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DENOISING CONVOLUTIONAL NEURAL
NETWORK WITH ENERGY-BASED

ATTENTION FOR IMAGE ENHANCEMENT

V. Karthikeyan1,†, E. Raja2 and K. Gurumoorthy3

Abstract In the realm of image denoising, the use of convolutional neural
networks (CNNs) has lately gained traction. Several activities involve the
utilization of excellent-clarity pictures and recordings. Images were captured
in a wide variety of illumination circumstances, which means that not all of
them are of the highest quality. Low-light photography suffers from a de-
cline in perceived image quality because of the restricted dynamic range of
the pixel values. Therefore, it is vital to enhance the appearance of images.
Maximum texture retention is achieved by the structural similarity index-
loss-based method. The suggested discrete wavelet transform (DWT)-self at-
tention (SA)-Denoising convolutional neural networks (DnCNNs) make use
of state-of-the-art techniques for image denoising like energy band analysis,
very deep architecture, learning algorithms, dense-sparse-dense training, and
regularization approaches. DnCNN is intended to remove the hidden layers’
latent, yielding a pure picture. After a degraded input sample has had its
relevant energy features retrieved using DWT, the perfect image enhance-
ment is achieved thanks to the incorporation of the self-attention mechanism.
Second, a hierarchical-branch network is formed by combining the suggested
network with the denoising CNN and additional loss in order to reduce the re-
liance on the amount of noisy data in multi-modal picture analysis and make
the problem of image enhancement more tractable. In the end, DWT-SA-
DnCNN’s self-learning qualities are used to improve image quality by obtain-
ing features including undesirable noisy data, edge factor, texture, uniform
and non-uniform areas, smoothness, and object structure. Simulation results
show that our hybrid DWT-SA-DnCNN-based contrast enhancement strategy
outperforms state-of-the-art methods.
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1. Introduction

Image processing, also referred to as IP, encompasses the conversion of an image to
a digital format, followed by the execution of diverse operations with the purpose
of enhancing the image or extracting pertinent data. In addition, it constitutes a
substantial area of research within the disciplines of computer science and engineer-
ing. Using a variety of image acquisition technologies to import images into the
computer constitutes the initial stage in the image processing workflow [25]. Subse-
quently, processes including image analysis, retouching, and analysis are performed
to generate the final product, which consists of modified photographs. Analogue
image processing and digital picture processing are two distinct types of image pro-
cessing. It is feasible to improve physical duplicates, including photographs and
prints, by employing analog image processing techniques. Image analysts utilize
an extensive range of interpretive principles in their interactions with these visual
instruments. The illustration in Figure 1 illustrates how “digital image processing”
pertains to the modification of digital photographs via personal computers.

Figure 1. Image Enhancement

The proliferation of cameras on a wide variety of consumer electronics devices
has resulted in a meteoric rise in the amount of image content being produced. The
bulk of the time, significant form deterioration occurs during the process of image
capture. It could be attributed to the physical constraints of the camera’s lens, or
it could be owing to the lighting conditions. Due to the small size of the sensors
in smartphones, for instance, the aperture is extremely narrow, and the depth of
field is severely restricted [1]. As a direct consequence of this, their photographs
are typically grainy and lack contrast. Poor lighting results in photographs that are
generally too black or overly brilliant, depending on the circumstances. The goal of
the image recovery competition is to find a way to reconstruct a high-quality version
of an image using just its impaired characteristics. This is a poorly stated inverse
problem since there are numerous different outcomes that could occur [4,12,26,34].

Within the realm of computer vision, the concept of image enhancement is
one that is both ubiquitous and fundamental. A few images have low resolution
caused by external influences, including the environment and illumination, that may
impact the efficacy of applications that use computer vision, like automated public
transport, image cognitive ability, and consumer products. Despite the fact that
digital technology has made significant improvements in efficiency, some pictures
have a poor standard due to these external factors [17]. Particularly difficult to see
are photographs with low contrast. As a consequence of this, numerous high-tech
devices now assist users in acquiring photographs and enhancing the quality of those
photographs through the incorporation of inbuilt imaging techniques. These devices
do, however, require a few parameters from the individual using them, including
the selection of an area that has minimal brightness or a typical luminance and
hue [32]. Under specific conditions, it is an ideal choice for equipment users who do



DnCNN with energy-based attention for IE 1895

not prioritize image visibility, such as purposely capturing contrary light images.
However, simple equipment users would consider it inappropriate to solely adjust
the hue tone and increase the overall luminance when attempting to restore a visual.
Enhancing the low-intensity portion of the original photos while maintaining image
clarity is a difficult undertaking [23].

Many quantitative learning techniques and traditional IP methodologies have
been proposed as potential solutions to this issue under certain conditions; how-
ever, these solutions either fail in other contexts or have unintended consequences,
including the halo effect or over-enhancement [38]. To mitigate the drawback, sev-
eral enhancement strategies employ optimization strategies coupled with an image
decomposition methodology. The reconstruction duration increases, and unantici-
pated adverse consequences are possible if we depend on the intended details with
decomposed components. These disadvantages make the techniques less than opti-
mal for the use of simpler equipment [27].

The clarity and accuracy of damaged photographs can be improved with the help
of image enhancement (IE) techniques. In the realm of image rehabilitation, CNNs
like low-light CNN and super-resolution CNN have proven very effective [20]. In
this research, DWT, an attention technique, and a denoising CNN are all integrated
to produce IE. The two parameters used to compare various methods of picture
restoration are the peak signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM). When compared to alternative approaches, the presented approach
has superior PSNR and SSIM statistics.

