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DYNAMICAL BEHAVIOR OF THE
GENERALIZED COMPLEX LORENZ

CHAOTIC SYSTEM∗

Fuchen Zhang1,† and Fei Xu2

Abstract The purpose of this paper is to investigate the boundedness and
global attractivity of the complex Lorenz system:

ẋ = α (y − x) , ẏ = γx− cy − dxz, ż = −βz +
1

2
(x̄y + xȳ) ,

where α, β, γ, c, d are real parameters, x and y are complex variables, z is a
real variable, an overbar denotes complex conjugate variable and dots repre-
sent derivatives with respect to time. This system arises in many important
applications in laser physics and rotating fluids dynamics. It is very inter-
esting that we find that this system exhibits chaos phenomenon for the given
parameters. Using generalized Lyapunov-like functions, we prove the existence
of the ultimate bound set and the globally exponentially attractive set in this
generalized complex Lorenz system. The rate of the trajectories is also ob-
tained. Numerical simulations show the effectiveness and correctness of the
conclusions. Finally, we present an application of our results that obtained in
this paper.

Keywords Complex Lorenz chaotic system, chaotic attractor, Lyapunov ex-
ponent, Lyapunov dimension, global attractivity.
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1. Introduction

In 1963, Edward Lorenz [23] introduced the real Lorenz chaotic system:
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
ẋ = α (y − x) ,

ẏ = γx− y − xz,

ż = −βz + xy,

(1.1)

where α, β, γ are real parameters of the Lorenz system as stated in several papers
[3,23,31]. The Lorenz system can describe the thermal convection in fluids [3,23,31].
The Lorenz chaotic system has inspired many researchers to study new chaotic
systems and chaotic phenomena [2,4,11–14,24,25,28,32]. Since then, many methods
have been proposed to study chaotic behaviors of chaotic systems [1,7,9, 10,14,15,
15–20,33–40,42].

A chaotic system is a nonlinear deterministic system that displays complex and
unpredictable behaviors. Since the pioneering work by A.C. Fowler et al. [5], com-
plex chaotic systems have become an interesting field of research over the last few
decades [6, 8, 22,26,27,30,41]. The complex Lorenz system is as follows:

ẋ = α (y − x) ,

ẏ = γx− y − xz,

ż = −βz +
1

2
(x̄y + xȳ) ,

(1.2)

where x and y are complex variables, z is a real variable and α, β, γ are real param-
eters, an overbar denotes complex conjugate variable and dots represent derivatives
with respect to time. Variables x, y, z in system (1.2) are related respectively to
electric field, the atomic polarization amplitudes and the population inversion in a
ring laser system of two-level atoms, for more details, see [5, 25]. It is reported in
the literature [30] that the complex Lorenz system (1.2) is often used to describe
and simulate the physics of detuned lasers. The complex Lorenz model applies to
the description of detuned single mode, homogeneously broadened lasers when a
certain constraint on the parameters is observed [30]. The complex Lorenz system
also has many important applications in physics, for example, in laser physics and
rotating fluids dynamics [6,8,26,27]. Nonlinear dynamical behaviors of the complex
Lorenz system, such as bifurcation, limit cycle, analytic solution, the stability of
equilibrium point, synchronous behavior, geometric structure, have been studied
in [5, 6, 8, 22,26,27,30,41].

Boundedness is an important concept in the study of chaotic dynamical systems
which can be applied to analyze the Lyapunov dimension of chaotic attractors [12,
16], chaos control and chaos synchronization [21, 35]. The bounds of the Lorenz
system were studied by Leonov et al. in [15, 17]. Inspired by Leonov’ idea, Liao et
al. have proposed the concept of the global exponential attractive set of a chaotic
system and have obtained the global exponential attractive sets of the Lorenz system
[21]. It is reported in the literatures [29,42] that how to get the bounds of the Chen
system and the Lu system is considered as an open problem. Bounds of the Chen
system and the Lu system have been addressed in [36,37].

