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STABILITY AND HOPF BIFURCATION OF A
DELAYED PREDATOR-PREY SYSTEM WITH

NONLOCAL COMPETITION AND HERD
BEHAVIOUR∗
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Abstract In this paper, we investigate the stability and Hopf bifurcation of
a diffusive predator-prey system with herd behaviour. The model is described
by introducing both time delay and nonlocal prey intraspecific competition.
Compared to the model without time delay, or without nonlocal competition,
thanks to the together action of time delay and nonlocal competition, we prove
that the first critical value of Hopf bifurcation may be homogenous or non-
homogeneous. We also show that a double-Hopf bifurcation occurs at the
intersection point of the homogenous and non-homogeneous Hopf bifurcation
curves. Furthermore, by the computation of normal forms for the system
near equilibria, we investigate the stability and direction of Hopf bifurcation.
Numerical simulations also show that the spatially homogeneous and non-
homogeneous periodic patters.

Keywords Predator-prey model, time delay, nonlocal prey competition, Hopf
bifurcation.
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1. Introduction

Predator-prey models have been frequently used to model ecological system. It is
an important area to study the dynamics of biological population and attracts many
researchers to establish mathematic models for research. Recently, a predator-prey
model modeling herd behaviour in population system was considered by Ajraldi et
al. [1]. The simplified model is written as

du

dt
= u(1− u)−

√
uv,

dv

dt
= rv(−β +

√
u),

(1.1)

where u, v stand for prey and predator densities respectively, rβ is the death rate
of predator in the absence of prey. r is the conversion or consumption rate of prey
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to predator. In this model, the interaction term is proportional to the square root
of the prey population, which appropriately simulates the system in which the prey
exhibits a strong herd structure. This means that the predator typically interacts
with the prey along the outer corridors of the herd of prey. For the establishment
and simplification of the model, please refer to the literatures [1, 4].

When 0 < β < 1, the system (1.1) has a unique positive equilibrium E∗ =
(u∗, v∗) with

u∗ = β2, v∗ = β(1− β2),

which is local asymptotically stable when β >
√

3
3 .

Many species can move freely. Spatial diffusion is everywhere and reaction-
diffusion models play an important role in the study of biological invasions. Conse-
quently, the predator-prey models involving spatial diffusion have been concerned
by more and more researchers [12, 14, 20–22, 25, 26, 28]. Adding diffusion term into
system (1.1) and supplementing with the Neumann boundary condition and initial
condition, then the model in one-dimensional bounded domain reads

ut = u(1− u)−
√
uv + d1uxx, x ∈ (0, lπ), t > 0,

vt = rv(−β +
√
u) + d2vxx, x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, lπ),

(1.2)

where l > 0, d1 and d2 are the diffusion coefficients for the prey and predator,
respectively. Here we choose homogeneous Neumann boundary condition. Bio-
logically speaking, the homogeneous Neumann boundary condition indicates that
this system is a closed one (for example, islands and lakes/ponds are such system),
and thus there is no population flux on the boundary. Furthermore, in this paper,
we are only interested in the bifurcations from the positive constant steady state,
corresponding to the homogeneous Neumann boundary condition.

Yuan et al. [26] chose the quadratic mortality for predator population in the
model (1.2), i.e., they used −rβv2 to represent the quadratic mortality for preda-
tor population. Their research presented the Turing pattern selection in a spatial
predator-prey model. They also derived that the Turing pattern is induced by
quadratic mortality.

And since the number of predators does not increase immediately after consum-
ing prey. For example, the pregnancy of some populations takes a certain time.
Therefore, Tang and Song [19] incorporated time delay into the system (1.2) and
focused on the following system

ut = u(1− u)−
√
uv + d1uxx, x ∈ (0, π), t > 0,

vt = rv(−β +
√
uτ ) + d2vxx, x ∈ (0, π), t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0, v(x, t) = ψ(x, t) ≥ 0, (x, t) ∈ [0, π]× [−τ, 0],

(1.3)

where uτ = u(x, t− τ), τ represents the time delay, which indicates the influence of
past consumption of prey on the density of current predators. They investigated the
stability of the positive equilibrium, delay-induced Hopf bifurcation of the system
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(1.3). They also found that the instability of Hopf bifurcation caused by diffusion
and time delay respectively can lead to the emergence of spatial patterns.

In [9, 15, 19,24, 29], the effect of time delay is investigated in diffusive predator-
prey system with delay. Su et al. [18] considered a reaction-diffusion population
model with a general time-delayed growth rate per capita and determined the long
time dynamical behavior of the system. Zhao [27] established the global attractiv-
ity of the positive steady state for a class of nonmonotone time-delayed reaction-
diffusion equations.

In addition, due to the uneven distribution of resources and other reasons, prey
and other prey or predators are connected not only in the same place, but also in
different places, even in the whole space. Therefore, nonlocal competition exists
and many scholars concentrate on the nonlocal interactions in reaction-diffusion
equations [2, 3, 5, 7, 8, 10,11,23].

Recently, Peng and Zhang [13] introduced nonlocal prey competition into the
system (1.2):

ut = u(1−
∫ lπ

0

K(x, y)u(y, t)dy)−
√
uv + d1uxx, x ∈ (0, lπ), t > 0,

vt = rv(−β +
√
u) + d2vxx, x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, lπ),

(1.4)

where the kernel function K(x, y) =
1

lπ
. The idea of spatial average of density

function was first proposed by Furter and Grinfeld [8]. The effects of nonlocal com-
petition on dynamics of the system (1.4) in the bounded region was investigated by
Peng and Zhang. But in unbounded domain (−∞,+∞), they took a step function
as the kernel function and investigated the influence of nonlocal competition on the
stability of the positive equilibrium.

Motivated by literatures [19] and [13], we introduce nonlocal prey competition
and time delay into the system (1.2), which is written

ut = u(1− ũ)−
√
uv + d1uxx, x ∈ (0, lπ), t > 0,

vt = rv(−β +
√
uτ ) + d2vxx, x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0, v(x, t) = ψ(x, t) ≥ 0, (x, t) ∈ [0, lπ]× [−τ, 0],

(1.5)

where ũ =
1

lπ

∫ lπ
0
u(x, t)dx is the spatial average of prey u and uτ = u(x, t − τ) is

the population density of u at time t− τ .
In this paper, we will study the stability of positive equilibrium, Hopf bifurca-

tion induced by delay and nonlocal prey competition and the properties of Hopf
bifurcation. The organization of this paper is as follows. The stability of posi-
tive equilibrium and Hopf bifurcation are studied by analyzing the characteristic
equation in Section 2. In Section 3, we determine the direction of Hopf bifurca-
tion. In Section 4, Numerical simulations verifies the theoretical results. Finally,
we conclude this paper by a simple discussion.
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2. Stability and Hopf bifurcations

In this section, we study the stability and Hopf bifurcation of the system (1.5). We
know that

φk(x) =


1√
l
, k = 0,√
2

l
cos(

kx

l
), k ∈ N,

are the normalized eigenfunctions of the following eigenvalue problemϕ
′′

+ λϕ = 0, x ∈ (0, lπ),

ϕ
′

= 0, x = 0, lπ,

whose corresponding eigenvalues are

λk = (
k

l
)2, k ∈ N0 = N ∪ {0}, (2.1)

with N = {1, 2, 3 · · · }.
It is easy to see that

0 = λ0 < λ1 < λ2 < . . . < λi < λi+1 < . . . < +∞.