In summary, our main contributions are the following:
∗ An innovative energy-based attention network with a denoising convolutional
neural network (EBAN-DnCNN) is proposed for improving image quality. EBAN
improves the visibility of the image, apart from improving the image itself. We
attain state-of-the-art status by simplifying the low-level IE issue this way.
∗ Developed a supervised attention technique for training a DnCNN model based
on energy maps. Video processing issues in different lighting circumstances is solved
by combining an energy-based self-attention module with a deep denoising convo-
lutional neural network. This combination can bypass the need for raw camera file
images and complete tasks using a common image file.
∗ Significant improvements in performance have been achieved in several datasets,
encompassing both real and artificially generated low-level lighted images.

The remainder of the paper is structured as follows: Image contrast enhancement
is discussed in depth in Section 1. Image dehazing-related works are collected in
Section 2. In Section 3, we discuss how the suggested hybrid DWT-SA-DnCNN
approach can be used to restore images. In Section 4, we present the results of an
experimental examination of picture denoising using the suggested approach. In
the final section of the study, we evaluate the prospects of this topic.

2. Related works

Surveillance, photographic imaging, radiation therapy, and satellite imagery all
make use of image augmentation. For position-sensitive image restoration, exact
pixel-by-pixel compatibility between the original and restored images is required.
This is why it’s so important to just discard corrupted image data while preserving
spatial properties like texture and edges. Until recently, artificial neural network
systems struggled due to a lack of data and processing power. The proliferation
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of both computing resources and information has made artificial neural networks
useful for numerous contexts [25]. Advantages based on the input image parameters
have been found when more learning approaches are investigated.

Image enhancement(IE) is employed to improve the visual quality of images
and boost the knowledge available for further assessment and process [11, 33, 53].
Various poor lighting image improvement methods have been proposed and have
achieved significant advancements in the fields of image augmentation and remotely
acquired images. Histogram Equalization (HE) and its variations, such as Dynamic
Histogram Equalization, Brightness Protecting Dynamic Histogram Equalization,
and Contrast Constrained Adaptive Histogram Equalization (CLAHE), are conven-
tional methods for enhancing contradiction in images. These strategies have been
studied and discussed by various researchers, including Gonzalez et al. (2009) [15],
Abdullah-Al-Wadud et al. (2007) [1], Ibrahim and Kong (2007) [21], Asha and
Sreenivasulu (2018) [6], and Pisano et al. (1998) [37]. Additionally, contrast im-
provement in low-light images can be achieved through histogram equalization and
illumination adjustment [8]. Other approaches, such as the Retinex-based the-
ory [28] and the multiscale Retinex model (MSR-net) [24], are also utilized for
contrast restoration. The objective of high dynamic range is to enhance the relative
quality of an image by expanding its dynamic span. This is a worldwide alteration
that disregards variations in brightness, leading to specific areas being excessively
exposed, causing deformation in hue, and inadequate suppression of noise. This
method may generate photos with increased luminosity and contrast without any
manual involvement. Nevertheless, the highlighting of features in low-light regions
is inadequate, and there is a possibility of color aberrations [43, 48]. Deep learn-
ing (DL) presents a revolutionary low-light IE approach Guo et al. (2017) [16].
Low-light performance can be improved using a variety of DL-based techniques,
including brightness assessment and explicit training throughout the process which
is summarized in Table 1.

Traditional and AI approaches to the analysis of remotely sensed low-light pho-
tos continue to dominate the field. There have been a number of attempts to
enhance low-visibility aerial images; for example, Fu et al. (2015) [14] used HE to
increase contrast, Lee et al. (2012) [30] employed dictated irradiation and dynamic
brightness adjustment, Li et al. (2018) [31] offered multifaceted wavelet transform
approaches, and Liu et al. (2017) [33] used Retinex analysis. Despite premiering
in the late 1970s, the 2000s were CNN’s most successful era. Jung and Oh demon-
strated in 2004 that GPUs could construct neural networks at a 50 percent faster
rate than CPUs. Today, deep learning is not given the respect it deserves. A study
by Singh and Shree in 2020 [42] and by Lee et al. in 2015 [29] found that convo-
lutional networks perform exceptionally well in low-light image processing. Most
neural networks have extensive training. Training generates random NN weights.
Using the dense-sparse-dense (DSD) technique, Han et al. (2016) [18] achieved
superior outcomes when training GoogLeNet, VGG-16, ResNet-16, Deep Speech,
and other networks. The following image enhancement techniques used DL: super-
resolution [27], MSR-net [41], GLADNet [45], and poor-light IE by Illumination
Map Estimation (LIME) [16]. LIME exhibits exceptional efficacy in scenarios in-
volving images with little or no lighting, wherein the author devises a sophisticated
averaging framework to accurately compute the illumination map.

When compared to more traditional methods of picture restoration, the proposed
DWT-SA-denoising CNNs perform exceptionally well. The quantity of energy in
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Table 1. Deep Learning-Based Methods for IE

Reference Inference

Fu et al.
(2015) [13]

Suggested a stochastic image deconstruction. After partition-
ing the source image into brightness and backscattering scenar-
ios, the optimum post-processing technique estimated enhanced
brightness and contemplation.

Ying et al.
(2017) [50]

The camera response model improved low-light images. Camera
responsiveness and illumination transformation are CRM sub-
categories. These methods and an estimated illumination pro-
portion map improve low-light pixels.

