))−ζ3(0)
2 + 1.

Now let

VR(u) = {x ∈ [0, 1] : |u(x)| > R},
WR(u) = {x ∈ [0, 1] : |u(x)| < R}.

Lemma 3.7. Suppose that R > η1, 0 6 λ 6 R and ‖u‖0 > ζ3(R). Then WR(u)
consists of exactly k+ 1 intervals, each of length less than 2/R, and VR(u) consists
of exactly k intervals.

Proof. Lemma 2.3 implies that |u′(x)| > R2 for all x ∈ WR(u), then for any
x1, x2 ∈WR(u) and x1 < x2,

|u(x2)| − |u(x1)| =
∫ x2

x1

|u′(t)|dx >
∫ x2

x1

R2dx = R2(x2 − x1),

hence

x2 − x1 6
|u(x2)| − |u(x1)|

R2
6
|u(x2)|+ |u(x1)|

R2
<

2R

R2
=

2

R
.

This completes the proof.

Lemma 3.8. There exists ζ4 satisfying lim
R→∞

ζ4(R) = 0, and η2 > η1 such that, for

any R > η2, if either
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(a) 0 6 λ 6 R and ‖u‖0 = 2ζ3(R), or

(b) λ = R and ζ3(R) 6 ‖u‖0 6 2ζ3(R),
then the length of each interval of VR(u) is less than ζ4(R).

Proof. Define H = H(R) by

H(R) := min

{
R,min

{
g(ξ)

ϕp(ξ)
: |ξ| > R

}
−
(

C

ϕp(R)
+

1

2

)}
.

We may choose η2 > η1 sufficiently large that H(R) > 0 for all R > η2.
Define [x0, x2] ⊂ (0, 1) such that u(x0) = u(x2) = R and u(x) > 0 in [x0, x2]

(the case u(x) < 0 is similar), then [x0, x2] ⊂ VR(u). By (3.1) and the construction
of H, if either (a) or (b) holds, then

−(ϕp(u
′))′ > Hϕp(u) > 0

for x ∈ [x0, x2].
Consider boundary value problem−(ϕp(u

′))′ > H(R)ϕp(u), x ∈ (0, 1),

u(x0) = u(x2) = R,
(3.5)

let y(x) = u(x)−R, then (3.5) is equivalent to−(ϕp(y
′))′ > H(R)ϕp(y +R), x ∈ (0, 1),

y(x0) = y(x2) = 0.
(3.6)

Take

ζ4(R) :=
8q

[H(R)]q−1
,

where q > 1 satisfies 1/p+ 1/q = 1. Then ζ4(R)→ 0 as R→∞.
Define T : C[0, 1]→ X by

Ty(x) =


∫ x

x0

ϕ−1p

(∫ σ

s

H(R)ϕp(y(τ) +R)dτ

)
ds, x0 6 x 6 σ,∫ x2

x

ϕ−1p

(∫ s

σ

H(R)ϕp(y(τ) +R)dτ

)
ds, σ 6 x 6 x2,

where σ ∈ (x0, x2). By [18, Lemma 3.1], if there exists a y satisfies (3.6), then

1

2
‖y‖0 6 y(x) 6 ‖y‖0, x ∈ [

3x0 + x2
4

,
3x2 + x0

4
].

We have two cases: either x0+x2

2 < σ or x0+x2

2 > σ. If x0+x2

2 < σ, then

‖y‖0 > y(
x0 + x2

2
) >

∫ x0+x2
2

3x0+x2
4

ϕ−1p

(∫ σ

s

H(R) · ϕp(
1

2
‖y‖0 +R)dτ

)
ds
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>
∫ x0+x2

2

3x0+x2
4

ϕ−1p

(∫ x0+x2
2

s

H(R) · ϕp(
1

2
‖y‖0 +R)dτ

)
ds

>
∫ x0+x2

2

3x0+x2
4

ϕ−1p

(∫ x0+x2
2

s

H(R) · ϕp(
1

2
‖y‖0)dτ

)
ds

=
1

2
[H(R)]q−1‖y‖0

∫ x0+x2
2

3x0+x2
4

ϕ−1p

(∫ x0+x2
2

s

dτ

)
ds

=
x2 − x0

8
· [H(R)]q−1‖y‖0

q
.

For the case x0+x2

2 > σ, we get

‖y‖0 > y(
x0 + x2

2
)

>
∫ x0+3x2

4

x0+x2
2

ϕ−1p

(∫ s

σ

H(R) · ϕp(
1

2
‖y‖0 +R)dτ

)
ds

>
∫ x0+3x2

4

x0+x2
2

ϕ−1p

(∫ s

x0+x2
2

H(R) · ϕp(
1

2
‖y‖0 +R)dτ

)
ds

>
∫ x0+3x2

4

x0+x2
2

ϕ−1p

(∫ s

x0+x2
2

H(R) · ϕp(
1

2
‖y‖0)dτ

)
ds

=
1

2
[H(R)]q−1‖y‖0

∫ x0+3x2
4

x0+x2
2

ϕ−1p

(∫ s

x0+x2
2

dτ

)
ds

=
x2 − x0

8
· [H(R)]q−1‖y‖0

q
.

This implies

x2 − x0 6
8q

[H(R)]q−1
= ζ4(R),

and we completes the proof.

Now choose an arbitrary integer k > k0 and ν, and choose Λ > max{η2, µk}
such that

2(k + 1)

Λ
+ kζ4(Λ) < 1. (3.7)

Let

B := {(λ, u) : 0 6 λ 6 Λ, ζ3(λ) 6 ‖u‖0 6 2ζ3(Λ)},
D1 = {(λ, u) : 0 6 λ 6 Λ, ‖u‖0 = ζ3(λ)},
D2 = {(0, u) : 2ζ3(0) 6 ‖u‖0 6 ζ3(Λ)},
D3 = {(λ, u) : 0 6 λ 6 Λ, ‖u‖0 = 2ζ3(λ)},
D4 = {(Λ, u) : ζ3(Λ) 6 ‖u‖0 6 2ζ3(Λ)},
D5 = {(0, u) : ζ3(0) 6 ‖u‖0 6 2ζ3(0)}.
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It follows from Lemma 3.2 that Ck,ν “enters” B through the set D1, while from
Lemma 3.5, Ck,ν ∩ B ⊂ R × Sk,ν . Thus, by Lemmas 2.1, 3.3 and 3.4, Ck,ν is
unbounded and must “leave” B, and since Ck,ν is connected it must intersect ∂B.
However, (3.7) and Lemma 3.7-3.8 show Ck,ν can not intersect with D3 and D4

(if u ∈ Ck,ν , then the sum of the lengths of intervals in WR(u) and VR(u) is 1).
And Lemma 3.6 shows Ck,ν can not intersect with D5 when k > k0. Then the only
portion of ∂B (other than D1) which Ck,ν can intersect is D2. Thus there exists a
point (0, uk,ν) ∈ Ck,ν ∩D2 , and clearly uk,ν provides the desired solution of (1.1)
when ‖u‖0 > ζ3(λ), which completes the proof of the theorem.
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