When τ > 0, we linearize the equation (1.5) at the positive equilibrium (u∗, v∗) ∂u

∂t
∂v

∂t

 = d
∂2

∂x2

u

v

+A0

u

v

+A1

u(t− τ)

v(t− τ)

+A2

 ũ

ṽ

 , (2.2)

where

d
∂2

∂x2
=

d1
∂2

∂x2 0

0 d2
∂2

∂x2

 , A0 =

 1

2
(1− β2) −β

0 0

 ,

A1 =

 0 0

1

2
r(1− β2) 0

 , A2 =

−β2 0

0 0

 .

The characteristic equation of (2.2) is

det(µI −Mk −A0 −A1e
−µτ − χkA2) = 0, (2.3)

where I is the 2 × 2 identity matrix and Mk = −λkdiag(d1, d2), k ∈ N0. λk are
given by (2.1) and

χk =

{
1, k = 0,

0, k ∈ N.
(2.4)
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It follows from (2.3) that the characteristic equations for the positive constant
equilibrium (u∗, v∗) are the following sequence of quadratic transcendental equations

µ2 −
(

1

2
(1− β2)− χkβ2 − λk(d1 + d2)

)
µ+ d1d2λ

2
k

−
(

1

2
(1− β2)d2 − χkβ2d2

)
λk +

1

2
rβ(1− β2)e−µτ = 0,

(2.5)

where k ∈ N0 and λk, χk are given by (2.1) and (2.4) respectively.
For the distribution of purely imaginary roots of equation (2.5), we have the

following results.

Lemma 2.1. Suppose that d1 > 0, d2 ≥ 0, r > 0,

√
3

3
< β < 1 and l2 <

min{2(d1 + d2)

1− β2
,

4d1

1− β2
} hold. Let


τ0i =

1

ω0

[
arccos

(
2ω2

0

rβ(1− β2)

)
+ 2iπ

]
, i = 0, 1, 2, · · · ,

τki =
1

ωk

[
arccos

(
2ω2

k − 2d1d2λ
2
k + (1− β2)d2λk

rβ(1− β2)

)
+ 2iπ

]
, k ∈ N, i = 0, 1, 2, · · · ,

(2.6)
where λk are given by (2.1), ω0 and ωk are the only positive root of equation (2.10)
and (2.11) respectively. Then for the existence of pure imaginary roots of (2.5), we
have the following results:

(i) if d1 > 0, d2 ≥ 0, the characteristic equation (2.5) has a pair of pure imaginary
roots ±iω0 at τ = τ0i, i ∈ N0;

(ii) if d2 = 0, d1 > 0, the characteristic equation (2.5) has a pair of pure imaginary
roots ±iωk at τ = τki, k ∈ N, i ∈ N0;

(iii) if d2 > 0, 0 < d1 <
d2(1− β2)

8rβ
, the characteristic equation (2.5) has a pair of

pure imaginary roots ±iωk at τ = τki for N1 < k ≤ N2 (N1 < k < N2) and
has no purely imaginary roots for k ≤ N1 (k < N1) or k > N2, k ∈ N, i ∈ N0,
where

N1 = [
√
x2l], N2 = [

√
x4l],

with

x2 =
1
2d2(1− β2) +

√
∆1

2d1d2
, x4 =

1
2d2(1− β2) +

√
∆2

2d1d2
, (2.7)

∆1 =
1

4
d2

2(1− β2)2 − 2d1d2rβ(1− β2),

∆2 =
1

4
d2

2(1− β2)2 + 2d1d2rβ(1− β2). (2.8)

(iv) if d2 > 0, d1 ≥
d2(1− β2)

8rβ
, the characteristic equation (2.5) has a pair of

pure imaginary roots ±iωk at τ = τki for k ≤ N2(k < N2) and has no purely
imaginary roots for k > N2, k ∈ N, i ∈ N0. N2 is given in (iii).
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Remark 2.1. For the conclusion (iii), if
√
x2l is not a positive integer, then N1 <

k ≤ N2 and if
√
x2l is a positive integer, then N1 < k < N2; For the conclusion

(iv), if
√
x4l is not a positive integer, then k ≤ N2 and if

√
x4l is a positive integer,

then k < N2.

Next, we give the proof of Lemma 2.1.
Proof. Suppose that µ = iωk(ωk > 0) is a root of characteristic equation (2.5).
Substituting µ = iωk into equation (2.5), we obtain

− ω2
k + iωk[λk(d1 + d2)− 1

2
(1− β2) + χkβ

2] + d1d2λ
2
k − d2[

1

2
(1− β2)− χkβ2]λk

+
1

2
rβ(1− β2)e−iωkτ = 0,

which leads to
−ω2

0 + iω0(
3

2
β2 − 1

2
) +

1

2
rβ(1− β2)e−iω0τ = 0,

− ω2
k + iωk[λk(d1 + d2)− 1

2
(1− β2)] + d1d2λ

2
k −

1

2
d2(1− β2)λk

+
1

2
rβ(1− β2)e−iωkτ = 0, k ∈ N.

(2.9)

From (2.9), we obtain

ω4
0 + (

3

2
β2 − 1

2
)2ω2

0 −
1

4
r2β2(1− β2)2 = 0, (2.10)

and
ω4
k +Bkω

2
k + Ck = 0, k ∈ N, (2.11)

where

Bk = λ2
k(d2

1 + d2
2)− λkd1(1− β2) +

1

4
(1− β2)2 =

(
d1λk −

1

2
(1− β2)

)2

+ d2
2λ

2
k,

Ck =

(
−d1d2λ

2
k +

1

2
d2(1− β2)λk

)2

− 1

4
r2β2(1− β2)2.

Separating real and imaginary parts from (2.9), we have
cos(ω0τ) =

2ω2
0

rβ(1− β2)
,

sin(ω0τ) =
ω0(3β2 − 1)

rβ(1− β2)
,

(2.12)

and when k ∈ N, 
cos(ωkτ) =

2ω2
k − 2d1d2λ

2
k + d2(1− β2)λk

rβ(1− β2)
,

sin(ωkτ) =
ωk[2λk(d1 + d2)− (1− β2)]

rβ(1− β2)
.

(2.13)

Thanks to

√
3

3
< β < 1 and l2 <

2(d1 + d2)

1− β2
, it follows from (2.12) and (2.13)

that sin(ω0τ) > 0 and sin(ωkτ) > 0. Because
1

4
r2β2(1 − β2)2 > 0, according to

(2.10), it is easy to prove the conclusion (i).
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If d2 = 0, d1 > 0, then Bk ≥ 0 and Ck < 0. It follows from (2.11) and (2.13)
that the conclusion (ii) is obviously true.

If d2 > 0, d1 > 0, we have Bk > 0. Then when Ck < 0, the equation (2.11) has
a unique positive root .

According to the expression of Ck, it can be rewritten as

Ck = [−d1d2λ
2
k+

1

2
d2(1−β2)λk−

1

2
rβ(1−β2][−d1d2λ

2
k+

1

2
d2(1−β2)λk+

1

2
rβ(1−β2)].

(2.14)
Let

f(x) = −d1d2x
2 +

1

2
d2(1− β2)x− 1

2
rβ(1− β2), x ≥ 1

l2
.

Then
f(x) = −d1d2(x− x1)(x− x2), (2.15)

where x1 =
1
2d2(1− β2)−

√
∆1

2d1d2
, x2 and ∆1 are defined by (2.7) and (2.8) respec-

tively.