Li et al.
(2018) [31]

Proposed a convolutional neural network for improving low-light
images. LightenNet consists of four distinct stages. After a
four-convolutional-layer network has estimated the lighting con-
ditions, the brightness map is improved using gamma compen-
sation and a directed image filter.

Lore et al.
(2017) [35]

The end-to-end approach stacked sparse denoising autoencoder
developed on synthetic information can enhance and denoise low-
light images with noise-sensitive emphasis, Low-light Net (LL-
Net) creatively expands (Xie et al. 2012) [49].

Ai and Kwon
(2020) [2]

Suggested Attention U-net convolutional network, works well in
very dim conditions and does not require raw image files to solve
the problem of smart city video surveillance security.

each sub-band was calculated using the discrete wavelet transform so that the most
suitable frequency range could be selected. The convolutional neural network with
the SA-based denoising technique uses many kernels to collect features as varied
as textures, borders, contours, and bottleneck features associated with energy sub-
bands. Next, the combination of feature mappings is used to generate the final,
improved visuals. In addition, the denoising CNN framework for IE is trained
employing synthetic low-light and normal-light image sets utilizing dense sparse
dense training in this study. This article’s strong augmentation effectiveness can
be attributed to its few parameters, low computing resource consumption, and lack
of particular heterogeneity. All the methods shown here, which are based on a
mix of DWT and SA-DnCNN, can be used with both high-resolution and lower-
resolution interpretations. Therefore, an instantaneous multi-class IE strategy can
benefit from the use of a convolutional neural network trained on projected energy
to remove noise.

3. Materials and methods

This part will initially explore the energy estimation and spectrum aggregation
techniques relying on the wavelet transform. After that, the chunk information is
put into a DnCNN model that uses self-attention and has fewer layers and a dense
sparse dense learning architecture. Ultimately, the process of image restoration is
executed in accordance with the depiction shown in figure 2.
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Figure 2. Block diagram of Suggested system

3.1. Estimating energy bands using discrete wavelet trans-
form

Assessment of energy systems centers on the principle of conserving energy. Esti-
mate the energy percentage by calculating the detailed coefficients (D) as well as
the approximated coefficients (A). In the wavelet-based realm, Parseval’s principle
reflects the principle of conservation of energy. The discrete wavelet transform’s
basic consuming power is equal to the square summation of each band’s harmonic
constituents. The acquired image J is inputted into the DWT processing module.
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Band energy can be calculated by evaluating specific and quantitative character-
istics, which provide the foundation for energy assessment that utilizes intelligent
band selection (l). The target spectrum was split up into several, equally-sized
subbands utilizing a finite impulse response filter. Using DWT, we analyzed the
obtained blurry images and determined the percentage of energy in each band of
frequencies [36]. First, the work herein employed DB1 wavelets to calculate the de-
tailed and analysis components’ energy levels. The percentage of the band’s energy
that is contained in its subbands can be calculated after applying DWT tenfold
(with L equal to 1). The following procedure for calculating percentages is derived
from doing energy normalization on the band:
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Here SEq represents the sub-band energy percent, and L = 1.

3.2. Improved DnCNN with attention mechanism

3.2.1. Attention-based modules

The attention process in deep learning is similar to the visual attention of humans,
where it focuses on material that is most relevant to the final result. In order to
enhance the efficiency of the image enhancement process, we incorporated an at-
tention strategy into the DnCNN model. Figure 3 illustrates the implementation
of the suggested approach. The local energy characteristic refers to the provisional
outcome of the DnCNN framework, and it is denoted by blocks 1/2/3. The convo-
lutional and regressive layers in the network utilize all elements of the source image
as parameters, and Block 4 is a comprehensive energy characteristic that produces
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outputs. The attention strategy received knowledge on energy qualities at both
local and global levels, and the estimator has the ability to generate new feature
maps to replace the image’s specific features [2]. Finally, the result is obtained at an
inverse discrete wavelet transform (IDWT) block, which is subsequently proceeded
by a fully connected layer (FC-2, 1024). The procedure commences by combining
the outcomes of many local feature maps with the final layer of the DnCNN. The
layout of the attention estimator, which is task-driven, is illustrated in Figure 4. A
1×1-convolution kernel is employed to limit the dimensionality of the local data to
one, followed by the application of the softmax operator to normalize the results.
The inputs consist of both the interim characteristics and the generic attributes.
Subsequently, Block 4 is employed to normalize characteristics through element-
wise scaling. We modify the conventional architecture to improve input images by
utilizing a weighted blend of local and global characteristics. Additionally, we es-
tablish a compatibility metric between local and global features to ensure that the
network is incentivized to learn attention patterns that are crucial for completing
the given task.

3.2.2. Hybrid DWT-SA-DnCNN architecture

The suggested hybrid DWT-SA-DnCNN architecture for enhancing visual contrast
is depicted in figure 3. Attention-weighted energy band chunks are sent to the
CNN that is de-noising for the purposes of persistent training and normalization.
Convolution layers number d (10) in this network. Besides the output layer, a
ReLU activates all the other layers. Batch normalization [22] is utilized across every
subsequent convolution layer to prevent the inner correlation distortion generated
by mounting several layers. Instead of learning a clear image, a residual pattern is
picked up. The residual learning method [19] eliminates noise in the source images
to boost accuracy. One advantage of the hybrid DnCNN is that SA-DWT has very
low energy constraints.

