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EXISTENCE OF SOLUTIONS TO A
GENERALIZED KADOMTSEV-PETVIASHVILI

EQUATION WITH A POTENTIAL AND
CONCAVE-CONVEX NONLINEARITY
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Abstract In this paper, we firstly prove the existence of infinitely many
solutions with positive energy to a class of generalized Kadomtsev-Petviashvili
equation with a potential and concave-convex nonlinearity. Secondly, with the
help of genus, we are able to prove the existence of infinitely many solutions
with negative energy for a suitable parameter λ. Our results can be looked on
as a generalization to previous works in the literature.
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1. Introduction and main results

In describing water waves that propagate in straits or rivers rather than unbounded
surfaces, a generalized Kadomtsev-Petviashvili (GKP) equation with variable coef-
ficients has been proposed by David et. al. [5, 6]. From then on, there are some
works studying the existence of solitary waves or soliton solutions of the GKP with
variable coefficients, see, for instance [11] and the references therein. More precisely,
in R2, a class of GKP with the form

(u(t) + r(t)uux + q(t)uxxx)x + σ(y, t)uyy + a(y, t)uy + b(y, t)uxy

+c(y, t)uxx + e(y, t)ux + f(y, t)u+ ρ(y, t) = 0
(1.1)

has been considered by Güngör and Winternitz [11], where r, q, σ, a, b, c, e, f
and ρ are functions satisfying some technical conditions.

A lot of mathematicians have studied the existence of solitary waves. A pio-
neering work has been achieved by De Bouard and Saut [7], where the authors have
studied the existence of solitary waves to the following{

ut + f ′(u)ux + uxxx + βvy = 0,

vx = uy,
(x, y) ∈ R2 (1.2)
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with f(s) = sp and β = −1, where 1 ≤ p < 4 and p = m
n with m and n being

relatively prime and n is odd. A series of works on soliton solutions, rogue wave
solutions, soliton and rogue wave mixed solutions as well as their numerical simu-
lations, have been obtained by Ma et al. [13,14]. Other results on Cauchy problem
have been investigated in [8, 19].

For GKP without a nonhomogeneous term ρ(y, t) in higher spatial dimensions,
Xuan [17] has investigated the existence of solitary waves of

wt + wxxx + (f(w))x = D−1
x ∆yw, (1.3)

where (t, x, y) ∈ R+ × R × RN−1, y = (y1, · · · , yN−1), N ≥ 3. The operator D−1
x

denotes D−1
x g(x, y) =

∫ x
−∞ g(s, y)ds and ∆y =

∑N−1
k=1

∂2

∂y2k
.

Finding a solitary wave of (1.3) is equivalent to study the existence of solutions
in a suitable function space to the following equation

− uxx +D−2
x ∆yu+ u = f(u). (1.4)

In [12], the authors have investigated the existence of solutions to the equation

−uxx +D−2
x ∆yu+ cu = Q(x, y)|u|p−2u.

It has been proved that the existence of solutions depends strongly on the properties
of the coefficient Q(x, y). Several other results on the existence of solutions to
various kinds of GKP equation can be found in [1, 3, 9, 15]. The purpose of the
present paper is study the existence and multiplicity of solutions to (GKP) with a
potential and concave-convex nonlinearity of the form{

−uxx +D−2
x ∆yu+ (1 + V (x, y))u = λh(x, y)|u|q−2u+ |u|p−2u,

u→ 0 as |(x, y)| → ∞,
(1.5)

where λ > 0, 1<q<2<p<N̄ = 2(2N−1)
2N−3 and V (x, y) is a nonnegative function. Before

stating the main results, we give several conditions and definitions.

(V). V (x, y) satisfies inf
(x,y)∈R×RN−1

V (x, y) ≥ a > 0, and for any M > 0,

µ(
{

(x, y) ∈ R× RN−1 : V (x, y) ≤M
}

) < +∞. Here and after µ denotes
the Lebesgue measure.

(H). For any (x, y) ∈ R× RN−1, h(x, y) > 0, and h ∈ L
p

p−q (RN ).