Case 1. If d2 > 0 and 0 < d1 <
d2(1− β2)

8rβ
, then we have ∆1 > 0, x1 > 0 and

x2 > 0. It follows from l2 <
4d1

1− β2
that

1

l2
>

1− β2

4d1
=
d2(1− β2)

4d1d2
>
d2(1− β2)− 2

√
∆1

4d1d2
= x1,

i.e., λ1 > x1. On the other hand, when λk < x2, i.e., k <
√
x2l, it follows from

(2.15) that f(λk) > 0.
Choose N1 = [

√
x2l], then we obtain

(a1) if
√
x2l is not a positive integer, f(λk) > 0 for k ≤ N1 and f(λk) < 0 for

k > N1;
(a2) if

√
x2l is a positive integer, f(λk) > 0 for k < N1 and f(λk) < 0 for

k > N1.

Case 2. If d2 > 0 and d1 =
d2(1− β2)

8rβ
, then we have ∆1 = 0, x1 = x2 =

1− β2

4d1
>

0.

From l2 <
4d1

1− β2
, we have

1

l2
>

1− β2

4d1
= x1 = x2.

It follows from (2.15) that f(λk) < 0 for any k ∈ N.

Case 3. If d2 > 0 and d1 >
d2(1− β2)

8rβ
, then we have ∆1 < 0, which implies that

f(λk) < 0 for any k ∈ N.
Similarly, let

g(x) = −d1d2x
2 +

1

2
d2(1− β2)x+

1

2
rβ(1− β2), x ≥ 1

l2
.

Then
g(x) = −d1d2(x− x3)(x− x4), (2.16)
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where x3 =
1
2d2(1− β2)−

√
∆2

2d1d2
, x4 and ∆2 are defined by (2.7) and (2.8) respec-

tively.
It is obvious that ∆2 > 0, which implies that x3 < 0 and x4 > 0 hold. When

λk < x4, i.e., k <
√
x4l, it follows from (2.16) that g(λk) > 0.

Choose N2 = [
√
x4l], we obtain

(b1) if
√
x4l is not a positive integer, then g(λk) > 0 for k ≤ N2 and g(λk) < 0

for k > N2;
(b2) if

√
x4l is a positive integer, then g(λk) > 0 for k < N2 and g(λk) < 0 for

k > N2.
In addition, due to x2 < x4, it follows from the definition of N1 and N2 that

N1 ≤ N2 hold.
Based on the above analysis, we prove that

(iii) if d2 > 0 and 0 < d1 <
d2(1− β2)

8rβ
, then when k ≤ N1(k < N1) or k ≥ N2,

we have Ck > 0 and (2.11) has no positive root; when N1 < k ≤ N2(N1 < k < N2),
we have Ck < 0 and (2.11) has a positive root. This implies that the conclusion
(iii) of Lemma 2.1 is proved;

(iv) if d2 > 0 and d1 ≥
d2(1− β2)

8rβ
, then when k > N2, we have Ck > 0 and

(2.11) has no positive root; when k ≤ N2(k < N2), we have Ck < 0 and (2.11) has
a positive root. This implies that the conclusion (iv) of Lemma 2.1 is proved.

To prove the existence of Hopf bifurcation of the system (1.5), we need to verify
the following transversality condition.

Lemma 2.2. For k ∈ N0 and i ∈ N0, we have
dRe(µ)

dτ

∣∣∣∣
τ=τki

> 0.

Proof. Taking the derivative on both sides of the equation (2.5) with respect to
τ , we get

dµ

dτ

∣∣∣∣
τ=τki

=
1
2µrβ(1− β2)e−µτ

2µ+ [λk(d1 + d2)− 1
2 (1− β2) + χkβ2]− 1

2
rβτ(1− β2)e−µτ

∣∣∣∣∣∣∣
τ=τki

=
1
2 iωkrβ(1− β2)e−iωkτki

2iωk + [λk(d1 + d2)− 1
2 (1− β2) + χkβ2]− 1

2
rβτki(1− β2)e−iωkτki

,

which implies that

dRe(µ)

dτ

∣∣∣∣
τ=τki

= Re

(
dµ

dτ

∣∣∣∣
τ=τki

)
=
Qk
Pk

,

where

Qk =ω2
krβ(1− β2) cos(ωkτki)

+
1

2
ωkrβ(1− β2) sin(ωkτki)[λk(d1 + d2)− 1

2
(1− β2) + χkβ

2],

Pk =[λk(d1 + d2)− 1

2
(1− β2) + χkβ

2 − 1

2
rβτki(1− β2) cos(ωkτki)]

2
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+ [2ωk +
1

2
rβτki(1− β2) sin(ωkτki)]

2.

It is obvious that Pk > 0 for any k ∈ N0. Next, we prove that Qk > 0 is also
true. Substituting (2.12) and (2.13) into the expression of Qk respectively, we have

Q0 = ω2
0rβ(1− β2) cos(ω0τ0i) +

1

2
ω0rβ(1− β2) sin(ω0τ0i)(

3

2
β2 − 1

2
)

= 2ω4
0 +

1

4
ω2

0(3β2 − 1)2

> 0,

and when k ∈ N,

Qk = ω2
krβ(1− β2) cos(ωkτki)

+
1

2
ωkrβ(1− β2) sin(ωkτki)[λk(d1 + d2)− 1

2
(1− β2)]

= ω2
k[(d2

1 + d2
2)λ2

k − d1(1− β2)λk +
1

4
(1− β2)2 + 2ω2

k]

= ω2
k[(d1λk −

1

2
(1− β2))2 + d2

2λ
2
k + 2ω2

k]

> 0,

which implies that
dRe(µ)

dτ

∣∣∣∣
τ=τki

> 0. This completes the proof.

From (2.6), we know that τk0 = min
i∈N0

{τki}, and

τk0 =
1

ωk

[
arccos

(
2ω2

k − 2d1d2λ
2
k + (1− β2)d2λk

rβ(1− β2)

)]
, k ∈ N.

Lemma 2.3. Suppose that

√
3

3
< β < 1, r > 0 and l2 <

2d1

1− β2
hold, then we have

(i) τk0 is a strictly increasing sequence with respect to k;

(ii) τ10 is strictly increasing with respect to d2 for fixed d1 > 0.

Proof. (i) Let p = λk, we rewrite τk0 as follows.

τk0(p) =
1

ωk(p)

(
arccos

(
2ω2

k(p)− 2d1d2p
2 + (1− β2)d2p

rβ(1− β2)

))
,

then differentiating with respect of p, we obtain

d[τk0(p)]

dp
=− ω

′

k(p)

ω2
k(p)

arccos

(
2ω2

k(p)− 2d1d2p
2 + (1− β2)d2p

rβ(1− β2)

)
− 4ωk(p)ω

′

k(p)− 4d1d2p+ (1− β2)d2

ωk(p)rβ(1− β2)

√
1−

(
2ω2

k(p)− 2d1d2p
2 + (1− β2)d2p

rβ(1− β2)

)2
.

(2.17)
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Next, we judge the sign of ω
′

k(p). Rewrite (2.11) as follows.

ω4
k(p) + [p2(d2

1 + d2
2)− pd1(1− β2) +

1

4
(1− β2)2]ω2

k(p)

+ [−d1d2p
2 +

1

2
(1− β2)d2p]

2 − 1

4
r2β2(1− β2)2 = 0.

Differentiating with respect of p for the above equation, we obtain

4ω3
k(p)ω

′

k(p) + 2ωk(p)ω
′

k(p)[p2(d2
1 + d2

2)− pd1(1− β2) +
1

4
(1− β2)2]

+ ω2
k(p)[2p(d2

1 + d2
2)− d1(1− β2)]

+ 2[−d1d2p
2 +

1

2
(1− β2)d2p][−2d1d2p+

1

2
(1− β2)d2] = 0,

which yields

ω
′

k(p)

= −
ω2
k(p)[2p(d2

1 + d2
2)− d1(1− β2)] + 2[−d1d2p

2 +
1

2
(1− β2)d2p][−2d1d2p+

1

2
(1− β2)d2]

4ω3
k(p) + 2ωk(p)[p2(d2

1 + d2
2)− pd1(1− β2) +

1

4
(1− β2)2]

.