The ‘d’ layer is present in the suggested composite DnCNN system. A deep
CNN-based structure mines the energy bands of input images that are noise-filled in
order to extract speculative qualities and accumulate particular traits. To avoid los-
ing information due to color space conversion, a hybrid DWT-SA-DnCNN method
could be used to assess multi-channel pictures. The complex nonlinear resemblance
connections involving low-light and normal-light visual pairs can be trained to per-
fection, resulting in images with realistic lighting and contrast. Ignore all pooling
layers and modify convolutional filters to 3x3. This means that for every given
depth d, the reception field of DnCNN should be (2d+1). Gaussian denoising with
a custom noise variance can be achieved using DnCNN’s 21x21 receptive field per-
cent and 10 layer depth [44]. By increasing the depth to 13, the capabilities of
picture denoising techniques are greatly enhanced.

DnCNN consists of three distinct kinds of layers. In Conv+ReLU, 64 feature
maps are created with 64 3x3xc filters in the first layer. C = 1 for grayscale images,
while c = 3 for color ones. Conv+BN+ReLU: 64 3x3x64 filters are used in Layers
2-D-1 for batch normalization among convolution and ReLU. In order to reconstruct
the output, the last layer employs 3x3x64 c filters.

Before applying convolution, a standard zero-padding approach is employed to
smooth out irregularities at the borders. DnCNN uses convolution with a nonlinear
activation function in the intermediate layers to distinguish visual from noise input.
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Inspired by the DSD training method, which trims down DnCNN model layers
yet retains DWT [3, 18]. The suggested approach reduces DSD retraining and
restorative times by focusing on learning at slower rates over lower energy bands.
DSD is used to train energy-based DnCNNs on energy band batches. Our key
contribution is a method that preserves performance while decreasing the number of
layers, parameters, and processing time required by DnCNN. We intend to simplify
the design more [3]. The inverse DWT transform is used to obtain the remaining
noisy image. The output is enhanced by subtracting the residual image from the
original.

Figure 3. Proposed hybrid DWT-SA-DnCNN Architecture
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3.2.3. Loss function

The loss rate quantifies the disparity between predictions and ground truth, playing
a vital role in system learning [51]). The model in this work was constructed using
cross-entropy (CE), and structural similarity index (SSIM), and L2 loss functions.
Equations 3.3 to 3.6 are used to compute network loss.

CEl = −
n

∑

p=0

xplog(x̂p), (3.3)

SSIMl =
(2µaµb +C1)(2σab +C2)

(µ2
a + µ

2
b +C1)(σ2

a + σ
2
b +C2)

, (3.4)

L2l =
1

m

m

∑

p=0

(xp − x̂p)
2, (3.5)

Loss function = CEl + αSSIMl + (1 − α)L2l. (3.6)

Where CEl is the loss of IE, L2l is the loss of manual scored value regression.
Also xp and x̂p denotes the predicted scores and manual scored value.
In our network, a combined entropy, L2loss and SSIMloss with a weight which

usually appears in image enhancement methods. We set α = 0.85 in the learning
process.

In order to discern between noise and incorrect input, this study creates an
energy-wise attention-based DnCNN for image restoration, employing residual learn-
ing and DSD retraining. Training is expedited and restoration effectiveness is en-
hanced with reduced layer complexity by using energy-efficient techniques such as
batch generation, DSD-training, BN, dropout, and residual training.

Figure 4. Proposed Hybrid DWT-DnCNN sample result

Figure 4 depicts the requirement for discrete models in conventional reconstruc-
tion approaches. Contrarily, this integrated energy-based attention paradigm is
capable of stochastic Gaussian blurring with variable noise levels. In this study, we
also demonstrated the capability of building a hybrid DnCNN strategy to execute
visual deblocking with a set of recognized attributes, establish a high-resolution
rendition of the image with different amenities, and modify the degree of noise in
an image. Quantitative and qualitative image dehazing using the suggested method
was demonstrated over a fair amount of time across multiple studies.
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3.3. Dataset and performance metrics

In order to assess the efficacy of the proposed technique, this work employs both the
industry-standard See-in-the-Dark (SID) dataset [10], SET14, SET 5 and real-time
shots. The Sony 7SII and Fujifilm XT2 unprocessed sensor information included
in the SID collection consists of 5094 short-exposure photos and 424 long-exposure
images obtained in extremely dark environments.

After calculating conventional statistics to analyze the effects of several inde-
pendent techniques, including the suggested approach, to assess image quality, the
enhancement operation is performed to evaluate edge preservation and image struc-
tural metrics. This study employs these metrics: The structural similarity index
(SSIM) compares the primary source image and the noise-removed output image.
After processing, the peak signal to noise ratio (PSNR) measures denoised picture
noise [5,47]. Equations 3.7– 3.9 yield SSIM, PSNR, and MSE formulae. All of these
formulas use X(k, l) to represent the pixels in the original noise-free image, N to
represent the pixels in the degraded image, and R to represent the pixels in the
output image after restoration.