The rest of this paper is organized as follows. The new generalized complex
Lorenz chaotic system is proposed in Section 2. In Section 3, we will study chaotic
behaviour of the five-dimensional Lorenz system (2.2). In Section 4, we will study
the ultimate boundedness of the five-dimensional Lorenz system (2.2). In Section
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5, we will study global attractivity of the five-dimensional Lorenz system (2.2). In
Section 6, we will give conclusion remarks.

2. Mathematical model

According to the complex Lorenz system (1.2), we propose a generalized complex
Lorenz system as follows 

ẋ = α (y − x) ,

ẏ = γx− cy − dxz,

ż = −βz +
1

2
(x̄y + xȳ) ,

(2.1)

where x = u1 + iu2, y = u3 + iu4 are complex variables, z = u5 is a real state
variable, α, β, γ, c, d are real parameters, an overbar denotes complex conjugate
variable, i2 = −1 and dots represent derivatives with respect to time. Variables
x, y, z of system (2.1) are related respectively to electric field, the atomic polarization
amplitudes and the population inversion in a ring laser system of two-level atoms,
for more details, see [5, 25]. System (2.1) has many important applications in laser
physics and rotating fluids dynamics [5, 6, 8, 22, 26, 27, 30, 41]. The real version of
(2.1) is described by 

u̇1 = α (u3 − u1) ,

u̇2 = α (u4 − u2) ,

u̇3 = γu1 − cu3 − du1u5,

u̇4 = γu2 − cu4 − du2u5,

u̇5 = u1u3 + u2u4 − βu5,

(2.2)

where α > 0, β > 0, c > 0, d > 0, γ ∈ R are real parameters of system (2.2).

3. Chaos phenomenon

When the parameters α= 0.0046,β= 0.0008,γ= 0.03,c = 0.001, d = 0.009, we have
calculated the Lyapunov exponents of system (2.2) as λ1 = 0.0314, λ2 = 0.0075, λ3 =
−0.0058, λ4 = −0.0136, λ5 = −0.0136 by using the algorithm [7]. The Lyapunov
exponents of system (2.2) is shown in Fig. 1.

The Lyapunov dimension of system (2.2) is given by [7, 28]

DL = j +

j∑
i=1

λi

|λj+1|
, (3.1)

such that j is the largest integer that guarantees the inequality
j∑
i=1

λi > 0. According

to the above formula (3.1), the Lyapunov dimension of system (2.2) is calculated as

DL = 4 +
λ1 + λ2 + λ3 + λ4

|λ5|
= 4.6171.
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Figure 1. Lyapunov exponents of system (2.2).

The Lyapunov dimension of system (2.2) is a fractional number which ensures the
presence of a strange attractor.

Since the largest the Lyapunov exponents of system (2.2) is λ1 = 0.0314 > 0
and the Lyapunov dimension of system (2.2) is a fractional number, so the sys-
tem (2.2) shows chaotic behaviour for parameters α= 0.0046,β= 0.0008,γ= 0.03,c =
0.001, d = 0.009.

Remark 3.1. The Lyapunov exponents of the system (2.2) are λ1 = −6.1757, λ2 =
−6.2097, λ3 = −6.3292, λ4 = −7.5025, λ5 = −7.4897 when α= 14,β= 3.7,γ= 35,c =
1, d = 1. Since all Lyapunov exponents of system (2.2) are negative, the system
(2.2) is not chaotic when the parameters α= 14,β= 3.7,γ= 35,c = 1, d = 1.

In the following part, we will study the boundedness and global attractivity of
the five-dimensional Lorenz system (2.2).

4. Boundedness

In this section, we will study the boundedness of the five-dimensional Lorenz system
(2.2). Firstly, let us introduce the following Lemma 4.1 and Lemma 4.2 that will
be used in the following section.