Obviously,

p2(d2
1 + d2

2)− pd1(1− β2) +
1

4
(1− β2)2 = [d1p−

1

2
(1− β2)]2 + d2

2p
2 ≥ 0.

Thanks to

l2 <
2d1

1− β2
, p = λk ≥ λ1 =

1

l2
,

we obtain
2p(d2

1 + d2
2)− d1(1− β2) > 0,

and

[−d1d2p
2 +

1

2
(1− β2)d2p][−2d1d2p+

1

2
(1− β2)d2] > 0.

So ω
′

k(p) < 0. Combining with (2.17), we get
d[τk0(p)]

dp
> 0. Therefore, τk0 is

increasing in λk. And we know that λk is increasing in k, thus τk0 is increasing in
k.
(ii) Considering τ10 as a function of d2,

τ10(d2) =
1

ω1(d2)

[
arccos

(
2ω2

1(d2)− 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)]
,

and taking derivative of this with respect of d2, we obtain

d[τ10(d2)]

d(d2)
=− ω

′

1(d2)

ω2
1(d2)

arccos

(
2ω2

1(d2)− 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)
− 4ω1(d2)ω

′

1(d2)− 2d1λ
2
1 + (1− β2)λ1

rβ(1− β2)ω1(d2)

√
1−

(
2ω2

1(d2)−2d1d2λ2
1+(1−β2)d2λ1

rβ(1−β2)

)2
.

(2.18)
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In the same way as (i),

ω
′

1(d2) = −
2λ2

1d2ω
2
1(d2) + 2d2[−d1λ

2
1 +

1

2
(1− β2)λ1]2

4ω3
1(d2) + 2ω1(d2)B1

.

It follows from the expression of Bk that B1 ≥ 0, so ω
′

1(d2) < 0.

From l2 <
2d1

1− β2
and λ1 =

1

l2
, we have −2d1λ

2
1 + (1 − β2)λ1 < 0. Combining

with (2.18), we obtain
d[τ10(d2)]

d(d2)
> 0,

which shows that τ10 about d2 is monotonically increasing. The proof is completed.

Let τ∗ = min{τ00, τ10}. The following Lemma gives a detailed description for
the minimum critical value of delay.

Lemma 2.4. Suppose that d1 > 0, d2 ≥ 0, r > 0,

√
3

3
< β < 1 and l2 <

2d1

1− β2

hold. Let d∗2 be the unique positive root of the following equation

ω1

[
arccos

(
2ω2

0

rβ(1− β2)

)]
= ω0

[
arccos

(
2ω2

1 − 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)]
,

(2.19)
we have the following results:

(i) if 0 < l2 <
2d1

3β − β2
, then τ∗ = τ00;

(ii) if l2 =
2d1

3β − β2
, then τ∗ = τ10 = τ00;

(iii) if
2d1

3β − β2
< l2 <

2d1

1− β2
, then

τ∗ =


τ10, for 0 ≤ d2 < d∗2,

τ00, for d2 > d∗2,

τ10 = τ00, for d2 = d∗2.

Proof. According to (2.6), we have

τ00 =
1

ω0

[
arccos

(
2ω2

0

rβ(1− β2)

)]
,

and

τ10 =
1

ω1

[
arccos

(
2ω2

1 − 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)]
.

We first consider the case of d2 = 0, d1 > 0.

τ10(0) = τ10|d2=0 =
1

ω1(0)

[
arccos

(
2ω2

1(0)

rβ(1− β2)

)]
,
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where ω1(0) = ω1|d2=0. From (2.10) and (2.11), it is easy to know that ω0 and
ω1(0) satisfy the following equations:

ω4
0 + (

3

2
β − 1

2
)2ω2

0 −
1

4
r2β2(1− β2)2 = 0,

ω4
1(0) + (λ1d1 −

1− β2

2
)2ω2

1(0)− 1

4
r2β2(1− β2)2 = 0,

which implies that ω0 < ω1(0) when (
3

2
β − 1

2
)2 > (λ1d1 −

1− β2

2
)2.

Thanks to

√
3

3
< β < 1, l2 <

2d1

1− β2
and λ1 =

1

l2
, by the analysis and cal-

culation, we immediately prove that ω0 < ω1(0) when
2d1

3β − β2
< l2 <

2d1

1− β2
;

ω0 = ω1(0) when l2 =
2d1

3β − β2
and ω0 > ω1(0) when 0 < l2 <

2d1

3β − β2
.

Let

h(ω) =
1

ω

[
arccos

(
2ω2

rβ(1− β2)

)]
,

then we have

h′(ω) = − 1

ω2
arccos

(
2ω2

rβ(1− β2)

)
− 4

rβ(1− β2)

√
1−

(
2ω2

rβ(1−β2)

)2
< 0,

which implies that h(ω) is a monotonically decreasing function of ω. Therefore, we
have τ00 > τ10(0) when ω0 < ω1(0); τ00 < τ10(0) when ω0 > ω1(0) and τ00 = τ10(0)
when ω0 = ω1(0).

For the case of d2 > 0 and 0 < d1 <
(1− β2)d2

8rβ
, by the conclusion (ii) of

Lemmma 2.3, τ10(d2) is increasing with respect to d2. So τ10(d2) > τ10(0) > τ00

when 0 < l2 <
2d1

3β − β2
. When

2d1

3β − β2
< l2 <

2d1

1− β2
, let

dc2 =
rβ(1− β2)

2d1λ2
1 − (1− β2)λ1

. (2.20)

Thanks to l2 <
2d1

1− β2
and λ1 =

1

l2
, we have 2d1λ

2
1 − (1− β2)λ1 > 0, which means

that dc2 > 0.
When d2 = dc2, from (2.11), we have

ω4
1(dc2) + [λ2

1(d2
1 + (dc2)2)− λ1d1(1− β2) +

1

4
(1− β2)2]ω2

1(dc2)

=ω2
1(dc2)(ω2

1(dc2) +B1(dc2))

=0.

According to the expression of Bk, we know that B1 ≥ 0, which means that ω2
1(dc2)+

B1(dc2) > 0. Thus we have

lim
d2→dc2

ω1(d2) = 0,
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which implies that lim
d2→dc2

τ10(d2) = +∞.

In addition, notice that τ10(0) < τ00 when
2d1

3β − β2
< l2 <

2d1

1− β2
, we conclude

that there exists unique positive real number d∗2 such that τ10 = τ00. So, when
2d1

3β − β2
< l2 <

2d1

1− β2
, we have τ∗ = τ10 for 0 < d2 < d∗2, τ∗ = τ00 for d2 > d∗2,

and τ∗ = τ00 = τ10 for d2 = d∗2.

For the case of d2 > 0 and d1 ≥
(1− β2)d2

8rβ
, we have the same discussion and

results as in the case d2 ≥ 0 and 0 < d1 <
(1− β2)d2

8rβ
above. This completes the

proof.

In the following section, we will discuss the properties of curves d2 = dc2 and
d2 = d∗2.

Lemma 2.5. Suppose that d1 > 0, d2 ≥ 0, r > 0,

√
3

3
< β < 1 and l2 <

2d1

1− β2

hold. dc2 and d∗2 are defined by (2.20) and (2.19) respectively. Taking dc2 and d∗2 as
functions of d1, we have the following conclusions.