SSIM(X,R) =
(2x̄r̄ +C1)(2σxr +C2)

(x̄2
+ r̄2

+C1)(σ2
x + σ

2
r +C2)

. (3.7)

Here σx and σr indicates the standard deviations in the image X and R, and
σxr specifies the standard deviation among the images X and R, as well as C1
and C2 are independent parameters that rely on the dynamic range (Z), which are
commonly set as C1=0.01Z and C2=0.03Z, respectively. The developers of SSIM
assessments recommend using the default utilities of 0.01 and 0.03 to standardize
the fraction’s values and avoid a ‘0’ in the divisor. The PSNR can be represented
as:

PSNR = 10log10
MAX2

x

MSE
(3.8)

and

MSE =
1

lm

l−1

∑

j=0

m−1

∑

k=0

[X(j, k) −N(j, k)]2. (3.9)

The mean square error is MSE, while MAXx is the image X’s greatest possible
intensity value.

4. Results and discussion

This subsection describes the experimental setting and the execution of the sug-
gested DWT-SA-DnCNN performance for many different inputs. The recommended
restorative method was then compared to contemporary techniques.

4.1. Training and testing

In all of the studies, PSNR, MSE, and SSIM were employed as benchmarks [5, 47].
The models were created using the Python NN Keras toolbox, which relies on
TensorFlow. Zhang et al. (2017) [52] provide the DnCNN foundational model and
training data. We used a Linux system with 32 GB of RAM and dual Nvidia GTX
1080 Ti GPUs for training and validating our models. To mimic the DnCNN’s
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Table 2. Evaluation of the suggested method’s efficiency across different layers and mask rates

Layer
count

Assessment
Metrics

% Weight
Mask 8

% Weight
Mask 10

% Weight
Mask 12

% Weight
Mask 15

8 PSNR 28.41 28.84 29.57 30.12

8 SSIM 0.87 0.87 0.88 0.88

10 PSNR 30.98 31.28 32.98 32.51

10 SSIM 0.89 0.91 0.94 0.93

12 PSNR 31.24 31.54 32.05 31.63

12 SSIM 0.89 0.90 0.93 0.93

14 PSNR 31.18 32.27 32.25 32.06

14 SSIM 0.91 0.92 0.94 0.93

training method, we gave our DWT-SA-DnCNN a 40-epoch retraining epoch. The
rate of learning and additional variables were kept constant, just like the traditional
denoising CNN.

The efficacy of the proposed technique was assessed by subjecting it to various
systems in Section 4.2. The presented approach was evaluated based on the con-
straints of noise variability. Every structure was trained utilizing hyper-parameters
with kernel sizes that were identical to those recommended in the proposed method-
ology, for the sake of analysis. The proposed solution is notable because of the de-
coder’s ability to rebuild. The without-skip and without-pooling stages produce the
same outcomes. Pooling networks lack spatial information, while without-pooling
layers possess a higher level of technical intricacy compared to without-skip lay-
ers. In their study, Shelhamer et al. (2017) [40] demonstrated the efficacy of skip
connections and pooling layers in employing precise annotated data. Training data-
driven neural networks primarily provides predictions about test outcomes. This
study demonstrated that the network structure and methodology had the potential
to yield favorable outcomes, even in the presence of imprecise training data. Our
DWT-SA-DnCNN achieved a training time similar to the regular DnCNN after 35
training epochs.

The DWT-SA-DnCNN’s layering pattern and masking proportion are created
during the training process, with fewer levels and a higher masking percentage than
in the final architecture. Table 2 displays the complete findings. The outcomes
indicate that the optimal compromise is ten layers with a masking efficiency of
12%. Network de-noising is not enhanced by trying more or fewer combinations.
Approximately 86% of the weights in a dense network are effective in boosting
performance, even with a masking rate of 14%.

4.2. Qualitative performance assessment outcomes

In order to evaluate the effectiveness of the recommended approach, this paper
conducted a comparison with previous approaches like as CLAHE [37], MSRCR [39],
Fu’s method [13], Ying’s method [50], attention-based structures [7, 53], histogram
equalization (HE) [9], dynamic histogram equalization (DHE) [1], contrast growth
of poor-light images using histogram equalization and illumination adjustment [8],
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Table 3. Evaluation of Different Restorative Methods in terms of PSNR (dB)/SSIM

Input Fu
et al.
2015

Banik et
al. 2018

Zhang,
C et al.
2020

Atoum
et al.
2020

Lore et
al. 2017

Ying et
al. 2017

Denoising
CNN

Suggested
Scheme

IMG
1

33.56/
0.84

40.56/
0.87

41.74/
0.96

42.36/
0.95

36.25/
0.86

37.31/
0.89

39.72/
0.95

43.94/
0.97

IMG
2

35.32/
0.85

40.02/
0.91

40.56/
0.93

41.98/
0.92

37.58/
0.88

39.24/
0.90

39.58/
0.91

42.98/
0.95

IMG
3

34.27/
0.84

39.64/
0.88

40.92/
0.92

41.54/
0.93

38.14/
0.89

38.45/
0.88

38.87/
0.89

42.54/
0.94

IMG
4

17.55/
0.79

22.45/
0.80

26.62/
0.87

24.90/
0.83

20.63/
0.79

22.47/
0.81

25.36/
0.84

29.43/
0.89

IMG
5

20.04/
0.60

21.10/
0.64

24.90/
0.83

25.36/
0.86

21.96/
0.77

22.16/
0.84

26.42/
0.86

28.86/
0.89

IMG
6

14.85/
0.25

21.33/
0.78

24.21/
0.79

23.11/
0.79

20.00/
0.60

24.54/
0.79

20.98/
0.74

29.35/
0.81

IMG
7

22.33/
0.78

22.47/
0.81

25.38/
0.87

26.82/
0.89

25.32/
0.85

24.36/
0.86

23.75/
0.82

30.67/
0.90

IMG
8

20.00/
0.60

21.55/
0.70

25.15/
0.76

26.42/
0.79

24.76/
0.74

23.19/
0.73

25.71/
0.78

29.63/
0.81

IMG
9

19.98/
0.62

25.48/
0.83

28.47/
0.88

29.23/
0.90

28.15/
0.87

27.59/
0.86

27.60/
0.87

32.18/
0.92

IMG
10

24.25/
0.80

26.54/
0.85

29.76/
0.86

31.15/
0.88

28.55/
0.87

29.64/
0.88

30.53/
0.89

35.78/
0.91

the Retinex-based theory [28], the multiscale Retinex model (MSR-net) [24], LLNet
suggested in [35], and DnCNN [52].