Lemma 4.1. Define

Γ1 =

{
(x1, x2, y1, y2, z)|

x2
1

a2
+
x2

2

b2
+

(z − c)2

c2
+
y2

1

d2
+
y2

2

e2
= 1

}

and

H1 (x1, x2, y1, y2, z) = x2
1 + x2

2 + y2
1 + y2

2 + (z − 2c)
2
, (x1, x2, y1, y2, z) ∈ Γ1.
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Then, we get

max
(x1,x2,y1,y2,z)∈Γ1

H1 (x1, x2, y1, y2, z) =



a4

a2 − c2
, a ≥ b, a ≥ d, a ≥ e, a ≥

√
2c,

b4

b2 − c2
, b > a, b ≥ d, b > e, b ≥

√
2c,

d4

d2 − c2
, d > a, d > b, d ≥ e, d ≥

√
2c,

e4

e2−c2 , e > a, e ≥ b, e > d, e ≥
√

2c,

4c2, a <
√

2c, b <
√

2c, d <
√

2c, e <
√

2c.

Proof. It can be easily proved by the Lagrange multiplier method.
Another lemma is given as follows.

Lemma 4.2. Define

Γ2 =

{
(x, y, z)| x

2

a2
+
y2

b2
+

(z − c)2

c2
= 1

}
, (4.1)

and
H2 (x, y, z) = x2 + y2 + (z − 2c)

2
, (x, y, z) ∈ Γ2.

Then, we get

max
(x,y,z)∈Γ2

H2 (x, y, z) =



a4

a2 − c2
, a ≥ b, a ≥

√
2c,

b4

b2 − c2
, b > a, b ≥

√
2c,

4c2, a <
√

2c, b <
√

2c.

Proof. It can be easily proved by the Lagrange multiplier method.
By Lemma 4.1 and Lemma 4.2, we can get the ultimate bound and positively

invariant set of the five-dimensional Lorenz system (2.2).

Theorem 4.1. For any parameters the following set with two parameters α >
0, β > 0, c > 0, d > 0, γ ∈ R, the following set with two parameters λ and m

Ωλ,m=

{
U |mu2

1 +mu2
2 + λu2

3 + λu2
4 + λd

(
u5 −

λγ + αm

λd

)2

≤ R2
λ,m

}
(4.2)

is the ultimate bound set and positively invariant set of the five-dimensional Lorenz
system (2.2), where

U = (u1, u2, u3, u4, u5) ,

R2
λ,m =



β2(λγ + αm)
2

4αd (β − α)λ
, c ≥ α, β ≥ 2α,

β2(λγ + αm)
2

4cd (β − c)λ
, β ≥ 2c, α > c,

(λγ + αm)
2

λd
, β < 2α, β < 2c.
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Proof. Construct the Lyapunov-like function

Vλ,m (U) = mu2
1 +mu2

2 + λu2
3 + λu2

4 + λd

(
u5 −

λγ + αm

λd

)2

, (4.3)

where ∀λ > 0,∀m > 0, U = (u1, u2, u3, u4, u5) . The derivative Vλ,m (U) of along
the trajectory of (2.2) is

dVλ,m (U)

dt

∣∣∣∣
(2.2)

= 2mu1
du1

dt
+ 2mu2

du2

dt
+ 2λu3

du3

dt
+ 2λu4

du4

dt
+ 2λd

(
u5 −

λγ + αm

λd

)
du5

dt

= 2αmu1 (u3 − u1) + 2αmu2 (u4 − u2) + 2λu3 (γu1 − cu3 − du1u5)

+ 2λu4 (γu2 − cu4 − du2u5) + 2λd

(
u5 −

λγ + αm

λd

)
(u1u3 + u2u4 − βu5)

= −2αmu2
1 − 2αmu2

2 − 2λcu2
3 − 2λcu2

4 − 2λdβu2
5 + 2β (λγ + αm)u5

= −2αmu2
1 − 2αmu2

2 − 2λcu2
3 − 2λcu2

4 − 2λdβ

(
u5 −

λγ + αm

2λd

)2

+
β(λγ + αm)

2

2λd
.