(i) dc2 is strictly monotonically decreasing with respect to d1;

(ii) dc2 is always greater than d∗2;

(iii) d∗2 is strictly monotonically decreasing with respect to d1;

(iv) d∗2(d1) is defined on intevel

[
(1− β2)l2

2
,

(3β − β2)l2

2

]
, and d∗2(

(1− β2)l2

2
) =

(3β − 1)l2

2
.

Proof. From the expression of dc2, it is easy to prove that the conclusion (i) is
true.

To prove the conclusion (ii), we define the function

s(d2) = τ10(d2)− τ00(d2)

=
1

ω1

[
arccos

(
2ω2

1 − 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)]
− 1

ω0

[
arccos

(
2ω2

0

rβ(1− β2)

)]
.

(2.21)

It follows from the conclusion (ii) of Lemma 2.3 that τ10(d2) is monotonically in-
creasing with respect to d2, which means that s(d2) is monotonically increasing
with respect to d2. Substituting d2 = dc2 and d2 = d∗2 into (2.21) respectively, we
obtain s(dc2) = +∞ and s(d∗2) = 0. That is to say, s(dc2) > s(d∗2), which means that
dc2 > d∗2. This completes the proof of (ii).

For the conclusion (iii), when s(d2) = 0, taking d2 regard as a function of d1 and
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taking the derivative with respect to d1 on both sides of equation (2.21), we obtain

− ω
′

1(d1)

ω2
1(d1)

arccos
(2ω1(d1)2 − 2d1d2λ

2
1 + (1− β2)d2λ1

rβ(1− β2)

)
− 4ω1(d1)ω

′

1(d1)− 2d2λ
2
1 − 2d1d

′

2λ
2
1 + (1− β2)d

′

2λ1

ω1(d1)rβ(1− β2)

√
1−

(2ω2
1(d1)− 2d1d2λ

2
1 + (1− β2)d2λ1

rβ(1− β2)

)2 = 0,

which implies that

d
′

2(d1) =

rβ(1− β2)

√
1−

(
2ω2

1(d1)− 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)2

2d1λ2
1 − (1− β2)λ1

× ω
′

1(d1)

ω1(d1)
arccos

(
2ω2

1(d1)− 2d1d2λ
2
1 + (1− β2)d2λ1

rβ(1− β2)

)
+

4ω1(d1)ω
′

1(d1)− 2d2λ
2
1

2d1λ2
1 − (1− β2)λ1

.

(2.22)

The proof process is similar to (i) of Lemma 2.3. We can obtain

ω
′

1(d1) =
(1− β2 − 2λ1d1)(ω1(d1)2λ1 + d2

2λ
3
1)

4ω3
1(d1) + 2ω1(d1)B1

.

Thanks to B1 ≥ 0, l2 <
2d1

1− β2
and λ1 =

1

l2
, we have 2d1λ1 − (1− β2) > 0, which

means that ω
′

1(d1) < 0. Combining with (2.22), we can prove that d
′

2(d1) < 0. This
completes the proof of (iii).

From Lemma 2.4 (iii), we know that there exists d∗2 when
2d1

3β − β2
< l2 <

2d1

1− β2
. So if d∗2 is regarded as a function of d1, then d∗2 is defined on interval

[
(1− β2)l2

2
,

(3β − β2)l2

2
]. Furthermore, substituting d1 =

(1− β2)l2

2
into (2.11)

and combining with (2.10), we have
ω4

0 + (
3

2
β − 1

2
)2ω2

0 −
1

4
r2β2(1− β2)2 = 0,

ω4
1 + λ2

1d
2
2ω

2
1 −

1

4
r2β2(1− β2)2 = 0,

which implies that ω1 = ω0 when d∗2 = d2(
(1− β2)l2

2
) =

(3β − 1)l2

2
. Therefore, we

complete the proof of the conclusion (iv).
In order to easily describe the main results of this section, we define the following

areas in the d1 − d2 plane.

R10 = {(d1, d2)|1− β
2

2
l2 < d1 <

3β − β2

2
l2, 0 ≤ d2 < d∗2},

R01 = {(d1, d2)|1− β
2

2
l2 < d1 <

3β − β2

2
l2, d∗2 < d2 < dc2}
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∪ {(d1, d2)|d1 >
3β − β2

2
l2, 0 ≤ d2 < dc2},

R00 = {(d1, d2)|d1 >
1− β2

2
l2, d2 ≥ dc2}, R0 = R01 ∪R00.

From Lemmas 2.4 and 2.5, we have

τ∗ =

{
τ00, (d1, d2) ∈ R0,

τ10, (d1, d2) ∈ R10.

By Lemmas 2.2, 2.4 and 2.5 and Hopf bifurcation theory for partial funcational
differential equations, we obtain the following results on the stability and Hopf
bifurcation of the system (1.5).

Theorem 2.1. Assume that d1 > 0, d2 ≥ 0, r > 0,

√
3

3
< β < 1 and l2 <

2d1

1− β2

hold. τki and d∗2 are defined by (2.6) and (2.19) respectively, we have the following
results on the stability and Hopf bifurcation of the system (1.5):

1. The positive equilibrium (u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗)
and unstable for τ ∈ (τ∗,+∞).

2. The system (1.5) undergoes Hopf bifurcations at τ = τki. For d1 > 0, d2 = 0,
there exist the critical value τki of spatially non-homogeneous Hopf bifurcations
for any k ∈ N. But for d1 > 0, d2 > 0, there exist the critical value τki of
spatially non-homogeneous Hopf bifurcations for finite wave numbers k ∈ N
and N1 < k ≤ N2(N1 < k < N2), where N1 and N2 are defined by Lemma
2.1.

3. About the homogeneous/non-homgeneous Hopf bifurcation, we conclude as fol-
lows:

(i) when (d1, d2) ∈ R00, the spatially non-homogeneous Hopf bifurcations will
not occur, and only spatially homogeneous Hopf bifurcations occurs at τ0i
and τ∗ = τ00, thus the bifurcating periodic orbits from the first critical
value is spatially homogeneous;

(ii) when (d1, d2) ∈ R01, both spatially non-homogeneous and spatially homo-
geneous Hopf bifurcations occur and the bifurcating periodic orbits from
the first critical value τ00 is spatially homogeneous;

(iii) when (d1, d2) ∈ R10, both spatially non-homogeneous and spatially homo-
geneous Hopf bifurcations occur and the bifurcating periodic orbits from
the first critical value τ10 is spatially non-homogeneous;

(iv) when
(1− β2)l2

2
< d1 <

(3β − β2)l2

2
, and d2 = d∗2, the spatially homoge-

neous Hopf bifurcations at τ∗ = τ00 and spatially non-homogeneous Hopf
bifurcations at τ10 appear at the same time, and there exists a double
Hopf bifurcation.

From Lemma 2.4 and Lemma 2.5, as shown in Fig.1, we draw a sketch of curves
d2 = d∗2 and d2 = dc2 in the d1 − d2 plane. It follows from Theorem 2.1 that when
(d1, d2) falls in region R10, the first Hopf bifurcation point is τ10, which is a spatially
non-homogeneous Hopf bifurcation point. When (d1, d2) falls in other regions of the
plane, the first Hopf bifurcation point is spatially homogeneous.
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Figure 1. The distribution of the first Hopf bifurcation value τ∗ in the d1 − d2 plane. The solid (red)
line represents d2 = d∗2 and the dotted (yellow) line represents d2 = dc2. We have τ∗ = τ10 in the region
R10 and τ∗ = τ00 in the region R0.

