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STABILITY AND HOPF BIFURCATION OF A
DELAYED PREDATOR-PREY SYSTEM WITH
NONLOCAL COMPETITION AND HERD
BEHAVIOUR*

Yahong Peng'' and Yujing Li!

Abstract In this paper, we investigate the stability and Hopf bifurcation of
a diffusive predator-prey system with herd behaviour. The model is described
by introducing both time delay and nonlocal prey intraspecific competition.
Compared to the model without time delay, or without nonlocal competition,
thanks to the together action of time delay and nonlocal competition, we prove
that the first critical value of Hopf bifurcation may be homogenous or non-
homogeneous. We also show that a double-Hopf bifurcation occurs at the
intersection point of the homogenous and non-homogeneous Hopf bifurcation
curves. Furthermore, by the computation of normal forms for the system
near equilibria, we investigate the stability and direction of Hopf bifurcation.
Numerical simulations also show that the spatially homogeneous and non-
homogeneous periodic patters.

Keywords Predator-prey model, time delay, nonlocal prey competition, Hopf
bifurcation.
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1. Introduction

Predator-prey models have been frequently used to model ecological system. It is
an important area to study the dynamics of biological population and attracts many
researchers to establish mathematic models for research. Recently, a predator-prey
model modeling herd behaviour in population system was considered by Ajraldi et
al. [1]. The simplified model is written as

du

E:u(l—u)—\/ﬂm

oy (1.1)
E = TU(_ﬂ + \/a)7

where u, v stand for prey and predator densities respectively, r/3 is the death rate
of predator in the absence of prey. r is the conversion or consumption rate of prey
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to predator. In this model, the interaction term is proportional to the square root
of the prey population, which appropriately simulates the system in which the prey
exhibits a strong herd structure. This means that the predator typically interacts
with the prey along the outer corridors of the herd of prey. For the establishment
and simplification of the model, please refer to the literatures [1,4].

When 0 < 8 < 1, the system (1.1) has a unique positive equilibrium E, =
(g, vy) with

Ux = ﬂ27v* = ﬂ(l 762)5

which is local asymptotically stable when 5 > @

Many species can move freely. Spatial diffusion is everywhere and reaction-
diffusion models play an important role in the study of biological invasions. Conse-
quently, the predator-prey models involving spatial diffusion have been concerned
by more and more researchers [12,14,20-22,25,26, 28]. Adding diffusion term into
system (1.1) and supplementing with the Neumann boundary condition and initial
condition, then the model in one-dimensional bounded domain reads

up = u(l —u) — Vuv + diug,, x € (0,lm), t >0,
vy =rv(=B8+Vu) + dovye, € (0,im), t >0,

Uz (0,1) = ugp(Im,t) = v:(0,t) = vy (Im,t) =0, t > 0,
u(z,0) =up(z) > 0,v(x,0) = vo(z) >0, x € (0,im),

(1.2)

where [ > 0, d; and dy are the diffusion coefficients for the prey and predator,
respectively. Here we choose homogeneous Neumann boundary condition. Bio-
logically speaking, the homogeneous Neumann boundary condition indicates that
this system is a closed one (for example, islands and lakes/ponds are such system),
and thus there is no population flux on the boundary. Furthermore, in this paper,
we are only interested in the bifurcations from the positive constant steady state,
corresponding to the homogeneous Neumann boundary condition.

Yuan et al. [26] chose the quadratic mortality for predator population in the
model (1.2), i.e., they used —rj3v? to represent the quadratic mortality for preda-
tor population. Their research presented the Turing pattern selection in a spatial
predator-prey model. They also derived that the Turing pattern is induced by
quadratic mortality.

And since the number of predators does not increase immediately after consum-
ing prey. For example, the pregnancy of some populations takes a certain time.
Therefore, Tang and Song [19] incorporated time delay into the system (1.2) and
focused on the following system

ug = u(l —u) — Vuv + diug,, x € (0,7), t >0,
vy = 10(=B 4+ /Us) + dovge, € (0,7), t >0,
Uz (0,1) = up(m,t) = v5(0,) = vy(m,t) =0, t >0,
u(z,t) = ¢(x,t) > 0,v(x,t) = P(x,t) >0, (z,t) € [0,7] x [-7,0],
where u, = u(z,t —7), 7 represents the time delay, which indicates the influence of

past consumption of prey on the density of current predators. They investigated the
stability of the positive equilibrium, delay-induced Hopf bifurcation of the system



1934 Y. Peng & Y. Li

(1.3). They also found that the instability of Hopf bifurcation caused by diffusion
and time delay respectively can lead to the emergence of spatial patterns.

In [9,15,19,24,29], the effect of time delay is investigated in diffusive predator-
prey system with delay. Su et al. [18] considered a reaction-diffusion population
model with a general time-delayed growth rate per capita and determined the long
time dynamical behavior of the system. Zhao [27] established the global attractiv-
ity of the positive steady state for a class of nonmonotone time-delayed reaction-
diffusion equations.

In addition, due to the uneven distribution of resources and other reasons, prey
and other prey or predators are connected not only in the same place, but also in
different places, even in the whole space. Therefore, nonlocal competition exists
and many scholars concentrate on the nonlocal interactions in reaction-diffusion
equations [2,3,5,7,8,10,11,23].

Recently, Peng and Zhang [13] introduced nonlocal prey competition into the
system (1.2):

153
up = u(l — K(z,y)u(y, t)dy) — Vuv + ditg,, =€ (0,lm), t >0,
0
vy = 1v(=B + Vu) + davys, @€ (0,l7), t >0,

Uz (0,t) = uz(Im,t) = v,(0,t) = v (Im,t) =0, t >0,

(1.4)

u(z,0) = up(z) >0, v(z,0) =wvo(x) >0, x € (0,In),

1
where the kernel function K(z,y) = s The idea of spatial average of density

function was first proposed by Furter anZiT Grinfeld [8]. The effects of nonlocal com-
petition on dynamics of the system (1.4) in the bounded region was investigated by
Peng and Zhang. But in unbounded domain (—oco, +00), they took a step function
as the kernel function and investigated the influence of nonlocal competition on the
stability of the positive equilibrium.