The outcomes of each restoration method are displayed in Figure 5. The first
column of the original image in Figure 5 reveals dark and low-contrast exterior
portions. The CLAHE, DHE, and HE contrasts were nearly identical to the original
pictures. Given that the source picture has both an input illumination and a dark
section, the size and distribution of the subimage are governed by the spreading
conditions. According to MSRCR and LLNet, the image appears and contrasts
better than it does in CLAHE. Due to the intense sunlight, the sky always appears
an identical color. The techniques used by [15] and [50] enhance both contrast and
shape. But cumulative brilliance is inadequate. While DnCNN and attention-based
methods outperform conventional contrast improvement techniques, they produce
subpar illumination. Energy band batching and attention-based DSD retraining
improve the traditional denoising CNN’s performance, enabling it to automatically
enhance image contrast while reducing the number of layers and difficulty. The
performance of the proposed system is listed in Table 3.

4.3. Qualitative results with various noise conditions

Denoising images from articles were utilized to evaluate the systems. White Gaus-
sian noise with certain variances was applied to original, unaltered images to gen-
erate the deteriorated versions. Noise levels of 15, 20, 35, etc. were tested, as
indicated in Table 4.
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Table 4. Quantitative Analysis of proposed Scheme against conventional schemes-A

Test Sample
Images

σ
Rate

Ying et
al. 2017
[50]

Lore et
al. 2017
[35]

Atoum
et al.
2020 [7]

Zhang,
et al.
2020
[51]

DnCNN
[52]