3. Normal form of Hopf bifurcation

In this section, we investigate the stability and direction of Hopf bifurcation. Be-
cause the system (1.5) has both delay and spatial average, we can’t use the normal
form theory for partial functional differential equations developed by Faria [6]. Re-
cently, Song and Shi [16] derived an explicit algorithm to determine the direction of
Hopf bifurcation depending on the coefficients of the original system for a general
reaction-diffusion system with delay and spatial average. So we compute the normal
form for the system (1.5) by using the theory developed by Song and Shi. In the
following, we only give the main results for the system (1.5). For a more detailed
process of calculation, readers can refer to the Section 3.1 in the literature [16].

For convenience, we rewrite the system (1.5) as follows:{
ut = d1uxx + f (1)(u, ũ, v), x ∈ (0, lπ), t > 0,

vt = d2vxx + f (2)(u, uτ , v), x ∈ (0, lπ), t > 0,
(3.1)

where

f (1)(u, ũ, v) = (u+ u∗)(1− ũ− u∗)−
√
u+ u∗(v + v∗),

f (2)(u, uτ , v) = r(v + v∗)(−β +
√
uτ + u∗).

Obviously, (0, 0) is always a equilibrium for system (3.1).
For Hopf bifurcation, we have the following assumption condition:

(AC) when τ = τ∗ , there exists a n∗ ∈ N0 such that Eq.(2.5) has a pair of simple
purely imaginary roots ±iω∗, and the corresponding transversality condition holds.

Following the procedure in [16], define the real-valued Sobolev space

X = {(u, v)> ∈ (W 2,2(0, π))2,
∂u

∂x
=
∂v

∂x
= 0 at x = 0, lπ}.
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Then C := C([−1, 0];X) is the Banach space of continuous mappings from [−1, 0]
to X with the sup norm. Letting α = τ − τ∗ and normalizing time scale by the
transformation t→ t

τ , we can rewrite the system (3.1) as follows on C :

∂U(t)

∂t
= τ∗dUxx(t) + L0(Ut(θ), Ũ(0)) + F (Ut(θ), Ũ(0), α), (3.2)

where U(t) = (u(x, t), v(x, t))>, with the inner product definded by

[U, V ] =

∫ lπ

0

U>V dx, U, V ∈ X,

Ut(θ) = U(x, t+ θ), −1 ≤ θ ≤ 0, Ũ(0) =
1

lπ

∫ lπ
0
U(x, t)dx,

L0(ϕ, ϕ̃(0)) = τ∗

 f
(1)
u ϕ1(0) + f

(1)
ũ ϕ̃1(0) + f

(1)
v ϕ2(0)

f
(2)
u ϕ1(0) + f

(2)
uτ ϕ1(−1) + f

(2)
v ϕ2(0)

 ,

F (ϕ, ϕ̃(0), α) = αd∆ϕ(0) + L(α)(ϕ, ϕ̃(0)) + f(ϕ, ϕ̃(0), α),

with
L(α)(ϕ, ϕ̃(0)) =

α

τ∗
L0(ϕ, ϕ̃(0)),

and

f(ϕ, ϕ̃(0), α) = (τ∗ + α)


∑

i+j+k≥2

1

i!j!k!
f

(1)
ijkϕ

i
1(0)ϕ̃j1(0)ϕk2(0)

∑
i+j+k≥2

1

i!j!k!
f

(2)
ijkϕ

i
1(0)ϕj1(−1)ϕk2(0)

 .

Here

f
(1)
ijk =

∂i+j+kf (1)

∂ui∂ũj∂vk
(0, 0), f

(2)
ijk =

∂i+j+kf (2)

∂ui∂ujτ∂vk
(0, 0).

For the system (3.2), by computation, we have

f (1)
u =

1− β2

2
, f

(1)
ũ = −β2, f (1)

v = −β,

f (2)
u = 0, f (2)

uτ =
r(1− β2)

2
, f (2)

v = 0,

f
(1)
110 = −1, f

(1)
101 = − 1

2β
, f

(1)
011 = 0, f

(1)
200 =

1− β2

4β2
, f

(1)
020 = 0, f

(1)
002 = 0,

f
(2)
110 = 0, f

(2)
101 = 0, f

(2)
011 =

r

2β
, f

(2)
200 = 0, f

(2)
020 = −r(1− β

2)

4β2
, f

(2)
002 = 0.

(3.3)

The characteristic equation of the linearized system of (3.2) is∏
k∈N0

Γk(µ) = 0, (3.4)

where Γk(µ) = det(Nk(µ)) with

Nk(µ) = µI2 − τ∗Mk − τ∗A0 − τ∗A1e
−µτ − τ∗χkA2. (3.5)
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Here Mk, A0, A1, A2 and χk are given in Section 2. Therefore, from the assumption
condition (AC), we know that there exists a n∗ such that (3.4) has a pair of simple
purely imaginary roots ±iωc with ωc = τ∗ω∗.

Let C := C([−1, 0], R2), C∗ := C([−1, 0], R2∗), where R2∗ is the two-dimensional
space of row vectors. We define ηk ∈ BV ([−1, 0];R2) such that

Mkϕ(0) + L0(ϕ(θ), ϕ̃(0)) =

∫ 0

−1

dηkϕ(θ), ϕ ∈ C,

and the following adjoint bilinear form on C∗ × C

〈ψ(s), ϕ(θ)〉 = ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dηkϕ(ξ)dξ, for ψ ∈ C∗, ϕ ∈ C.

Choose Φ(θ) = (ξeiωcθ, ξ̄e−iωcθ),Ψ(s) = col(η>e−iωcs, η̄>eiωcs). Here ξ ∈ C2 is
the eigenvector corresponding to the eigenvalue iωc of (2.2), and η ∈ C2 is the
corresponding adjoint eigenvector, satisfying < Ψ(s),Φ(θ) >= I2, where

ξ =

 ξ1

ξ2

 =

 1

−2iω∗ + 2d1λk∗ − (1− β2) + 2β2χk∗
2β

 ,

η =

 η1

η2

 = η1

 1

2iω∗ + 2d1λk∗ − (1− β2) + 2β2χk∗
r(1− β2)e−iωc

 ,

with

η1

=

(
1− (2iω∗ + 2d1λk∗ − (1− β2) + 2β2χk∗)

2

2rβ(1− β2)e−iωc
+
τ∗e

iω∗τ∗(2iω∗ + 2d1λk∗ − (1− β2) + 2β2χk∗)

2e−iωc

)−1

.

Similar to the Section 3.2 of the literature [16], through calculation, we obtain

A
(1)
20 = τ∗

 − 1

β
ξ1ξ2 +

1− β2

4β2
ξ2
1

r

β
ξ1ξ2e

−iωc − r(1− β2)

4β2
ξ2
1e
−2iωc

 , A
(2)
20 = τ∗

−2ξ2
1

0

 ,

A
(3)
20 = τ∗

 0

0

 , A
(1)
11 = τ∗

 − 1

β
(ξ1ξ̄2 + ξ̄1ξ2) +

1− β2

2β2
|ξ1|2

r

β
(ξ1ξ̄2e

−iωc + ξ̄1ξ2e
iωc)− r(1− β2)

2β2
|ξ1|2

 ,

A
(2)
11 = τ∗

−4|ξ1|2

0

 , A
(3)
11 = τ∗

 0

0

 , A
(i)
02 = Ā

(i)
20 , i = 1, 2, 3.