Motivated by literatures [19] and [13], we introduce nonlocal prey competition
and time delay into the system (1.2), which is written

up = u(l — ) — Vuv + diug,, = € (0,0m), t >0,
ve = 10(=B + Jur) + dovys, x € (0,lm), t >0,
Uy (0,t) = ug(Im, t) = v,(0,t) = v, (Im, t) =0, t > 0,

u(z,t) = ¢(x,t) > 0,v(x,t) = (x,t) >0, (z,t) € [0,In] x [-T,0],

I
0

the population density of v at time ¢t — 7.

In this paper, we will study the stability of positive equilibrium, Hopf bifurca-
tion induced by delay and nonlocal prey competition and the properties of Hopf
bifurcation. The organization of this paper is as follows. The stability of posi-
tive equilibrium and Hopf bifurcation are studied by analyzing the characteristic
equation in Section 2. In Section 3, we determine the direction of Hopf bifurca-
tion. In Section 4, Numerical simulations verifies the theoretical results. Finally,
we conclude this paper by a simple discussion.

1
where @ = — [ u(x,t)dz is the spatial average of prey v and u, = u(z,t — 7) is
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2. Stability and Hopf bifurcations

In this section, we study the stability and Hopf bifurcation of the system (1.5). We

know that
1

Pile) = ﬂz 3
\/;cos(lx), keN,

are the normalized eigenfunctions of the following eigenvalue problem

k=0,

o+ Ap =0, z€(0,ln),
cp’ =0, x=0,lm,
whose corresponding eigenvalues are

e = (%)27 k € Ng = NU {0}, (2.1)

with N ={1,2,3---}.
It is easy to see that

0=X <A1 <A <...< A\ < Ay1 <...<+o00.

When 7 > 0, we linearize the equation (1.5) at the positive equilibrium (u.,v.)

ou (t— ) .
v 92 [u u u(t—7 @
ot | =g + Ao + A + Ay . (29
ov Oa® v v v(t —71) 0]
ot
where
22 1 2
0? digez O (=5 -8
d@ = , | Ao )
0 dos 0 0
0 0 -B%20
A= , Ay =
51"(1 - B2)0 0 0
The characteristic equation of (2.2) is
det(uI — Mk — Ao — Ale_‘” — XkAQ) = 07 (23)

where I is the 2 x 2 identity matrix and My = —Mxdiag(di,ds), k € Ng. A\ are

given by (2.1) and
1, k=0,
X {0 keN (24)
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It follows from (2.3) that the characteristic equations for the positive constant
equilibrium (u,, v, ) are the following sequence of quadratic transcendental equations

p? - (;(1 = B%) = xiB® = Me(dr + d2)) Bt dida X
(2.5)

- <;(1 — %)dy — XkﬁQdQ) Ak + %Tﬂ(l — B%)e M =0,

where k € Ny and g, xx are given by (2.1) and (2.4) respectively.
For the distribution of purely imaginary roots of equation (2.5), we have the
following results.

V3

Lemma 2.1. Suppose that dy > 0, do > 0, r > 0, Ty < B <1andl? <

2dy +dy)  4dy

min{ T T —ﬂ2} hold. Let
1 2wi
Toi = o [arccos <ﬁ_052)> + 21‘71'} ; 1=0,1,2,---,
1 2(.0% — 2d1d2/\% + (1 — 52)d2)\k R R
i — T 2 ) ) = 71727"',
Tk o {arccos ( 3= 3 + 2im keN, i=0

(2.6)
where Ay, are given by (2.1), wo and wy, are the only positive root of equation (2.10)
and (2.11) respectively. Then for the existence of pure imaginary roots of (2.5), we
have the following results:

(i) if d1 > 0,ds > 0, the characteristic equation (2.5) has a pair of pure imaginary
roots +iwg at T = Toi, © € Ny;

(ii) ifd2 =0, dy > 0, the characteristic equation (2.5) has a pair of pure imaginary
roots +iwy at T = T, k €N, i € Ny;

ey da(1 — B2
(iii) if dy >0, 0 < dy <2(Tﬁﬁ)

pure imaginary roots Liwy at T = Tg; for Ny < k < Ny (N1 < k < N3) and
has no purely imaginary roots for k < N1 (k < N1) ork > No, k € N, i € N,

, the characteristic equation (2.5) has a pair of

where
Ny = [Vaol], Ny = [y/z4l],
with
%d2(1—52)+vA1 %d2(1—52)+\/ﬁ2
T = , Tgq = s (27)
2d1d2 2dld2
1
Ay = ng(l — B%)? = 2d1darB(1 — B?),
1
Ay = ng(l — B%)% + 2d1dar3(1 — B°). (2.8)
PN do(1 — 5?) L ‘ .
(iv) if da > 0, d1 > BT the characteristic equation (2.5) has a pair of
r

pure imaginary roots tiwy at T = T, for k < Na(k < Ni) and has no purely
imaginary roots for k > Na, k € N, i € Ng. Ny is given in (iii).
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Remark 2.1. For the conclusion (iii), if \/z2l is not a positive integer, then N; <
k < Ny and if \/x3l is a positive integer, then N; < k < Ny; For the conclusion
(iv), if /x4l is not a positive integer, then k < Ny and if /x4l is a positive integer,
then k£ < Ns.

Next, we give the proof of Lemma 2.1.
Proof. Suppose that p = iwi(wi, > 0) is a root of characteristic equation (2.5).
Substituting u = iwy, into equation (2.5), we obtain

iy + o) — 21— 8) 4 x|+ didad] — dal (1~ 5) — xaB M
+ 81— FeT =0,
which leads to
—wd + iwo( ﬂ2 — f) 7‘/3’(1 — B%)e w0t =,
—wl+ wk[xk(dl +dy) — 1(1 — BH)] 4 dida i — fd2(1 — BH Ak (2.9)
+ §Tﬁ(1 — B¥e ™ T =0, keN.