Let

Γ = {U |αmu2
1 + αmu2

2 + λcu2
3 + λcu2

4 + λdβ

(
u5 −

λγ + αm

2λd

)2

=
β(λγ + αm)

2

4λd
},

(4.4)

then Γ is an ellipsoid in R5 for α > 0, β > 0, c > 0, d > 0, γ ∈ R. Outside Γ,
V̇λ,m (U) < 0, while inside Γ, Γ, V̇λ,m (U) > 0. Since Vλ,m (U) is a generalized
positively definite and radially unbounded continuous function and Γ is a bounded
close set, then the maximum value max

U∈Γ
Vλ,m (U) = R2

λ,m of the function Vλ,m (U)

exists. Obviously,

{
U |Vλ,m (U) ≤ max

U∈Γ
Vλ,m (U) = R2

λ,m

}
contains the solutions

of system (2.2). In order to get the maximum value max
U∈Γ

Vλ,m (U) = R2
λ,m , we have

to solve the following optimization problem:
max Vλ,m (U) = max

{
mu2

1 +mu2
2 + λu2

3 + λu2
4 + λd

(
u5 −

λγ + αm

λd

)2
}
,

s.t.αmu2
1 + αmu2

2 + λcu2
3 + λcu2

4 + λdβ

(
u5 −

λγ + αm

2λd

)2

=
β(λγ + αm)

2

4λd
.

(4.5)

In order to use Lemma 4.1 to solve problem (4.5), let us take
√
mu1 = x1,

√
mu2 =

x2,
√
λu3 = y1,

√
λu4 = y2,

√
λdu5 = z as new variables, then optimization problem
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(4.5) transforms into:
maxVλ,m (U) = max

{
x2

1 + x2
2 + y2

1 + y2
2 +

(
z − λγ + αm√

dλ

)2
}
,

s.t.
x2

1

β(λγ+αm)2

4λαd

+
x2

2

β(λγ+αm)2

4λαd

+
y2

1

β(λγ+αm)2

4λcd

+
y2

2

β(λγ+αm)2

4λcd

+

(
z − λγ+αm

2
√
dλ

)2

(λγ+αm)2

4λd

= 1.

We can easily get the optimal solution of the above optimization problem by Lemma
4.1,

max
U∈Γ

Vλ,m (U) = R2
λ,m =



β2(λγ + αm)
2

4αd (β − α)λ
, c ≥ α, β ≥ 2α,

β2(λγ + αm)
2

4cd (β − c)λ
, β ≥ 2c, α > c,

(λγ + αm)
2

λd
, β < 2α, β < 2c.

This completes the proof.

Remark 4.1. i) Let us take m = 1 in Theorem 4.1, then we can get that

Ωλ,1=

{
(u1, u2, u3, u4, u5)|u2

1 + u2
2 + λu2

3 + λu2
4 + λd

(
u5 −

λγ + α

λd

)2

≤ l2λ

}
,

is the ultimate bound set and positively invariant set of the complex Lorenz system
(2.2), where

l2λ =



β2(λγ + α)
2

4αd (β − α)λ
, c ≥ α, β ≥ 2α,

β2(λγ + α)
2

4cd (β − c)λ
, β ≥ 2c, α > c,

(λγ + α)
2

λd
, β < 2α, β < 2c.

ii) Let us take λ = 1 in Theorem 4.1, then we can get that

Ω1,m=

{
(u1, u2, u3, u4, u5)|mu2

1 +mu2
2 + u2

3 + u2
4 + d

(
u5 −

γ + αm

d

)2

≤ L2
m

}

is the ultimate bound set and positively invariant set of the complex Lorenz system
(2.2), where

L2
m =



β2(γ + αm)
2

4αd (β − α)
, c ≥ α, β ≥ 2α,

β2(γ + αm)
2

4cd (β − c)
, β ≥ 2c, α > c,

(γ + αm)
2

d
, β < 2α, β < 2c.



1922 F. Zhang & F. Xu

iii) Let us take λ = 1,m = 1 in Theorem 4.1, then we can get that

Ω1,1=

{
(u1, u2, u3, u4, u5)|u2

1 + u2
2 + u2

3 + u2
4 + d

(
u5 −

γ + α

d

)2

≤ r2

}
,

is the ultimate bound set and positively invariant set of the complex Lorenz system
(2.2), where

r2 =



β2(γ + α)
2

4αd (β − α)
, c ≥ α, β ≥ 2α,

β2(γ + α)
2

4cd (β − c)
, β ≥ 2c, α > c,

(γ + α)
2

d
, β < 2α, β < 2c.