Definition 1.1. On Y :=
{
gx : g ∈ C∞0

(
RN
)}

, we define the inner product

(u, v)Y :=

∫
RN

(
uxvx +D−1

x ∇yu ·D−1
x ∇yv + uv

)
dxdy,

where ∇y =
(

∂
∂y1

, · · · , ∂
∂yN−1

)
, and the corresponding norm

‖u‖ :=

(∫
RN

(
u2
x + |D−1

x ∇yu|2 + u2
)
dxdy

) 1
2

.

A function u : RN → R belongs to X if there exists (un) ⊂ Y such that:

(1) un → u a.e. on RN ;
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(2) ‖uj − uk‖ → 0, j, k →∞.

The space X with inner product (·, ·) and norm ‖ · ‖ is a Hilbert space.

Definition 1.2. Denote

XV :=

{
u ∈ X :

∫
RN

V u2dxdy <∞
}
,

then the XV with inner product (·, ·)V and norm ‖ · ‖V is a Hilbert space, where
(u, v)V := (·, ·) +

∫
RN V (x, y)uvdxdy and ‖u‖2V := ‖u‖2 +

∫
RN V (x, y)u2dxdy.

The main results are the following two theorems.

Theorem 1.1. There exists λ1 > 0 such that for any λ ∈ (0, λ1), the (1.5) admits
infinitely many solutions with positive energy in XV .

Theorem 1.2. There exists λ2 > 0 such that for any λ ∈ (0, λ2), the (1.5) possesses
infinitely many solutions with negative energy in XV .

The proofs of Theorem1.1 and Theorem 1.2 are based on the variational method.
We will define a suitable Euler-Lagrange functional on the space XV and show that
this functional is well defined and C1 on XV . Then we use abstract critical point
theorems to prove our main results.

This paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we prove the existence of infinitely many solutions with positive energy.
In Section 4, with the help of genus, we prove the existence of infinitely many
solutions with negative energy.

2. Preliminaries

In this section, we give some preliminaries. A starting point is the following em-
bedding relations.

Lemma 2.1. [12, 17]:

(i) If 2 ≤ p ≤ N̄ , then X ↪→ Lp
(
RN
)

is continuous;

(ii) If 2 ≤ p < N̄ , then X ↪→↪→ Lploc
(
RN
)

is compact.

With the help of Lemma 2.1 and the definition of XV , we easily get the following
proposition.

Proposition 2.1. If 2 ≤ p ≤ N̄ , then XV ↪→ Lp
(
RN
)

is continuous; if 2 ≤ p < N̄ ,

then XV ↪→↪→ Lploc
(
RN
)

is compact.

Moreover, under the assumption of (V ), we are able to prove the following
compact embedding.

Lemma 2.2. Under the condition (V ), the following embedding is compact:

XV ↪→↪→ Lp
(
RN
)
, 2 ≤ p < N̄. (2.1)

Proof. To prove this lemma, we use an idea from [2]. Suppose that (un) ⊂ XV is
bounded. Thus after passing to a subsequence, we may assume there is a u0 ∈ XV ,
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such that

un ⇀ u0 weakly in XV ,

un → u0 strongly in Lploc(R
N ).

We first show that un → u0 strongly in L2(RN ). For this it suffices to prove that
αn := |un|L2 → |u0|L2 . Suppose αn → α along a subsequence, so α ≥ |u0|L2 . We
claim that for every ε > 0, there exists R > 0 such that∫

RN\DR

u2dxdy < ε, (2.2)

where DR =
{

(x, y) ∈ R× RN−1 : |x| ≤ R, |y| ≤ R
}

. If (2.2) holds, then un → u0

strongly in L2(RN ), because un|DR
→ u0|DR

strongly in L2(DR). Hence

|u0|L2(RN ) = |u0|L2(DR) + |u0|L2(RN\DR)

≥ lim
n→∞

|un|L2(DR)

≥ lim
n→∞

|un|L2(DR) − lim
n→∞

|un|L2(RN\DR)

≥ α− ε.