Let kn,20(θ) = (k
(1)
n,20(θ), k

(2)
n,20(θ))>, kn,11(θ) = (k

(1)
n,11(θ), k

(2)
n,11(θ))>, kn,02(θ) =

(k
(1)
n,02(θ), k

(2)
n,02(θ))>. From the Appendix of the literature [16], we know that when
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n∗ = 0,

k0,11(θ) =
1√
lπiωc

(ξη>eiωcθ − ξ̄η̄>e−iωcθ)(A(1)
11 +A

(2)
11 +A

(3)
11 )

+
N−1

0 (0)√
lπ

(
I − N0(iωc)

iωc
ξη> +

N0(−iωc)
iωc

ξ̄η̄>
)

(A
(1)
11 +A

(2)
11 +A

(3)
11 ),

k0,20(θ) =− 1√
lπiωc

(ξη>eiωcθ +
1

3
ξ̄η̄>e−iωcθ)(A

(1)
20 +A

(2)
20 +A

(3)
20 )

+
e2iωcθN−1

0 (2iωc)√
lπ

(
I +
N0(iωc)

iωc
ξη> +

N0(−iωc)
3iωc

ξ̄η̄>
)

× (A
(1)
20 +A

(2)
20 +A

(3)
20 ),

and when n∗ 6= 0,

k0,11(θ) =
1√
lπ
N−1

0 (0)A
(1)
11 ,

k0,20(θ) =
1√
lπ
N−1

0 (2iωc)A
(1)
20 e

2iωcθ,

k2n∗,11(θ) =
1√
2lπ
N−1

2n∗
(0)A

(1)
11 ,

k2n∗,20(θ) =
1√
2lπ
N−1

2n∗
(2iωc)A

(1)
20 e

2iωcθ.

Then we continue to compute the S2 terms:

S2(ξeiωcθ, kn,11(θ))

= 2τ∗

 − 1

2β
(ξ1k

(2)
n,11(0) + ξ2k

(1)
n,11(0)) +

1− β2

4β2
ξ1k

(1)
n,11(0)

r

2β
(ξ2k

(1)
n,11(−1) + ξ1k

(2)
n,11(0)e−iωc)− r(1− β2)

4β2
ξ1k

(1)
n,11(−1)e−iωc

 ,

S̃
(1)
2 (ξ, kn,11(θ)) = 2τ∗

−ξ1k(1)
n,11(0)

0

 ,

S̃
(2)
2 (ξeiωcθ, k0,11(0)) = 2τ∗

−ξ1k(1)
0,11(0)

0

 ,

S̃
(3)
2 (ξ, k0,11(0)) = 2τ∗

 0

0

 ,

S2(ξ̄e−iωcθ, kn,20(θ))

= 2τ∗

 − 1

2β
(ξ̄1k

(2)
n,20(0) + ξ̄2k

(1)
n,20(0)) +

1− β2

4β2
ξ̄1k

(1)
n,20(0)

r

2β
(ξ̄2k

(1)
n,20(−1) + ξ̄1k

(2)
n,20(0)eiωc)− r(1− β2)

4β2
ξ̄1k

(1)
n,20(−1)eiωc

 ,
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S̃
(1)
2 (ξ̄, kn,20(θ)) = 2τ∗

−ξ̄1k(1)
n,20(0)

0

 ,

S̃
(2)
2 (ξ̄eiωcθ, k0,20(0)) = 2τ∗

−ξ̄1k(1)
0,20(0)

0

 ,

S̃
(3)
2 (ξ̄, k0,20(0)) = 2τ∗

 0

0

 .

According to the expression of C21 in [16],

C21 =


1

6lπ
ηT (B

(1)
21 +B

(2)
21 +B

(3)
21 +B

(4)
21 ), n∗ = 0,

1

4lπ
ηTB

(1)
21 , n∗ 6= 0.

By computation, we have

B
(1)
21 = τ∗

 −9(1− β2)

8β4
|ξ1|2ξ1 +

3

4β3
(ξ2

1 ξ̄2 + 2|ξ1|2ξ2)

−9(1− β2)r

8β4
|ξ1|2ξ1e−iωc −

3r

4β3
(ξ2

1 ξ̄2e
−2iωc + 2|ξ1|2ξ2)

 ,

and B
(2)
21 = B

(3)
21 = B

(4)
21 = (0, 0)>.

In addition, we can compute D21 by the expression of D21 in [16].

D21 =
1

6iωc
(−a20a11 + |a11|2 +

2

3
|a02|2),

where

a20 =


1√
lπ
ηT (A

(1)
20 +A

(2)
20 +A

(3)
20 ), n∗ = 0,

0 n∗ 6= 0,

a11 =


1√
lπ
ηT (A

(1)
11 +A

(2)
11 +A

(3)
11 ), n∗ = 0,

0 n∗ 6= 0,

and

a02 =


1√
lπ
ηT (A

(1)
02 +A

(2)
02 +A

(3)
02 ), n∗ = 0,

0 n∗ 6= 0.

Finally, E21 and H21 can be calculated by the following expression:

E21 =



1

6
√
lπ
ηT
(
S2(ξeiωcθ, k0,11(θ)) + S2(ξ̄e−iωcθ, k0,20(θ))

+S̃
(1)
2 (ξ, k0,11(θ)) + S̃

(1)
2 (ξ̄, k0,20(θ))

)
, n∗ = 0,

1

6
√
lπ
ηT
(
S2(ξeiωcθ, k0,11(θ)) + S2(ξ̄e−iωcθ, k0,20(θ))

)
+

1

6
√

2lπ
ηT
(
S2(ξeiωcθ, k2n∗,11(θ)) + S2(ξ̄e−iωcθ, k2n∗,20(θ))

)
, n∗ 6= 0,



1952 Y. Peng & Y. Li

H21 =



1

6
√
lπ
ηT
(
S̃

(2)
2 (ξeiωcθ, k0,11(0)) + S̃

(2)
2 (ξ̄e−iωcθ, k0,20(0))

+S̃
(3)
2 (ξ, k0,11(0)) + S̃

(3)
2 (ξ̄T , k0,20(0))

)
, n∗ = 0,

1

6
√
lπ
ηT
(
S̃

(2)
2 (ξeiωcθ, k0,11(0)) + S̃

(2)
2 (ξ̄e−iωcθ, k0,20(0))

)
, n∗ 6= 0.

Let

R1 = iω∗η
>ξ, R21 = C21 +

3

2
(D21 + E21 +H21)

and

δ1 = Re(R1), δ2 = Re(R21),

then we can calculate the value of δ2 and δ1δ2 according to the above expression.
On the one hand, the sign of δ1δ2 determines the direction of Hopf bifurcation.

The bifurcation is forward when δ1δ2 < 0 and the bifurcation is backward when
δ1δ2 > 0. On the other hand, the sign of δ2 determines the stability of the nontrivial
periodic orbit. The nontrivial periodic orbit is stable when δ2 < 0 and the nontrivial
periodic orbit is unstable when δ2 > 0. Therefore, we can determine the direction
and stability of Hopf bifurcation at τ = τ∗ according to the given parameters in the
system (1.5).

4. Numerical simulations

From Theorem 2.1, we know that when

√
3

3
< β < 1, d1 > 0, d2 ≥ 0 and 0 < l2 <

2d1

3β − β2
, τ∗ = τ00; when d1 > 0,

2d1

3β − β2
< l2 <

2d1

1− β2
, τ∗ = τ00 for d2 > d∗2

and τ∗ = τ10 for 0 ≤ d2 < d∗2. This shows that system (1.5) will generate spatially

homogeneous and non-homogeneous periodic orbits when
2d1

3β − β2
< l2 <

2d1

1− β2
.

In this section, we present the results of some numerical simulations for the cases

of
2d1

3β − β2
< l2 <

2d1

1− β2
and 0 < l2 <

2d1

3β − β2
, respectively.