Let us take α= 14, β= 3.7, γ= 35, c = 1, d = 1, then we can obtain that

Ω1,1=
{

(u1, u2, u3, u4, u5)|u2
1 + u2

2 + u2
3 + u2

4 + (u5 − 49)
2 ≤ 55.22

}
is the ultimate bound set and positively invariant set of the complex Lorenz system
(2.2).

Fig. 2. shows the projection of Ω1,1 into the (u2, u3, u4) space. Fig. 3. shows
the projection of Ω1,1 into the (u3, u4, u5) space. Projection of Ω1,1 onto the (u3, u5)
plane is shown in Figure 4. Projection of Ω1,1 onto the (u4, u5) plane is shown in
Figure 5.

Figure 2. Projection of Ω1,1 into the (u2, u3, u4) space.
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Figure 3. Projection of Ω1,1 into the (u3, u4, u5) space.

-60 -40 -20 0 20 40 60

u(3)

-20

0

20

40

60

80

100

120

u
(5

)

Figure 4. Projection of Ω1,1 onto the (u3, u5) plane.
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Figure 5. Projection of Ω1,1 onto the (u4, u5) plane.

Theorem 4.2. For any parameters α > 0, β > 0, c > 0, d > 0, γ ∈ R, the
following set

Λ =

{
(u1, u2, u3, u4, u5)|u2

3 + u2
4 + d

(
u5 −

γ

d

)2

≤ r2
0, u

2
1 + u2

2 ≤ r2
0

}
(4.6)

is the bounds for the five-dimensional Lorenz system (2.2), where

r2
0 =


β2γ2

4cd (β − c)
, β ≥ 2c,

γ2

d
, β < 2c.

Proof. Construct the Lyapunov-like function

V1 (U) = u2
3 + u2

4 + d
(
u5 −

γ

d

)2

.

The derivative of V1 (U) along the trajectory of (2.2) is

dV1

dt
=2u3

du3

dt
+ 2u4

du4

dt
+ 2d

(
u5 −

γ

d

) du5

dt

=2u3 (γu1 − cu3 − du1u5) + 2u4 (γu2 − cu4 − du2u5)

+ 2d
(
u5 −

γ

d

)
(−βu5 + u1u3 + u2u4)
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=− 2cu2
3 − 2cu2

4 − 2dβu2
5 + 2γβu5.

Let

Γ3 = {(u3, u4, u5) | cu2
3 + cu2

4 + dβ
(
u5 −

γ

2d

)2

=
βγ2

4d
},

then Γ3 is an ellipsoid in R3 for α > 0, β > 0, c > 0, d > 0, γ ∈ R. Outside Γ3,
V̇1 (U) < 0, while inside Γ3, V̇1 (U) > 0. Since V1 (U) is a generalized positively
definite and radially unbounded continuous function and Γ3 is a bounded close
set, then the maximum value max

U∈Γ3

V1 (U) = r2
0 of the function V1 (U) exists. In

order to get the maximum value max
U∈Γ3

V1 (U) = r2
0, we have to solve the following

optimization problem:
max V1 (U) = max

{
u2

3 + u2
4 + d

(
u5 −

γ

d

)2
}
,

s.t.cu2
3 + cu2

4 + dβ
(
u5 −

γ

2d

)2

=
βγ2

4d
.

(4.7)

The following optimization problem is equivalent to
max V1 (U) = max

{
u2

3 + u2
4 + d

(
u5 −

γ

d

)2
}
,

s.t.
u2

3
βγ2

4dc

+
u2

4
βγ2

4dc

+
d
(
u5 − γ

2d

)2
γ2

4d

= 1.

(4.8)

In order to use Lemma 4.2 to solve problem (4.8), let us take u3 = z1, u4 =
z2,
√
du5 = z3 as new variables, then optimization problem (4.8) transforms into:

max V1 (U) = max

{
z2

1 + z2
2 +

(
z3 −

γ√
d

)2
}
,

s.t.
z2

1
βγ2

4dc

+
z2

2
βγ2

4dc

+

(
z3 − γ

2
√
d

)2

γ2

4d

= 1.