Proposed
Method

10 22.5/0.76 23.9/0.77 27.4/0.81 26.4/0.81 25.8/0.81 29.1/0.87

20 21.7/0.68 20.8/0.68 21.6/0.74 22.2/0.76 21.1/0.74 27.6/0.79

30 21.5/0.69 21.3/0.72 21.9/0.73 21.8/0.73 20.8/0.71 25.8/0.75

40 22.3/0.70 22.1/0.71 24.7/0.74 25.1/0.79 24.6/0.73 28.2/0.82

50 22.0/0.72 22.8/0.76 23.5/0.79 23.3/0.78 23.4/0.76 27.3/0.81

10 24.4/0.72 26.7/0.75 27.3/0.78 28.4/0.81 25.6/0.74 32.2/0.86

20 20.4/0.67 21.5/0.67 22.1/0.72 26.8/0.77 23.2/0.75 29.3/0.79

30 18.5/0.62 19.7/0.64 21.2/0.66 22.7/0.71 20.5/0.67 23.8/0.75

40 17.5/0.60 18.8/0.72 19.3/0.78 21.3/0.79 20.1/0.76 22.7/0.81

50 16.4/0.59 18.2/0.70 19.2/0.73 20.1/0.76 17.9/0.65 22.3/0.80

10 27.9/0.83 26.8/0.81 29.3/0.87 28.2/0.84 27.7/0.84 31.4/0.89

20 26.5/0.81 26.2/0.80 27.7/0.83 27.3/0.81 27.0/0.81 31.1/0.88

30 19.3/0.72 23.0/0.78 22.9/0.76 24.8/0.81 21.6/0.75 29.7/0.80

40 15.4/0.65 17.0/0.67 18.5/0.69 19.7/0.72 17.6/0.64 23.6/0.76

50 12.5/0.60 15.4/0.63 16.4/0.66 17.1/0.68 15.1/0.62 21.2/0.72

10 20.7/0.54 21.3/0.58 22.4/0.61 24.1/0.65 21.1/0.59 25.5/0.71

20 18.8/0.52 20.6/0.55 21.6/0.57 23.2/0.62 20.4/0.57 24.9/0.69

30 16.9/0.49 19.6/0.53 20.5/0.54 22.6/0.58 18.6/0.51 23.7/0.66

40 15.1/0.47 17.7/0.51 20.1/0.53 21.4/0.55 18.0/0.51 22.1/0.62

50 12.0/0.43 16.2/0.48 18.4/0.50 19.9/0.52 17.1/0.49 21.5/0.57

10 24.4/0.66 26.2/0.71 28.2/0.74 29.3/0.76 27.9/0.73 32.1/0.80

20 23.1/0.64 25.5/0.68 27.8/0.71 28.8/0.74 25.2/0.69 31.3/0.77

30 21.7/0.61 24.4/0.66 26.5/0.69 27.1/0.72 26.5/0.67 30.6/0.74

40 18.3/0.59 21.6/0.62 23.3/0.65 26.4/0.70 22.3/0.64 29.2/0.73

50 17.6/0.55 19.8/0.61 22.1/0.63 24.6/0.67 20.3/0.62 28.2/0.71

10 21.8/0.64 23.7/0.68 26.2/0.74 26.3/0.74 23.5/0.69 29.1/0.79

20 20.3/0.61 22.2/0.67 25.1/0.71 25.3/0.72 21.8/0.66 28.3/0.77

30 19.5/0.58 21.3/0.65 24.4/0.68 25.0/0.69 20.7/0.67 27.0/0.75

40 18.2/0.56 20.6/0.64 23.8/0.66 24.1/0.67 19.3/0.62 26.5/0.72

50 17.3/0.55 19.7/0.61 22.6/0.63 23.2/0.65 18.8/0.59 25.7/0.71

Table 5 displays the results. Enhancing a noisy picture and displaying its PSNR
and SSIM were accomplished using Ying’s method, DnCNN, attention-based net-
works, and a proposed hybrid DWT+SA+DnCNN. DWT and attention-based DSD-
trained suggested technologies work best across the board in image quality. Our
DWT+SA+DnCNN outperforms baseline DnCNN as well. Figure 6 demonstrates
that for the tested levels of noise exposure, the restored images produced by the
hybrid DnCNN suffer no discernible quality loss.

Different denoising methods were extensively tested and compared. Table 4
shows that compared to traditional methods, the DnCNN algorithm and attention-
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Table 5. Quantitative Analysis of proposed Scheme against conventional schemes-B