From (2.9), we obtain

3 1 1
wo + (567 = 5)%wy — 7282 (1 - 5%)? =0, (2.10)
2 2 4
and
wp + Brwi +Cr =0, k€N, (2.11)
where

1 1 2
B = A (d} +d3) — Medi(1— B8°) + 1(1 - B%)? = (d1>\k - 5(1 - 52)> + d3A7,

2
Cy = (—dldz)\ﬁ + %@(1 - ﬁ2))\k> - %«252(1 — 82>,

Separating real and imaginary parts from (2.9), we have

cos(woT) = (2ng)
(352 ~1) (2.12)
sin(wo) = B
and when k € N,
wi — 2d1da N3 + da(1 — B2
cos(wgT) = — ,
rB(1 - 52) (2.13)
sin(w 7_) _ wk[z)‘k(dl + d2) (1 ﬁ )] .
* rB(1 - 5?) '
Thanks to ? < B <landl?< %, it follows from (2.12) and (2.13)

1
that sin(wer) > 0 and sin(w,7) > 0. Because 17262(1 — %)% > 0, according to

(2.10), it is easy to prove the conclusion (i).
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If dy =0, dy > 0, then By > 0 and Cj, < 0. It follows from (2.11) and (2.13)
that the conclusion (ii) is obviously true.

If dy > 0, d; > 0, we have By > 0. Then when C}, < 0, the equation (2.11) has
a unique positive root .

According to the expression of Cy, it can be rewritten as

Ok = [\ (15— 3B~ B[N 4 5 Do (1) Nk 57801 —7)].

(2.14)
Let ) 1 1
f(z) = —dydea® + §d2(1 — 62)90 — §rﬂ(1 - 52), T > 2R
Then
f(@) = —=dida(z — x1) (2 — 22), (2.15)
1dy(1 -2 — VA
where z; = 2 2( 25; L 25 and A, are defined by (2.7) and (2.8) respec-
1d2
tively.
dz2(1 - 5%)
Case 1. If dy >0 and 0 < di < W, then we have Ay > 0, z; > 0 and
5 4d,
x9 > 0. It follows from ¢ < 7 that
1 1-8_ (-4 db(l-p)-2V/A _
27 4dy  4ddy Ady dy o

i.e., Ay > x1. On the other hand, when A\, < zo, ie., k < /72!, it follows from
(2.15) that f(Ag) > 0.

Choose N = [/Z2[], then we obtain

(al) if \/x3l is not a positive integer, f(Ax) > 0 for £ < Ny and f(Ax) < 0 for
k> Ny;

(a2) if \/x2l is a positive integer, f(Ar) > 0 for k& < Ny and f(Ax) < 0 for
k> Nj.

do(1 — 32 1— B2
Case 2. If dy >0 and d; = M, then we have Ay =0, 21 = 25 = p >
87"6 4d1
0. Ad
From % < T ;27 we have

1 1-p?

ﬁ > 1d, =1 = T2.
It follows from (2.15) that f(Ax) < 0 for any k € N.

dy(1 - 5%

Case 3. If d; > 0 and d; >

f(Ar) <0 for any k € N.
Similarly, let

85 then we have A; < 0, which implies that
r

1 1 1
g(x) = —didax® + 5052(1 - 52)1‘ + 57”5(1 - 52)7 T 2> IR

Then
g(z) = —didz (v — x3) (7 — 24), (2.16)
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1dy(1 - B2) — VA,
2d1d>

where z3 = , 4 and Ay are defined by (2.7) and (2.8) respec-

tively.

It is obvious that Ay > 0, which implies that z3 < 0 and x4 > 0 hold. When
Ak < x4, 1e., k < \/z4l, it follows from (2.16) that g(Ay) > 0.

Choose Ny = [,/Z4l], we obtain

(b1) if \/x4l is not a positive integer, then g(Ay) > 0 for & < Na and g(Ax) <0
for k > No;

(b2) if /x4l is a positive integer, then g(Ax) > 0 for & < Ny and g(Ax) < 0 for
k > Ns.

In addition, due to xo < x4, it follows from the definition of N7 and No that
N]_ S NQ hold.

Based on the above analysis, we prove that

do(1 — B?
(iii) if do > 0 and 0 < d;y < 2(87’56)’ then when k < Ny (k < Ny) or k > No,
we have Cj > 0 and (2.11) has no positive root; when Ny < k < No(N; < k < N»),
we have C} < 0 and (2.11) has a positive root. This implies that the conclusion

(iii) of Lemma 2.1 is proved;

do(1 — B2

(iv) if dy > 0 and d; > 72(8 66 )

r

(2.11) has no positive root; when k < Ny(k < N3), we have Cy, < 0 and (2.11) has

a positive root. This implies that the conclusion (iv) of Lemma 2.1 is proved. [J
To prove the existence of Hopf bifurcation of the system (1.5), we need to verify

the following transversality condition.

, then when k > N, we have C;, > 0 and

dRe(p)

> 0.
dr

Lemma 2.2. For k € Ny and ¢ € Ny, we have

T=Tki

Proof. Taking the derivative on both sides of the equation (2.5) with respect to
7, we get
1 _ Q2\,—puT
du surB(L— B%)e
d 1 -
Tlr=ne 2t Dldi + do) = (1= B2) + xi] — 5rBr(1— B
%iwkrﬂ(l — %) e Wk Tki

2iwr + [Ar(di + d2) — 5(1 = B2) + xwB?] - %Tﬂﬂci(l — et

) - %
T=Tki Pk

T=Tki

b

which implies that

dRe(p)
dr

dp
= R B
T=Tki ‘ ( dT

where

Qi =wirB(1 — B?) cos(wy i)

+ %w/d“ﬁ(l — %) sin(wi ki) [Me (dy + d2) — %(1 - B%) + xuB,
1

Pr =[Ae(d1 + d2) 2

(1 —B?) 4+ x1p* — %Tﬁﬂﬂ-(l — B%) cos(wi ki )|
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+ 2wy + %rﬁmi(l - 5% sin(wkai)]z.

It is obvious that P, > 0 for any k& € Ny. Next, we prove that Q) > 0 is also
true. Substituting (2.12) and (2.13) into the expression of Q) respectively, we have

Qo = w%rﬁ(l - 52) cos(woTo;) + %worﬂ(l - [32) sin(woro,;)(%ﬁ2 — %)

= 2wp +1 5(38% —1)?
> 0,
and when k € N,
Q1 = wirB(1 — 5?) cos(wk ki)
+ %wwﬁ(l — B?) sin(wr ) [Me(di + do) — %(1 )
= wil(d? + d)A; — da(1 = B2 A + - ( — B%)% + )

1
= wil(dih, = 5 (1= B%)% + dEAT + 2wy

>0,

Re(p)

T

d
which implies that > 0. This completes the proof. O

T=Thi
From (2.6), we know that 7,0 = miNn{Tki}, and
1E€Np

1 2wp — 2d1da )} + (1 — ﬁ2)d2/\k>]
TkO h |:aI'CCOS ( T‘ﬁ(]_ _ /82)

2d;

Lemma 2.3. Suppose that ? <p<l,r>0andl?< 5 hold, then we have

(1) mro is a strictly increasing sequence with respect to k;
(ii) 710 is strictly increasing with respect to dg for fized dy > 0.