It remains to prove (2.2). We fixed ε > 0 and choose positive constant M >
2
ε sup ‖un‖2V , s ∈ (1, N̄2 ) and

c0 ≥ sup
u∈XV \{0}

|un|2L2s(RN )

‖un‖2V
. (2.3)

Let s′ satisfy 1
s + 1

s′ = 1. The property of the potential V implies that for R > 0
large enough

µ
({

(x, y) ∈ R× RN−1 \DR : V (x, y) < M
})
≤

 ε

2c0 sup
n
‖un‖2V

s′

. (2.4)

We set
A :=

{
(x, y) ∈ R× RN−1 \DR : V (x, y) ≥M

}
,

and
B :=

{
(x, y) ∈ R× RN−1 \DR : V (x, y) < M

}
.

Then by our choice of M , we can get∫
A

un
2dxdy ≤

∫
RN

V (x, y)

M
un

2dxdy ≤ ‖un‖
2
V

M
≤ ε

2
.

Moreover, the Hölder inequality, (2.3) and (2.4) imply∫
B

un
2dxdy ≤

(∫
B

|un|2sdxdy
) 1

s
(∫

B

1dxdy

) 1
s′

= |un|2L2s · µ(B)
1
s′

≤ c0‖un‖2XV
· µ(B)

1
s′

<
ε

2
.
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Therefore we obtain∫
RN\DR

un
2dxdy =

∫
A

un
2dxdy +

∫
B

un
2dxdy ≤ ε.

Thus we have proved that un → u0 strongly in L2(RN ). We can use the Anisotropic
Sobolev inequality [7] in order to see that un → u0 strongly in Lp(RN ) for 2 ≤ p <
N̄ . The proof is complete.

We end this section with the following minimization problem.

S := inf

{
‖u‖2V : u ∈ XV ,

∫
RN

|u|pdxdy = 1, 2 < p < N̄ =
2(2N − 1)

2N − 3

}
.

From Lemma 2.2, it is easy to see that S is positive and can be achieved by a
function in XV .

3. Infinitely many solutions with positive energy

The aim of this section is to show the existence of infinitely many solutions of (1.5)
with positive energy. That is to say, we will prove Theorem 1.1 holds. On XV , we
define the following energy functional

I(u) =
1

2
‖u‖2V −

λ

q

∫
RN

h(x, y)|u|qdxdy − 1

p

∫
RN

|u|pdxdy. (3.1)

Then I ∈ C1(XV ,R). And we only need to prove the existence of infinitely many
positive critical values of I on XV .

Lemma 3.1. The functional I satisfies (PS) condition on XV . That is, for any
c ∈ R, any sequence (un) ⊂ XV satisfying I(un)→ c, I ′(un)→ 0, the (un) contains
a convergent subsequence in XV .

Proof. For n large enough, there is a positive constant C such that

c+ 1 + ‖un‖V ≥ I(un)− 1

p
(I ′(un), un)

=

(
1

2
− 1

p

)
‖un‖2V −

(
1

q
− 1

p

)
λ

∫
RN

h(x, y)|un|qdxdy

≥
(

1

2
− 1

p

)
‖un‖2V −

(
1

q
− 1

p

)
CS−

q
2 |h|

L
p

p−q
‖un‖qV .

Therefore, (un) is bounded on XV . Going if necessary to a subsequence, we may
assume that

un ⇀ u0 in XV ,

un → u0 a.e. in RN ,

un → u0 in Lploc(RN ).

Then

Pn :=I ′(un)(un − u0)

=(un, un − u0)V −
∫
RN

(
λh(x, y)|un|q−2un + |un|p−2un

)
(un − u0) dxdy.



Solutions to a generalized Kadomtsev-Petviashvili equation 1825

Since I ′(un) → 0 as n → ∞, the Pn → 0 as n → ∞. Moreover, the fact that
un ⇀ u0 in XV implies Qn := (u0, un − u0)V → 0 as n→∞.