Test Sample
Images

σ
Rate

Ying et
al. 2017

Lore et
al. 2017

Atoum
et al.
2020

Zhang,
et al.
2020

DnCNN Proposed
Method

10 28.6/0.77 29.9/0.82 29.4/0.81 31.4/0.84 29.2/0.80 33.4/0.88

20 27.1/0.75 28.0/0.77 28.6/0.79 30.2/0.81 28.1/0.78 32.5/0.85

30 26.9/0.75 27.3/0.76 27.9/0.77 28.8/0.79 27.4/0.76 30.8/0.82

40 25.3/0.71 26.1/0.73 27.0/0.74 28.1/0.76 26.6/0.73 29.2/0.79

50 23.7/0.68 24.8/0.70 25.5/0.72 27.3/0.74 24.4/0.69 28.6/0.77

10 26.4/0.75 27.6/0.77 27.8/0.79 28.4/0.82 27.1/0.78 32.2/0.83

20 26.1/0.72 27.5/0.75 27.2/0.76 27.8/0.79 26.7/0.74 31.3/0.81

30 25.5/0.70 26.7/0.73 27.0/0.74 27.4/0.77 26.5/0.73 30.8/0.80

40 25.2/0.69 26.0/0.71 26.3/0.72 26.9/0.74 25.9/0.70 30.4/0.80

50 23.4/0.63 24.2/0.69 25.2/0.70 25.3/0.71 24.1/0.68 28.5/0.78

10 27.3/0.84 27.8/0.87 29.3/0.88 30.2/0.89 27.7/0.84 32.4/0.91

20 27.0/0.81 27.2/0.85 28.7/0.86 29.3/0.88 27.5/0.82 31.7/0.89

30 25.3/0.76 26.3/0.80 26.9/0.80 27.8/0.81 25.6/0.77 29.9/0.86

40 23.4/0.72 24.7/0.74 25.1/0.75 26.7/0.77 24.6/0.72 28.6/0.85

50 22.5/0.69 24.2/0.72 24.4/0.72 25.1/0.75 24.1/0.71 28.2/0.84

10 22.5/0.64 23.3/0.68 23.4/0.67 24.1/0.69 23.1/0.66 26.5/0.73

20 20.8/0.61 22.6/0.67 22.6/0.56 23.2/0.68 22.4/0.65 25.9/0.71

30 20.1/0.59 21.6/0.63 21.5/0.62 22.6/0.65 21.2/0.63 24.7/0.69

40 19.1/0.57 21.2/0.62 21.1/0.61 21.4/0.63 20.2/0.60 23.8/0.68

50 18.6/0.56 19.2/0.59 19.0/0.58 20.2/0.60 19.1/0.58 22.7/0.66

10 27.4/0.76 28.2/0.81 28.4/0.84 29.3/0.86 27.9/0.79 33.1/0.91

20 27.1/0.74 27.7/0.78 28.0/0.81 28.8/0.84 27.2/0.76 32.3/0.87

30 26.7/0.71 27.4/0.74 27.6/0.77 28.1/0.79 27.0/0.72 30.6/0.85

40 23.9/0.67 26.6/0.70 26.7/0.70 27.1/0.73 25.1/0.69 29.2/0.80

50 22.6/0.63 24.8/0.66 25.1/0.67 25.6/0.69 23.3/0.65 28.5/0.76

10 21.4/0.68 23.6/0.71 24.2/0.73 25.3/0.75 23.5/0.71 28.7/0.80

20 20.9/0.65 22.7/0.68 23.1/0.70 24.4/0.72 22.4/0.68 28.3/0.78

30 20.5/0.63 21.3/0.66 22.4/0.67 23.6/0.69 21.2/0.66 27.8/0.76

40 18.6/0.58 20.6/0.64 21.8/0.63 22.1/0.65 19.3/0.63 27.0/0.73

50 17.5/0.54 19.7/0.60 21.6/0.62 21.2/0.62 18.1/0.59 26.2/0.71

based networks perform better. Because the proposed model is a direct adaptation
of DnCNN and SA-based networks, we compare our response to theirs. Here’s a
rundown of how our hybrid DnCNN and standard DnCNN are similar with respect
to their parameters: By decreasing the number of layers to 10, we were able to
reduce the number of trainable parameters from 350 to 12% (with masked weights).
It is important to note that only 88% of the reported parameters contribute to
the output of the hybrid DnCNN. The DnCNN training took about 130 minutes,
whereas the DWT-SA-DnCNN training took about 280 minutes. The proposed
energy-based DnCNN network dramatically shortens the average denoising time
(14 seconds) by 60%.
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For hybrid Gaussian (σ = 30) and impulsive noise (40%) conditions, Table 6
shows the outcomes of both specific and general methods used to get rid of noise.
After applying denoising to the test images, it displays the average PSNR, MSE,
and SSIM statistics. Raising the total number of training iterations did not greatly
enhance the outcomes, whether it was for specific noise level restoration (35 itera-
tions) or non-particular noise level denoising (50 iterations). For each noise scenario
in the testing set, the system executed for 25 iterations, and then the average mea-
surements of assessment were tabulated.

Table 6. Analysis of the mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM) for the fusion of impulse and Gaussian noises on the SET14, SET5 and SID
dataset.

Image Enhancement Strategies MSE PSNR SSIM

CLAHE 87.2539 21.3586 0.7716

DHE 86.6583 23.5410 0.7801

Fu’s Method 84.8127 26.4378 0.8181

Ying’s Method 80.9320 27.4213 0.8435

VGG-16 79.6642 28.0194 0.8896

DnCNN 76.1254 29.3267 0.9089

LLNet 73.2901 30.8761 0.9118

Gladnet 72.9654 30.8723 0.9278

Attention-based network 72.8521 31.3365 0.9414

Suggested Scheme 70.0452 33.2546 0.9621

The Table 6 provides an assessment of different image-enhancing approaches
using three commonly used evaluation metrics: mean squared error (MSE), peak
signal-to-noise ratio (PSNR), and structural similarity index (SSIM). The Con-
trast Limited Adaptive Histogram Equalization (CLAHE) approach, exhibits a
mean squared error (MSE) value of 87.2539, a peak signal-to-noise ratio (PSNR) of
21.3586, and a structural similarity index (SSIM) of 0.7716. The Dynamic His-
togram Equalization (DHE) method achieves an MSE (mean squared error) of
86.6583, a PSNR (peak signal-to-noise ratio) of 23.5410, and an SSIM (structural
similarity index) of 0.7801. Fu’s Method, Ying’s Method, and deep learning-based
models such as VGG-16, DnCNN, LLNet, and Gladnet demonstrate gradual en-
hancements in performance. The attention-based network demonstrates superior
performance compared to several other techniques, as evidenced by its mean squared
error (MSE) of 72.8521, peak signal-to-noise ratio (PSNR) of 31.3365, and structural
similarity index (SSIM) of 0.9414. The suggested scheme demonstrates satisfactory
equilibrium with a mean squared error (MSE) of 70.0452, a peak signal-to-noise
ratio (PSNR) of 33.2546, and a structural similarity index (SSIM) of 0.9621, indi-
cating its effectiveness in improving image quality. Overall, the measures together
offer a thorough assessment, uncovering the advantages presented approach in terms
of enhancing image quality.

Table 7 displays the correlation between the running time (in seconds) and
various filter sizes and input images used to analyze a 256 × 256 image. The
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Table 7. Average running time (Seconds) assessment of the presented scheme

Method HE DHE Ying’s
Method

Attention
based
network

DnCNN Suggested
Scheme
Without
Atten-
tion
Module

Suggested
Scheme
With At-
tention
Module

Time(s) 589.38 475.53 173.70 92.38 130.24 98.54 14.33

results are obtained by calculating the mean value from 20 separate trials conducted
on various photos. In terms of training duration, a local basis denoiser requires
approximately 10.5 hours, while a nonlocal basis denoiser needs around 13 hours,
assuming that the filter sizes are both set to 2×2. The complete training duration
for DWT-SA-DnCNN is around 1.5 days.

5. Conclusion

The idea and approaches can be applied to detect and remove many forms of uniden-
tified noise in the domain of image restoration. This comprehensive method has the
potential to be extremely effective in a variety of complex signal and image pro-
cessing procedures that frequently suffer from noise. This study domain has the
potential for further development to encompass clinical image processing, biomet-
rics technology, and telecommunications, amongst other applications. This paper
proposes a method for enhancing images using a discrete wavelet transform and
an attention-based denoising convolutional neural network. The hybrid wavelet
transforms with a self-attention-based dense-sparse-dense retraining strategy were
effectively utilized in the DnCNN, leading to the development of an extremely effec-
tive hybrid denoising structure with significantly reduced layers and characteristics.
The primary goal is to utilize the proposed approach to develop a denoising model
capable of identifying noise, determining its impact, and enhancing the filtering
system’s pattern to minimize noise. The proposed method has the ability to effec-
tively eliminate several types of noise, either individually or in combination, even
when the noise levels are at their highest. Furthermore, it consistently produces
results that closely resemble the clean, noise-free image, which is a distinctive char-
acteristic of this method. Results show our technique best performs on the SID
and real-time image databases, producing images of greater quality with reduced
noise and chromatic distortions. We aim to develop a more efficient focus module
to reduce computing costs and enhance system applicability in future research.
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Figure 5. Proposed Hybrid DWT-DnCNN sample result
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Figure 6. Restoration results of proposed methodology under various σ values
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