Proof. (i) Let p = )\, we rewrite 750 as follows.

(2t )

then differentiating with respect of p, we obtain

Tro(p) = o)

diro()] _ _ wxlp) (2601%(19) — 2dydop® + (1 — 32)(1217)
dp wi(p) Tﬂ(l -5
B 4w (p)wy, (p) — 4dydap + (1 — 2)dy . (2.17)

2wk ) — 2dydap? + (1 — 5%)dop 2
B — 82) \/1 pr Ll )
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Next, we judge the sign of o.);c (p). Rewrite (2.11) as follows.
1
wi(p) + [P*(df + d3) — pdi (1 — %) + i 52)*Jwic(p)
1 1
+ [—didap® + 51— B?)d2p]* — Z7‘262(1 - p%)?*=0.

Differentiating with respect of p for the above equation, we obtain

A (D)o () + 2 (), ()PP (6 -+ ) — paa (1 = 52) + 31 = 527
+ Wk (p)2p(d} + d3) — i (1 - 5%)]
+ 2[—didap® + %(1 — %) dzp][~2d1d2p + %(1 — B%)d2] =0,

which yields

wy(p)
W O)20( + d) — da(1 — B3] + 2?4 (1~ B)dap[~2rdop + (1~ F2)d]

4 (p) + 2 () pA(& + B) — pis (1 - B2) + (1 = 52

Obviously,

P+ )~ pdi (1~ 5) + 10— 627 = [dup— 5(1— B2+ dBp” > 0.

Thanks to 94 .
2 1
—_— e > = —
l<1_52,p Ak > A\ 2
we obtain
2p(d} + d3) — da(1— %) > 0,
and

[—dydap® + %(1 — B dyp)[—2d1dap + %(1 — B%)dy] > 0.

dTro(p)]

dp
increasing in Ag. And we know that A\ is increasing in k, thus 7 is increasing in
k.

(ii) Considering 119 as a function of ds,

1 2w} (da) — 2d1d2A? + (1 — B2)da)
T10(d2) = o (da) [arccos( wi (dz) r;(i—lﬁQ() B*)dz 1>}’

and taking derivative of this with respect of ds, we obtain

So wy,(p) < 0. Combining with (2.17), we get > 0. Therefore, 73 is

diro(dz)] _ _ wi(da) (zw%(dQ) — 2dyda A} + (1 — 52)d2)\1>
dd) — wi(dz) rB(1 -~ B?)
Awn (do)w) (da) — 2d1 X2 + (1 — B2)\ (2.18)

. w2 — 2 _ 2
rB(1 —ﬁz)wl(dz)\/l - (2 P(d2) 2%2?_%1 32)@1)
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In the same way as (i),

1
2)\%(12&)%(652) + 2d2[—d1)\% + 5(1 — ﬁz))\l]Q

40.)‘;’ (dg) + 20.}1 (dg)Bl

’

wy(de) = —

It follows from the expression of By, that By > 0, so w,l (d2) < 0.

2d 1
From [ < T 152 and \; = 20 we have —2d;A? + (1 — 8%)A\1 < 0. Combining
with (2.18), we obtain
d
[m0(d2)] 0.
d(da)
which shows that 7 about ds is monotonically increasing. The proof is completed.

O
Let 7. = min{7gg, 710}. The following Lemma gives a detailed description for
the minimum critical value of delay.

V3

2d
Lemma 2.4. Suppose that di >0, do >0, r > 0, 3 <B<1landl?< !

1- 2

hold. Let d5 be the unique positive root of the following equation

w1 |arccos 27003 = wy |arccos 2w} — 2d1d2)? + (1 — B%)da)y
1 B=p)) rA(1l - B?) ’
(2.19)

we have the following results:

(i) fo<?< 3;?@ , then 7 = To0;
(ii) if I? = 3;?1@, then T. = T10 = Too;
(i) if 5 ;fl 7 << 12—d152’ then
T10, for 0 <ds < d5,
T« = < To0, for dy > d3,

T10 = 700, f07“ d2 = d;

Proof. According to (2.6), we have

1 2w
0= [ ()

. i : Qw% — ledg)\% + (1 — ﬂ2)d2/\1
Tio = — |arccos B — ) )

1
We first consider the case of do = 0, dy > 0.

and

710(0) = T10dy=0 = %(0) [arccos <7’52(L;%—((22))] ’
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where w1 (0) = wi|g,—0. From (2.10) and (2.11), it is easy to know that wy and
w1(0) satisfy the following equations:

3 1 1
wh + (55 - 5)2003 - 17’252(1 - 6%)?=0,

1—p2

wH0) + (A1dy — 5

23 (0) — 1r2%(1 — F7) =,

2.

1 1— 2
which implies that wy < w;(0) when (gﬂ — 5)2 > (A\dy — 2B

2d
Thanks to ? <B<1,1?< 1 —1ﬁ2 and \; = 2R by the analysis and cal-
lati immediatel that wy < wi(0) when 21 2
ulation, we immediate rove that w w ;
¢ )y Wi y provi 0 1 33— 32 1—p32
2d1 2dl
_ 2 _ 2
wo = w1(0) when [* = CTE and wy > w1(0) when 0 < I# < 355
Let )
1 2w
h(W) = a [arccos (M)} s
then we have
1 22 4
h/(w):—ﬁarccos <rﬂ(1—ﬁ2)> - <0,

80 - p201- (8

which implies that h(w) is a monotonically decreasing function of w. Therefore, we

have o9 > Tlo(O) when wg < wq (O), Too < Tlo(O) when wg > wy (O) and 799 = Tl()(O)

when wo = w1(0).