We can easily get the optimal solution of the above optimization problem by Lemma
4.2,

max
U∈Γ3

V1 (U) = r2
0 =


β2γ2

4cd (β − c)
, β ≥ 2c,

γ2

d
, β < 2c.

Construct the Lyapunov-like function

V2 (U) = u2
1 + u2

2.

The derivative of V2 (U) along the trajectory of (2.2) is

dV2

dt
= 2u1

du1

dt
+ 2u2

du2

dt
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= 2αu1 (u3 − u1) + 2αu2 (u4 − u2)

= −2αu2
1 − 2αu2

2 + 2αu1u3 + 2αu2u4

= −2αu2
1 − 2αu2

2 + α (2u1u3 + 2u2u4)

≤ −2αu2
1 − 2αu2

2 + α
(
u2

1 + u2
3 + u2

2 + u2
4

)
= −αu2

1 − αu2
2 + α

(
u2

3 + u2
4

)
≤ −αu2

1 − αu2
2 + αr2

0

= −α
[
V2 (U)− r2

0

]
.

Thus, we have

V2 (U (t))− r2
0 ≤

[
V2 (U (t0))− r2

0

]
e−α(t−t0).

So,

lim
t→+∞

V2 (U (t)) ≤ r2
0.

This completes the proof.

5. Global exponential attractive domain

Though Theorem 4.1 and Theorem 4.2 point out that the solution of the system
(2.2) is ultimately bounded, they do not give the rate of the trajectories going from
the exterior of the trapping region into the interior trapping region. The rate of the
trajectories going from the exterior of the trapping region into the interior trapping
region of system (2.2) is given in the following Theorem 5.1.

Theorem 5.1. For any α > 0, β > 0, c > 0, d > 0, γ ∈ R, with

Vλ,m (U) = mu2
1 +mu2

2 + λu2
3 + λu2

4 + λd

(
u5 −

λγ + αm

λd

)2

,

η = min (α, c, β) > 0, Lλ,m =
β(λγ + αm)

2

λdη
.

When Vλ,m (U (t)) > Lλ,m, Vλ,m (U (t0)) > Lλ,m, we can get an exponential inequal-
ity of system (2.2), given by

Vλ,m (U (t))− Lλ,m ≤ [Vλ,m (U (t0))− Lλ,m] e−η(t−t0).

Hence, the set

∆λ,m

= {U |Vλ,m (U) ≤ Lλ,m}

=

{
(u1, u2, u3, u4, u5) |mu2

1 +mu2
2 + λu2

3 + λu2
4 + λd

(
u5 −

λγ + αm

λd

)2

≤ β(λγ + αm)
2

λdη

}
,

(5.1)

is the global exponential attractive set of the five-dimensional Lorenz system (2.2).
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Proof. Define the Lyapunov-like function

Vλ,m (U) = mu2
1 +mu2

2 + λu2
3 + λu2

4 + λd

(
u5 −

λγ + αm

λd

)2

,

where λ > 0,m > 0, U = (u1, u2, u3, u4, u5).
When Vλ,m (U (t)) > Lλ,m, Vλ,m (U (t0)) > Lλ,m, the derivative of Vλ,m (U)

along the trajectory of (2.2) is

dVλ,m (U)

dt
|(2.2)

= 2mu1
du1

dt
+ 2mu2

du2

dt
+ 2λu3

du3

dt
+ 2λu4

du4

dt
+ 2λd

(
u5 −

λγ + αm

λd

)
du5

dt

= 2αmu1 (u3 − u1) + 2αmu2 (u4 − u2) + 2λu3 (γu1 − cu3 − du1u5)

+2λu4 (γu2 − cu4 − du2u5) + 2λd

(
u5 −

λγ + αm

λd

)
(u1u3 + u2u4 − βu5)

= −2αmu2
1 − 2αmu2

2 − 2λcu2
3 − 2λcu2

4 − 2λdβu2
5 + 2β (λγ + αm)u5

≤ −αmu2
1 − αmu2

2 − λcu2
3 − λcu2

4 − λdβu2
5 + 2β (λγ + αm)u5

= −αmu2
1 − αmu2

2 − λcu2
3 − λcu2

4 − λdβ
(
u5 −

λγ + αm

λd

)2

+
β(λγ + αm)

2

λd

≤ −ηVλ,m (U) +
β(λγ + αm)

2

λd

< 0.