Note that from the Hölder inequality and Lemma 2.2 that∫
RN

h(x, y)|un|q−1|un − u0|dxdy → 0, (3.2)∫
RN

|un|p−1|un − u0|dxdy → 0. (3.3)

It is deduced from (3.2) and (3.3) that Pn −Qn = (un − u0, un − u0)V → 0 as
n→∞. Therefore ‖un−u0‖V → 0 as n→∞. Since c ∈ R is arbitrarily, I satisfies
the (PS) condition on XV . The proof is completed.

Lemma 3.2. [16] Let E be an infinite dimensional real Banach space, I ∈ C1(E,R)
be even and satisfies (PS) condition and I(0) = 0. Assume E = W

⊕
Z, W is finite

dimensional, I satisfies:

(1) There exist constants ρ, α > 0 such that I(u) ≥ α on ∂Bρ ∩ Z.

(2) For each finite dimensional subspace X0 ⊂ E, there is an R0 = R0(X0) such
that I(u) ≤ 0 on X0 \BR0

, where Br = {u ∈ E : ‖u‖E < r}.

Then I(u) possesses an unbounded sequence of critical values.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We will use Lemma 3.2 to prove Theorem 1.1. Choosing
E = XV , then it is easy to see that the functional I(u) defined in (3.1) is even in
XV . By Lemma 3.1, the functional I satisfies (PS) condition. Next, we prove that
I satisfies (1) and (2). In the first place, by Proposition 2.1 and the condition (H),
there is a positive constant C such that for any u ∈ XV ,

I(u) ≥ 1

2
‖u‖2V −

λ

q
CS−

q
2 |h|

L
p

p−q
‖u‖qV −

1

p

∫
RN

|u|pdxdy

≥ 1

2
‖u‖2V −

λ

q
CS−

q
2 |h|

L
p

p−q
‖u‖qV − C‖u‖

p
V .

Denote φ (z) = z2
(

1
2 −

λ
qCS

− q
2 |h|

L
p

p−q
zq−2 − Czp−2

)
, z > 0. Then, there exist

λ1, z1, α > 0 such that φ (z1) ≥ α for any λ ∈ (0, λ1). Let ρ = z1, we have I(u) ≥ α
with ‖u‖V = ρ and λ ∈ (0, λ1). So the condition (1) is satisfied.

In the second place, for any finite dimensional subspace X0 ⊂ XV , we assert
that there is a constant R0 > ρ such that I < 0 on X0 \ BR0

. Otherwise, there
exists a sequence (un) ⊂ X0 such that ‖un‖V →∞ and I(un) ≥ 0. Hence

1

2
‖un‖2V ≥

λ

q

∫
RN

h(x, y)|un|qdxdy −
1

p

∫
RN

|un|pdxdy. (3.4)

Set ωn = un

‖un‖V . Then up to a sequence, we can assume ωn ⇀ ω in XV , ωn → ω a.e.

in RN . Denote Ω =
{

(x, y) ∈ R× RN−1 : ω(x, y) 6= 0
}

. Assume |Ω| > 0, Clearly,
un(x, y)→∞ in Ω. There is

λ

q

∫
RN

h(x, y)|un|qdxdy ≤
λ

q
CS−

q
2 |h|

L
p

p−q
‖un‖q.
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Therefore

‖un‖−2
V

∫
RN

h(x, y)|un|qdxdy ≤ CS−
q
2 |h|

L
p

p−q
‖un‖q−2 → 0 as n→∞.

And it clearly that ‖un‖−2
V

∫
RN |un|pdxdy ≤ C‖un‖p−2 →∞ as n→∞. There-

fore, multiplying (3.4) by ‖un‖−2
V and passing to the limit as n → ∞ and by the

equivalence of all the norms in X0, show that 1
2 ≥ ∞. This is impossible. So

|Ω| = 0 and ω(x, y) = 0 a.e. on RN . Using the same property as above, we know
there exists a constant β > 0 such that∫

RN

|u|pdxdy ≥ βp‖u‖pV , ∀u ∈ X0,

and ∫
RN

|un|pdxdy ≥ βp‖un‖pV , ∀n ∈ N.