(1-5%)dy
8rp

Lemmma 2.3, 719(dz) is increasing with respect to da. So T19(d2) > 710(0) > 700

For the case of do > 0 and 0 < d; < , by the conclusion (ii) of

2d1 2d1 2dl
When0<l2<35_ﬁ2.When3ﬁ_52<12<1_ﬁ2,let
rB(1 - %)
ds = . 2.20
> T 207 - (- (220
Thanks t0 12 < 22 and A, = ., we have 24132 — (1 — %)\ > 0, which
anks to <1762an 1 = 75, We have 127 — (1 — £%)A1 > 0, which means

that dS > 0.
When dy = dS§, from (2.11), we have

) + DR + (d5)%) = Mada (1 — 8%) + (1 — 42 2L )

=w?(dS) (w?(dS) + B (dS))
=0.

According to the expression of By, we know that By > 0, which means that w?(d$)+
B (d5) > 0. Thus we have
lim wl(dg) = 0,

dzﬁdg
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which implies that lim 719(d2) = +00.
dg*}dg
2d d
1 < 2 < 1 ’
35— =5
that there exists unique positive real number d3 such that 79 = 790. So, when
2d; 2 2d;

- - ST

and T« = Too = T10 for dg = d;

In addition, notice that 70(0) < 790 when we conclude

we have 7, = g for 0 < da < d, 7. = 70 for do > d3,

1—5%)d
For the case of dy > 0 and d; > %, we have the same discussion and
r
. (1—B%)ds .
results as in the case do > 0 and 0 < d; < T above. This completes the
r
proof. O

In the following section, we will discuss the properties of curves dy = d§ and
dy = ds.

V3

2d
Lemma 2.5. Suppose that dy > 0, do > 0, r > 0, 3 <p<landl?< !

1-p2
hold. d§ and dj are defined by (2.20) and (2.19) respectively. Taking d$ and d5 as
functions of dy, we have the following conclusions.

(1) d§ is strictly monotonically decreasing with respect to dy;
(ii) d§ is always greater than dj;
(iii) d5 is strictly monotonically decreasing with respect to dy ;

L—p2)2 (38 -5
2 2

(1-p%e

(iv) di(dy) is defined on intevel , and d;(#) =

(38 —1)12
DR

Proof. From the expression of d§, it is easy to prove that the conclusion (i) is
true.

To prove the conclusion (ii), we define the function

s(dz) = T10(d2) — T00(d2)

1 2&}% — 2d1d2)\% + (1 — ﬁg)dg)\l
T il G (o ]

(2.21)

It follows from the conclusion (ii) of Lemma 2.3 that 719(d2) is monotonically in-
creasing with respect to dy, which means that s(ds) is monotonically increasing
with respect to ds. Substituting do = d§ and dy = dj into (2.21) respectively, we
obtain s(d§) = +oo and s(d3) = 0. That is to say, s(dS) > s(d3), which means that
d§ > d5. This completes the proof of (ii).

For the conclusion (iii), when s(d2) = 0, taking dy regard as a function of d; and
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taking the derivative with respect to d; on both sides of equation (2.21), we obtain
1(d 2w1(d1)? — 2d1da)? + (1 — 52)da
_w;( 1)arccos( wi(dy) 121+2( 5)21)
wl(dl) Tﬁ(l—ﬁ )
Awy (dy )wy (dy) — 2d2A3 — 2d1dpAF + (1 — B2)dy

_ o
2wi(dy) — 2dyda)3 + (1 — 5%)daA
w1(d1)7“5(1—,32)\/1—( wi(di) rlﬂ(i—lﬁ2g B*)ds 1)2
which implies that
rB(1 — 62)\/1 - (2“5(611) — 2d1do A + (1 - 5%)doh > ’
dy(dy) = rB(1—p?)
e 2d: 27 — (1= B2\
wy (d1) 2w2(dy) — 2dydy )2 + (1 — B2)dp (2.22)
o (d) arccos ( B0 >

4w1 (dl)wll (dl) - 2d2/\%
2d1A7 — (1 = B\

The proof process is similar to (i) of Lemma 2.3. We can obtain

(1 — 82 —2X\1dy) (wi(dy)? A1 + d2A3)

wy(dp) = .
1( 1) 4w:1”(d1) -+ 2wl(d1)B1
, 2 1 ) .
Thanks to B; > 0, [ < 5 and \; = 7 we have 2d1 A\ — (1 — 8%) > 0, which

means that w;(dy) < 0. Combining with (2.22), we can prove that dy(d;) < 0. This
completes the proof of (iii).

2d
From Lemma 2.4 (iii), we know that there exists dj when 35 :52 <?<
2d
. 162. So if d5 is regarded as a function of dj, then d; is defined on interval
1 — 32)]2 _ B2)2 1 — 82)]2
[( 25 ) ,(3ﬂ 25 ) ]. Furthermore, substituting d; = % into (2.11)
and combining with (2.10), we have
3 1 1
44 (25 2y22 1.25201_ 52)2 _
Wl (58— 5 — 12621 - B2 =0,
1
ot + Bt — L2 - 2 <o,
1— B2)12 — )P
which implies that w3 = wp when d} = dz(( 25 ) ) = (36 5 ) . Therefore, we
complete the proof of the conclusion (iv). O

In order to easily describe the main results of this section, we define the following
areas in the dy — ds plane.

1— 2 38 — 2 .
Ryo = {(d1,d>)| 2ﬁ ?<d < 525 l2,0§d2<d2},

1— 2 38 — 2 .
Ro1 = {(dy,dy)| 2ﬁ ?<d < 52ﬂ 2, d5 < dy < dS}
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35— p?
2

U {(dl, d2)|d1 >

1—62l2
2

12,0 <dy < dS},

Roo = {(d1,d2)|d1 >

yda > d3}, Ro = Ro1 U Roo.
From Lemmas 2.4 and 2.5, we have

~ _ J oo, (d1,d2) € Ry,
: Ti0, (di,d2) € Ryo.

By Lemmas 2.2, 2.4 and 2.5 and Hopf bifurcation theory for partial funcational
differential equations, we obtain the following results on the stability and Hopf
bifurcation of the system (1.5).

V3 2d;

Theorem 2.1. Assume that di > 0,d> > 0,7 > O,? <fB<landl? < -7

hold. T; and d3 are defined by (2.6) and (2.19) respectively, we have the following
results on the stability and Hopf bifurcation of the system (1.5):

1. The positive equilibrium (u.,v.) is locally asymptotically stable for T € [0, 7y)
and unstable for T € (Tx, +00).

2. The system (1.5) undergoes Hopf bifurcations at T = Tg;. For dy >0, do =0,
there exist the critical value Tg; of spatially non-homogeneous Hopf bifurcations
for any k € N. But for dy > 0, do > 0, there exist the critical value Tx; of
spatially non-homogeneous Hopf bifurcations for finite wave numbers k € N
and N1 < k < N3(Ny < k < Ny), where N1 and No are defined by Lemma
2.1.