4.1. Simultaneous occurrence of spatially homogeneous and
non-homogeneous Hopf bifurcation

Choosing parameters β = 0.8, r = 3 and l = 1.5, we have λ1 = (
1

l
)2 =

4

9
and u∗ =

0.64, v∗ = 0.2304. If we take d1 = 1, then the condition
2d1

3β − β2
< l2 <

2d1

1− β2
is

satisfied. In Fig.2, τ = τ00 is the homogeneous Hopf bifurcation curve and τ = τ10

is non-homogeneous Hopf bifurcation curve. The two bifurcation curves intersect
at point P (0.43, 1.1485), which is the double Hopf bifurcation point and shows that
d∗2 = 0.43. Taking three points P1(0.38, 1.1), P2(0.5, 1.15) and P3(0.4, 1.2) near
point P (0.43, 1.1485)(indicated by ‘*’ in Fig.2), we perform numerical simulations.

Choosing d2 = 0.38 < d∗2, we have τ∗ = τ10 = 1.0823, which implies that the
first Hopf bifurcation point is spatially non-homogeneous. From the calculation of
the normal form in Section 3, we obtain δ1 = 0.2249, δ2 = −0.2091, which shows
that the non-homogeneous Hopf bifurcation is forward and the bifurcating spatially
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Figure 2. Bifurcation curves diagram for the system (1.5). Parameter values are d1 = 1, β = 0.8, r =
3, l = 1.5.

non-homogeneous periodic solutions are stable. The top row in Fig.3 presents the
stable spatially non-homogeneous periodic solutions when d2 = 0.38 and τ = 1.1
(i.e., P1).

Choosing d2 = 0.5 > d∗2, we have τ∗ = τ00 = 1.1485, which implies that the
first Hopf bifurcation point is spatially homogeneous. From the calculation of the
normal form in the Section 3, we obtain δ1 = 0.2459, δ2 = −0.4598, which shows
that the homogeneous Hopf bifurcation is also forward and the the bifurcating spa-
tially homogeneous periodic solutions are stable. The middle row in Fig.3 presents
the stable spatially homogeneous periodic solutions when d2 = 0.5 and τ = 1.15
(i.e., P2).

When we take d2 = 0.4, τ = 1.2 (i.e., point P3 in Fig2), The bottom row in Fig.3
presents the stable spatially non-homogeneous periodic solutions.

4.2. Occurrence of only spatially homogeneous Hopf bifurca-
tion

The values of parameters β, r and l are the same as those in Section 4.1. If we

take d1 = 3, then 0 < l2 <
2d1

3β − β2
is satisfied. Therefore τ∗ = τ00 for any

d2 ≥ 0. The homogeneous Hopf bifurcation curve τ = τ00 and non-homogeneous
Hopf bifurcation curve τ = τ10 in the plane d2 − τ are shown in Fig.4. It can be
seen that these two Hopf bifurcation curves do not intersect. Taking d2 = 0.2,
direct calculation means that τ00 = 1.1485 and τ10 = 1.16214. We choose three
points P4(0.2, 0.6), P5(0.2, 1.16) and P6(0.2, 1.63)(represented by ‘*’ in Fig.4) for
numerical simulations.
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Figure 3. The simulations for species u of the system (1.5). Parameter values are d1 = 1, β =
0.8, r = 3, l = 1.5. (The top row): d2 = 0.38, τ = 1.1 which corresponds to P1 and the corresponding
initial conditions are u(x, t) = 0.64 − 0.5cos(0.5x), v(x, t) = 0.2304 − 0.1cos(0.5x) for t ∈ [−τ, 0]; (The
middle row): d2 = 0.5, τ = 1.15 which corresponds to P2 and the corresponding initial conditions
are u(x, t) = 0.64 + 0.01cos(0.5x), v(x, t) = 0.2304 + 0.01cos(0.5x) for t ∈ [−τ, 0]; (The bottom row):
d2 = 0.4, τ = 1.2 which corresponds to P3 and the corresponding initial conditions are u(x, t) = 0.64 +
0.05cos(0.5x), v(x, t) = 0.2304 + 0, 01cos(0.5x) for t ∈ [−τ, 0]. When x = 0.785, the solution is plotted
(blue solid curve) and x = 3.925, the solution is also plotted (red dotted curve).

Choosing d2 = 0.2, we have τ∗ = τ00 = 1.1485. If we take τ = 0.6 < τ∗, then the
positive equilibrium is stable. In the top row of Fig.5 (i.e., P4), we show numerical
simulation, which is consistent with the theoretical results. If we take τ = 1.16 > τ∗,
the first Hopf bifurcation point is spatially homogeneous. From the calculation
steps of the normal form in the Section 3, we obtain δ1 = 0.2456, δ2 = −10.8069,
which implies that the homogeneous Hopf bifurcation is forward and the bifurcating
spatially homogeneous periodic solutions are stable, as shown in the middle row of
Fig.5 (i.e., P5). If we take τ = 1.63 > τ10 > τ00 = τ∗, the first Hopf bifurcation point
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is spatially homogeneous, the bifurcating spatially homogeneous periodic solutions
are still stable, as shown in the bottom row of Fig.5 (i.e., P6).

Figure 4. Bifurcation curves diagram for the system (1.5). Parameter values are d1 = 3, β = 0.8, r =
3, l = 1.5.

5. Conclusion

In this paper, we introduce both time delay and nonlocal prey intraspecific compe-
tition into a diffusive predator-prey systems with herd behaviour. We first prove
the stability of the positive equilibrium (u∗, v∗) of the system (1.5) when τ ∈ [0, τ∗)

and l2 <
2d1

1− β2
, which implies the influence of delay and nonlocal competition

on stability. We also find that, for the different ranges of diffusive coefficients d1

and d2, under the together action of time delay and nonlocal competition, the first
critical value of Hopf bifurcation may be homogeneous or non-homogeneous. As is
known to all, the properties of Hopf bifurcation can be determined by the normal
form. Thus we use the algorithm of calcating the normal form of delay-induced
homogeneous/non-homogeneous Hopf bifurcation for the reaction-diffusion system
with delay and spatial average established by Song and Shi [16] to the system (1.5).
It can be seen from Fig.2 that the double Hopf bifurcation exists for the system (1.5)
with delay and spatial average when the diffusive coefficient d1 is small. Finally,
the spatially stable homogeneous or non-homogeneous periodic solutions are shown
by numerical simulations.

In addition, the nonlocal term appears in the reaction term in this paper. More
recently, Song et al. [17] established a diffusive consumer-resource model with non-
local perception of resource availability, where the nonlocal term appears in the
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Figure 5. The simulations for species u of the system (1.5). Parameter values are d1 = 3, β =
0.8, r = 3, l = 1.5. (The top row): d2 = 0.2, τ = 0.6 which corresponds to P4 and the corresponding
initial conditions are u(x, t) = 0.64 − 0.5cos(0.5x), v(x, t) = 0.2304 − 0.1cos(0.5x) for t ∈ [−τ, 0]; (The
middle row): d2 = 0.2, τ = 1.16 which corresponds to P5 and the corresponding initial conditions
are u(x, t) = 0.64 + 0.01cos(0.5x), v(x, t) = 0.2304 + 0.01cos(0.5x) for t ∈ [−τ, 0]; (The bottom row):
d2 = 0.2, τ = 1.63 which corresponds to P6 and the corresponding initial conditions are u(x, t) =
0.64− 0.1cos(x), v(x, t) = 0.2304− 0.5cos(x) for t ∈ [−τ, 0].

diffusion term. The biological meanings of the two modeling methods are com-
pletely different. We hope that our next work will be to apply the new methods
developed in reference [17] to our specific model.
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