Hence

0 < βp ≤ lim sup
n→∞

∫
RN

|ωn|pdxdy ≤
∫
RN

lim sup
n→∞

|ωn|pdxdy =

∫
RN

|ω|pdxdy = 0.

This is a contradiction. So there exists a constant R0 such that I < 0 on X0 \BR0
.

By Lemma 3.2, we know that the functional I possesses an unbounded sequence
of critical values. The proof of Theorem 1.1 is complete.

4. Infinitely many solutions to (1.5) with negative
energy

In this section, we will construct a min-max class of critical points by using the
classical concept and properties of the genus. Let F be a Banach space, and Σ be
the class of closed and symmetric with respect to the origin subsets of F \ {0}. For
A ∈ Σ, we define the genus γ(A) by

γ(A) = min
{
k ∈ N : ∃φ ∈ C(A;Rk \ {0}), φ(x) = −φ(−x)

}
.

If such a minimum does not exist then we define γ(A) = +∞. The main properties
of the genus are following:

Lemma 4.1. [10] Let A,B ∈ Σ. Then

(1) If A ⊂ B, then γ(A) ≤ γ(B);

(2) γ (A ∪B) ≤ γ(A) + γ(B);

(3) For any consecutive odd map ϕ : F → F , and any A ∈ Σ, there is γ(A) ≤
γ(ϕ(A));

(4) If A ∈ Σ is compact, then there exists a closed neighborhood N about A, such
that γ(A) = γ(N);

(5) If A ⊂ Rn, A is closed, symmetric and 0 /∈ A, then γ(A) < n;

(6) Let F1 be an m-dimensional subspace of F , S be the unit sphere of F , then
γ(F1 ∩ S) = m;
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(7) If there exists f ∈ C(A,B), odd, then γ(A) < γ(B).

Given the functional I, defined by (3.1), using Proposition 2.1, we obtain

I(u) ≥ 1

2
‖u‖2V −

λ

q
C1S

− q
2 |h|

L
p

p−q
‖u‖qV − C2‖u‖pV , u ∈ XV

for some positive constant C1 and C2. If we define

g(s) =
1

2
s2 − λ

q
CS−

q
2 |h|

L
p

p−q
sq − Csp,

then

I(u) ≥ g(‖u‖V ).

There exists λ2 > 0 such that, if 0 < λ < λ2, g attains its positive maximum.
Let us assume 0 < λ < λ2, choosing R0 and R1 as ‖u‖V < R0, g < 0 and

R0 < ‖u‖V < R1, g > 0. we make the following truncation of the functional I:
Take τ : R+ → [0, 1]; nonincreasing and C∞, such that{

τ(x) = 1 if x ≤ R0,

τ(x) = 0 if x ≥ R1.

Let ϕ(u) = τ(‖u‖V ). We consider the truncated functional :

J(u) =
1

2
‖u‖2V −

λ

q

∫
RN

h(x, y)|u|qdxdy − 1

p

∫
RN

|u|pϕ(u)dxdy.

So J(u) ≥ h(‖u‖V ), with h(s) = 1
2s

2 − λ
qCS

− q
2 |h|

L
p

p−q
sq − Cspτ(x). The main

properties of J(u) are given by the following Lemma 4.2:

Lemma 4.2. (1) J ∈ C1(XV , R);

(2) If J(u) ≤ 0, then ‖u‖V < R0, and I(u) = J(v) for all v in a small enough
neighbourhood of u;

(3) There exists λ2 > 0, such that, if 0 < λ < λ2, then J verifies (PS) condition
for c ≤ 0.

Proof. (1) and (2) are immediate. (3) is a corollary of Lemma 3.1.
Observe that, by (2), if we find a negative critical value for the functional J ,

then we have got a negative critical value of I.
Now, we will construct an appropriate mini-max sequence of negative critical

value for the functional J .

Lemma 4.3. Given n ∈ N , there is ε = ε(n) > 0, such that

γ({u ∈ XV : J(u) ≤ −ε}) ≥ n.