3. About the homogeneous/non-homgeneous Hopf bifurcation, we conclude as fol-
lows:

(i) when (di,d2) € Roo, the spatially non-homogeneous Hopf bifurcations will
not occur, and only spatially homogeneous Hopf bifurcations occurs at To;
and T« = Too, thus the bifurcating periodic orbits from the first critical
value is spatially homogeneous;

(ii) when (d1,d2) € Ro1, both spatially non-homogeneous and spatially homo-
geneous Hopf bifurcations occur and the bifurcating periodic orbits from
the first critical value oy is spatially homogeneous;

(iii) when (dy,ds2) € Ryg, both spatially non-homogeneous and spatially homo-
geneous Hopf bifurcations occur and the bifurcating periodic orbits from
the first critical value ¢ is spatially non-homogeneous;

1— B2 38 — B2)I?
(iv) when ﬂ <d < M, and dy = d, the spatially homoge-
neous Hopf bifurcations at 7. = 190 and spatially non-homogeneous Hopf
bifurcations at T appear at the same time, and there exists a double

Hopf bifurcation.

From Lemma 2.4 and Lemma 2.5, as shown in Fig.1, we draw a sketch of curves
de = d5 and dy = d§ in the di — dz plane. It follows from Theorem 2.1 that when
(d1, ds) falls in region Ry, the first Hopf bifurcation point is 719, which is a spatially
non-homogeneous Hopf bifurcation point. When (dy, dz) falls in other regions of the
plane, the first Hopf bifurcation point is spatially homogeneous.
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d2
Roo
d,=d,
Roz —

Rio ,
\ d,=d,
! d:

0 1_,3212 3,8—,8212
7 2

Figure 1. The distribution of the first Hopf bifurcation value 7, in the di — d plane. The solid (red)
line represents da = d; and the dotted (yellow) line represents do = d5. We have 7, = 719 in the region
Rip and 7. = Tpo in the region Ry.

3. Normal form of Hopf bifurcation

In this section, we investigate the stability and direction of Hopf bifurcation. Be-
cause the system (1.5) has both delay and spatial average, we can’t use the normal
form theory for partial functional differential equations developed by Faria [6]. Re-
cently, Song and Shi [16] derived an explicit algorithm to determine the direction of
Hopf bifurcation depending on the coeflicients of the original system for a general
reaction-diffusion system with delay and spatial average. So we compute the normal
form for the system (1.5) by using the theory developed by Song and Shi. In the
following, we only give the main results for the system (1.5). For a more detailed
process of calculation, readers can refer to the Section 3.1 in the literature [16].
For convenience, we rewrite the system (1.5) as follows:

(3.1)

Up = d1Ugs + f(l)(u,ﬂ,v), T e (07Z7T)7 t >0,
U = d2vzm + f(g)(ua 'LLT,U), S (Ovlﬂ—)v t> Oa

where

f(l)(uvﬁav) = (u+u*)(1 _ﬁ_u*) - Vu+u*(v+v*)v
TP (u,ur,v) = r(v+0,) (=B 4+ Vir + ).

Obviously, (0,0) is always a equilibrium for system (3.1).
For Hopf bifurcation, we have the following assumption condition:
(AC) when T = 7, , there exists a n, € Ny such that Eq.(2.5) has a pair of simple
purely imaginary roots +iw,, and the corresponding transversality condition holds.
Following the procedure in [16], define the real-valued Sobolev space
Ou  Ov

X = {(u,v)" € (W>2(0,7))?, p il vl 0atx=0, Ir}.
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Then C := C(]-1,0]; X) is the Banach space of continuous mappings from [—1, 0]
to X with the sup norm. Letting @ = 7 — 7, and normalizing time scale by the
transformation ¢t — £, we can rewrite the system (3.1) as follows on C :
oU(t)
ot

where U(t) = (u(x,t),v(x,t)) ", with the inner product definded by

= 7,dU,o(t) + Lo(U(0),U(0)) + F(U(9),TU(0), o), (3.2)

153
U, V] = U'Vdz, UV € X,
0
- 1 -
Ur(60) = Ul,t+6), -1 <0 <0,T(0) = - U (x,t)de,

F010) + £95,(0) + £ 0(0)

F20100) + £&01(=1) + £ 02(0)
F(p,3(0), @) = adAp(0) + L(a) (¢, $(0)) + f (0, 3(0), ),

LO(@; 95(0)) = T«

with N
and
> Tl 050640
Flo, 3(0),0) = (. +a) | = L
Z_ﬂ%gﬂj!k,fﬂ 4 (0)¢] (~ 1)k (0)
Here i+j+k £(1) i+j+k £(2)
1 _ u (2 _ u
fijk - auiaﬂjﬁvk( ’ )a fijk - 8uzauiavk (0,0)

For the system (3.2), by computation, we have

_ 52
= i =8 1 = -,
2
£ g f<2> _rA=8) e g
u Y Ur 2 ) v )
3.3
g Lo 128 ) (33
110 o = Tog Jon = 200 = 4,82 » Jo20 = 002
2 2 2 r 2 2 r(l— ﬂz) 2
fl(lz):()’ fl(o)lio fél% 2/@7 2(02):0, (522):*?, (20%:0.
The characteristic equation of the linearized system of (3.2) is
I te(w) =0, (3-4)
keNy

where T (p) = det(Ng(u)) with

Ni(p) = ply — oMy, — T Ag — T A1e ™7 — Tox Aa. (3.5)
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Here My, Ag, A1, A2 and xy, are given in Section 2. Therefore, from the assumption
condition (AC'), we know that there exists a n, such that (3.4) has a pair of simple
purely imaginary roots +iw, with w, = Tuws.

Let C := C([-1,0], R?), C* := C([-1,0], R**), where R** is the two-dimensional
space of row vectors. We define 7, € BV ([—1,0]; R?) such that

0
Mig(0) + Lo(p(0), 3(0)) = / np(®).¢ € C,
and the following adjoint bilinear form on C* x C'
0 0
(16(5), 0(8)) = $(0)p(0) — / 1 / B(E — B)dmp(E)dE, for ¥ € C*, ¢ € C.