That is equivalent to say,

dVλ,m (U)

dt

∣∣∣∣
(2.2)

≤ −η

(
Vλ,m (U)− β(λγ + αm)

2

λdη

)
. (5.2)

From the above inequality (5.2), we can get

Vλ,m (U (t)) ≤ Vλ,m (U0) e−η(t−t0) +

∫ t

t0

e−η(t−τ) β(λγ + αm)
2

λdη
dτ

= Vλ,m (U0) e−η(t−t0) + Lλ,m

(
1− e−η(t−t0)

)
.

We have the following exponential inequality

Vλ,m (U (t))− Lλ,m ≤ [Vλ,m (U0)− Lλ,m] e−η(t−t0).

Taking limit on both sides of the above inequality as t→ +∞ results in

lim
t→+∞

Vλ,m (U (t)) ≤ Lλ,m.

Namely, the set ∆λ,m is the global exponential attractive set of system (2.2).
This completes the proof.
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Remark 5.1. Let us take λ = 1,m = 0, then we can get that the following set

Ψ1,0 =

{
(u3, u4, u5) |u2

3 + u2
4 +

(
u5 −

γ

d

)2

≤ δ2

}
, (5.3)

is the global exponential attractive set of system (2.2), where η = min (c, β) >

0, δ2 = βγ2

dη .
The proved method is similar to the above Theorem 5.1.

In the following part, we will present an application of the results that obtained
in this paper. We will apply above results to show that the equilibrium point
O (0, 0, 0, 0, 0) of the system (2.2) is the globally exponentially stable when α >
0, β > 0, c > 0, d > 0, γ < 0.

Theorem 5.2. If real parameters α > 0, β > 0, c > 0, d > 0, γ < 0, then the
equilibrium point O (0, 0, 0, 0, 0) of system (2.2) is the globally exponentially stable.

Proof. When α > 0, β > 0, c > 0, d > 0, γ < 0, let us choose m = −γ, λ = α in
the above Theorem 5.1. Then, we can get Lλ,m = Lα,−γ = 0 according to Theorem
Theorem 5.1. And the exponential inequality in Theorem 5.1 becomes[

−γu2
1 (t)− γu2

2 (t) + αu2
3 (t) + αu2

4 (t) + αdu2
5 (t)

]
≤
[
−γu2

1 (t0)− γu2
2 (t0) + αu2

3 (t0) + αu2
4 (t0) + αdu2

5 (t0)
]
e−η(t−t0)

(5.4)

where η = min(α, c, β) > 0. The above inequality (5.4) shows that the equilibrium
point O(0, 0, 0, 0) of system (2.2) is globally exponentially stable.

This completes the proof.

Remark 5.2. The results of this paper can also be used for chaos synchroniza-
tion, chaos control and the estimation of the Hausdorff dimension of attractors.
The applications of the boundedness of chaotic systems in chaos control and chaos
synchronization can be referred to the papers [28, 35]. The applications of the
boundedness of chaotic systems in the estimation of the Hausdorff dimension of
attractors can be referred to the papers [9, 11,16].

6. Conclusions

In this paper, a new generalized complex Lorenz system was proposed and stud-
ied by using the theory of chaotic systems. Boundedness and the global exponen-
tial attractive set of the complex Lorenz system are obtained. The corresponding
boundedness is numerically verified by the computer. Numerical simulations are
presented to show the effectiveness of the theoretical research results. Finally, the
theoretical results obtained in this paper are used to study the globally exponential
stability of the equilibrium point of system (2.2).
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