Proof. Fix n, let En be an n-dimensional subspace of XV . We take un ∈ En, with
norm ‖un‖V = 1. For 0 < ρ < R0, we have

J(ρun) = I(ρun) =
1

2
ρ2 − λ

q
ρq
∫
RN

h(x)|un|qdxdy −
1

p
ρp
∫
RN

|un|pdxdy.
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En is a space of finite dimension; so, all the norms are equivalent. Then, if we define

αn = inf

{∫
RN

|u|qdxdy : u ∈ En, ‖un‖V = 1

}
> 0,

βn = inf

{∫
RN

|u|pdxdy : u ∈ En, ‖un‖V = 1

}
> 0,

we have

J(ρun) ≤ 1

2
ρ2 − λ

q
|h|

L
p

p−q
αnρ

q − 1

p
βnρ

p.

and we can choose ε (which depends on n), and η < R0, such that J(ηu) ≤
−ε if u ∈ En, and ‖u‖V = 1. Let Sη = {u ∈ XV : ‖u‖V = η}. Sη ∩ En ⊂
{u ∈ XV : J(u) ≤ −ε}; therefore, by (6) of Lemma 4.1, we know:

γ({u ∈ XV : J(u) ≤ −ε}) ≥ γ(Sη ∩ En) = n.

This lemma allows us to prove the existence of critical points.

Lemma 4.4. Let Σk = {C ⊂ XV \ {0} , C is closed, C = −C, γ(C) ≥ k}. Let ck =
inf
C∈Σk

sup
u∈C

J(u), Kc = {u ∈ XV : J ′(u) = 0, J(u) = c}, and suppose 0 < λ < λ2,

where λ2 is the parameter of Lemma 3.2. Then, if c = ck = ck+1 = · · · = ck+r,
γ(Kc) ≥ r + 1. (In particular, the ck is critical values of J .)

Proof. The proof can be finished by Lemma 4.3 and a classical deformation lemma.

Proof of Theorem 1.2. For simplicity, we define J−ε = {u ∈ XV : J(u) ≤ −ε}.
By Lemma 4.3, we know ∀k ∈ N , ∃ε(k) > 0 such that γ(J−ε) ≥ k. Due to J is
continuous and even, J−ε ∈ Σk; then, ck ≤ −ε(k) < 0, ∀k. While J is bounded
from below; hence, ck > −∞, ∀k.

Let us assume that c = ck = ck+1 = · · · = ck+r, then c < 0; therefore, J verifies
the Palais-Smale condition in Kc, and it is easy to see that Kc is a compact set.

Because 0 /∈ Kc, depending on the characteristic (4) and (5) of Lemma 4.1. We

know ∃δ > 0, than γ
(

(Kc)3δ

)
= γ(Kc) <∞.

Let S = XV \ (Kc)3δ, and N = (Kc)3δ. By the deformation lemma, there exists
a map σ such that:

σ ∈ C([0, 1]×XV , XV );

σ(t, ·) is an odd homoembryonic;

σ(1, Jc+ε ∩ S) ⊂ Jc−ε.

It is clear from the definition that, ∃A ∈ Σk+r, sup
A
J ≤ c + ε, and k + r ≤

γ(A) ≤ γ(A \N) + γ(N).

Because A ⊂ Jc+ε, we can know A \N ⊂ Jc+ε ∩ S. So

k + r ≤ γ(A) ≤ γ(Kc) + γ(σ(1, A \N))

≤ γ(Kc) + γ(Jc−ε).
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For the Lemma 4.4 to hold, it is need to satisfy γ(Jc−ε) ≤ k − 1 is sufficient.
Using the inverse, if γ(Jc−ε) ≥ k, then Jc−ε ∈ Σk, so there is c = ck ≤ sup

Jc−ε

J ≤ c−ε.

This is a contradiction.

The proof of Theorem 1.2 is complete.

References

[1] C. Alves, O. Miyagaki and A. Pomponio, Solitary waves for a class of gener-
alized Kadomtsev-Petviashvili equation in RN with positive and zero mass, J.
Math. Anal. Appl., 2019, 477, 523–535.

[2] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some super-
linear elliptic problems on RN , Comm. Partial Differential Equations, 1995, 20,
1725–1741.
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