Choose ® () = (¢ew<? eiweb) W(s) = col(nTe e 7T etwes). Here & € C? is
the eigenvector corresponding to the eigenvalue iw. of (2.2), and n € C? is the
corresponding adjoint eigenvector, satisfying < W(s), ®(0) >= I, where

& 1
= = 2iw, + 2d M ex — (1= 52) +28%x1s |
52 - 25
T 1
n= =M 2w, + 2di M — (1 — 52) + 262 |
2 r(1— B2)eiwe
with
m
(1 Qi 2N = (1= 57) 4 26%0)" | T Qi + 210 — (1= 5) +257K0) )
2rB(1 — B2)e—iwe 2emiwe

Similar to the Section 3.2 of the literature [16], through calculation, we obtain

BQ
e 55152 + 152 —& 42 —2¢2
20 = Tx r r(1 62) ) y gy = Tx )
ZE16oe™ e — —— oL Efem e 0
B 4p
+ 2
A0 _ 0 A 6(5152 &1&) + 2ﬁ2 \€1|
20 = T i =T o r(1- 5% E I
0 3(51526_’““ + &162e") — 232 €1
—4|& 0 N
e e B B R T
0 0

Let kn20(6) = (1 30(6). ky20(0)) T K 11(6) = (k11 (6), K201 (6))T Ko 2(6) =
(k,ELl’B)Q(H), k‘,(f())2 o). From the Appendix of the literature [16], we know that when
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ko.20(0) = —

Ny H0) No (iwe)
i (1-

1
Vimiw,
62iwC0NO— 1

_gﬁTe—iwC )(A( )+A(2) —|—A( ))

e+ No(—iwe)

W W

& )(A&? 1 AD ¢ A

TWe 1 = —iw 1 2 3
(577T o+ g@?Te 60)(/150) + Aéo) + Aéo))

_|_

x (A%

and when n, # 0,

(2iw,) (HNO(Z-%) enT 4 No(—iwe) fnT)

TWe Jiwe

Vir

+AS) + AR,

1 .
kO,ll(e) = \/?NO 1(0)14511)7
1 - y w,
ko,20(0) = \/?NO 1(21wC)A%)62 <9
k2m,11(9) = E-N’zn*( )An )
1
k2n*,20(0) = E/\/’ (QZWC)AQO 62MC9.

Then we continue to compute the Sy terms:

Sy (€™ ki 11(0))

L ek, 0) + &k 0) + ek, 0)

=927, 26 452 n,11 |
TR + &k e~ TP, e

SI(E, k11 (0)) = 27, (

51 nll( )
O )
El 011( )
0 b

5,52)(561‘(%9’ ko.11(0)) = 2, (

o 0
S (€, ko1 (0)) = 27, <0> :

Sa(€e ki 20(0))

5 @) + &L 0) + TG0
Mflknm( L)ete

= 27,

25 @hn(=1) + ER (00 ) - =
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1), —E1k} %0 (0)
SV, k20 (0)) = 2. 200 )
0
5152)(561%07%’20(0)) —2r, fl 020( ) 7
0

&(3) £ 0
S5 (&, ko.20(0)) = 27

0

According to the expression of Cop in [16],

0T (BS + BY + B + BYY), n.=o0,

o = 611 1
r TB( ), ny # 0.
By computation, we have
9(1 — 5%
- €126 + (51'52 +2|&1[%62)
Y7 183
B 864 LleaPere e — 453 L (E2Epe % 12161 26y)

and B = B = B{Y = (0,0)7.
In addition, we can compute Dy by the expression of Doy in [16].

1 2
Dy = 6iwc(_a20all + lan|* + §|a02\2),
where 1
am = { Vim0 Az AL, ’
0 Ty 7£ 0,
1 (1) <2> (3)
—nT(AY + A 4+ Al n. =0,
an = \/En ( )
0 TNy 7& O,
and 1
AD 44D 4 4B, =0,
ane = | Vi o2 )

0 ny # 0.

Finally, F5; and Hs; can be calculated by the following expression:
1 5 . .
———nT(Sy(Ee™e? K, 0)) + Sy(Ee~ w0 K, 0
6\/%77 (Sa2(¢ 0,11(0)) + S2(& 0,20(0))
+S§1)(§7 ko,11(0)) + 5,51)(5—7 ko,20(6))), Ny, =0,

FEy = -
“ T (S2(€e?  ko11(0)) + Sa (e ko 20(0)))

1
6¢E”

1 ) _
+ T S “}JCG;k n 9 +S _lwceak n 9 ’ * 07
v (Sa2(e on,,11(0)) + S2(&e om.20(0))),  n #
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1 ~ ) . -
mnT(S?)(sew, ko,11(0)) + S57) (€<, kg 20(0))
Hoy = 4 +55 (€, K0.11(0)) + S (€7 Ko 20(0))), n. =0,

T [ &(2) iwe0 3(2) (7 —iw.0
76\/517 (52 (§e*<% ko,11(0)) + S5 (e ,k0,20(0))), ns # 0.

Let
) 3
Ri = iwyn' &, Roy = Co1 + §(D21 + Eg1 + Ha)

and
51 = Re(Rl), 52 = Re(Rgl),

then we can calculate the value of d5 and §;02 according to the above expression.

On the one hand, the sign of §;9> determines the direction of Hopf bifurcation.
The bifurcation is forward when 6152 < 0 and the bifurcation is backward when
0192 > 0. On the other hand, the sign of d5 determines the stability of the nontrivial
periodic orbit. The nontrivial periodic orbit is stable when d2 < 0 and the nontrivial
periodic orbit is unstable when J§, > 0. Therefore, we can determine the direction
and stability of Hopf bifurcation at 7 = 7, according to the given parameters in the
system (1.5).

4. Numerical simulations

3
From Theorem 2.1, we know that when g <B<1l,d >0,dy>0and 0<% <
2dy 2d, 2 2d,
35— 52 Ty = Too; When dy > 0, 35 52 <l*< m7
and 7, = 719 for 0 < dy < dj. This shows that system (1.5) will generate spatially
2d; 2 2d;
35— 52 - g
In this section, we present the results of some numerical simulations for the cases

2dy 2d; 2d,
f 2 2
O?)B_ﬁ2<l<1_ﬂ2and0<l<3ﬁ_627

T« = Too for do > d§

homogeneous and non-homogeneous periodic orbits when

respectively.

4.1. Simultaneous occurrence of spatially homogeneous and
non-homogeneous Hopf bifurcation

1 4
Choosing parameters 8 = 0.8, r = 3 and [ = 1.5, we have \; = (7)2 =3 and u, =

2d; 9 2d;

35— 52 <l*< 152
satisfied. In Fig.2, 7 = 719¢ is the homogeneous Hopf bifurcation curve and 7 = 7o
is non-homogeneous Hopf bifurcation curve. The two bifurcation curves intersect
at point P(0.43,1.1485), which is the double Hopf bifurcation point and shows that
d5 = 0.43. Taking three points P;(0.38,1.1), P»(0.5,1.15) and P5(0.4,1.2) near
point P(0.43,1.1485)(indicated by ‘*’ in Fig.2), we perform numerical simulations.

Choosing do = 0.38 < d5, we have 7, = 719 = 1.0823, which implies that the
first Hopf bifurcation point is spatially non-homogeneous. From the calculation of
the normal form in Section 3, we obtain §; = 0.2249, d5 = —0.2091, which shows
that the non-homogeneous Hopf bifurcation is forward and the bifurcating spatially

0.64, v, = 0.2304. If we take d; = 1, then the condition is
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Figure 2. Bifurcation curves diagram for the system (1.5). Parameter values are dy =1, 8 =0.8, r =
3, 1l =1.5.

non-homogeneous periodic solutions are stable. The top row in Fig.3 presents the
stable spatially non-homogeneous periodic solutions when dy = 0.38 and 7 = 1.1
(i.e., Pl)

Choosing d2 = 0.5 > d5, we have 7, = 790 = 1.1485, which implies that the
first Hopf bifurcation point is spatially homogeneous. From the calculation of the
normal form in the Section 3, we obtain §; = 0.2459, §, = —0.4598, which shows
that the homogeneous Hopf bifurcation is also forward and the the bifurcating spa-
tially homogeneous periodic solutions are stable. The middle row in Fig.3 presents
the stable spatially homogeneous periodic solutions when do = 0.5 and 7 = 1.15
(i.e., PQ)

When we take dy = 0.4, 7 = 1.2 (i.e., point P5 in Fig2), The bottom row in Fig.3
presents the stable spatially non-homogeneous periodic solutions.

4.2. Occurrence of only spatially homogeneous Hopf bifurca-

tion
The values of parameters 3,7 and [ are the same as those in Section 4.1. If we
2d
take d; = 3, then 0 < %2 < ﬁ is satisfied. Therefore 7, = 79 for any

ds > 0. The homogeneous Hopf bifurcation curve 7 = 7p9 and non-homogeneous
Hopf bifurcation curve 7 = 719 in the plane do — 7 are shown in Fig.4. It can be
seen that these two Hopf bifurcation curves do not intersect. Taking dy = 0.2,
direct calculation means that 9o = 1.1485 and 719 = 1.16214. We choose three
points P;(0.2,0.6), P5(0.2,1.16) and Ps(0.2,1.63)(represented by ‘*’ in Fig.4) for
numerical simulations.
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Figure 3. The simulations for species u of the system (1.5). Parameter values are di = 1,8 =

0.8, = 3,1 = 1.5. (The top row): d2 = 0.38,7 = 1.1 which corresponds to P; and the corresponding
initial conditions are u(z,t) = 0.64 — 0.5c0s(0.5z), v(z,t) = 0.2304 — 0.1cos(0.5z) for t € [—7,0]; (The
middle row): d2 = 0.5,7 = 1.15 which corresponds to P> and the corresponding initial conditions
are u(z,t) = 0.64 4+ 0.01cos(0.5z), v(x,t) = 0.2304 + 0.01cos(0.5z) for t € [—7,0]; (The bottom row):
ds = 0.4,7 = 1.2 which corresponds to P3 and the corresponding initial conditions are u(z,t) = 0.64 +
0.05c0s(0.5z), v(z,t) = 0.2304 + 0,01cos(0.5z) for t € [—7,0]. When = = 0.785, the solution is plotted
(blue solid curve) and z = 3.925, the solution is also plotted (red dotted curve).

Choosing d = 0.2, we have 7, = 199 = 1.1485. If we take 7 = 0.6 < 7, then the
positive equilibrium is stable. In the top row of Fig.5 (i.e., P4), we show numerical
simulation, which is consistent with the theoretical results. If we take 7 = 1.16 > 7,
the first Hopf bifurcation point is spatially homogeneous. From the calculation
steps of the normal form in the Section 3, we obtain d; = 0.2456, J» = —10.8069,
which implies that the homogeneous Hopf bifurcation is forward and the bifurcating
spatially homogeneous periodic solutions are stable, as shown in the middle row of
Fig.5 (i.e., P5). If we take 7 = 1.63 > 719 > 799 = T, the first Hopf bifurcation point
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is spatially homogeneous, the bifurcating spatially homogeneous periodic solutions
are still stable, as shown in the bottom row of Fig.5 (i.e., Ps).

18 -
Ps I
10
14
P
=12 5
F~—~—~——- _\_E* ______________________________
1r /
oo
0.8+
F'4\
0-6 I + | I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08
d,

Figure 4. Bifurcation curves diagram for the system (1.5). Parameter values are dy =3, 8 =0.8, r =
3, l=1.5.

5. Conclusion

In this paper, we introduce both time delay and nonlocal prey intraspecific compe-
tition into a diffusive predator-prey systems with herd behaviour. We first prove
the stability of the positive equilibrium (u,,v,) of the system (1.5) when 7 € [0, 7%)

and 2 <

1 152, which implies the influence of delay and nonlocal competition
on stability. We also find that, for the different ranges of diffusive coefficients d;
and ds, under the together action of time delay and nonlocal competition, the first
critical value of Hopf bifurcation may be homogeneous or non-homogeneous. As is
known to all, the properties of Hopf bifurcation can be determined by the normal
form. Thus we use the algorithm of calcating the normal form of delay-induced
homogeneous/non-homogeneous Hopf bifurcation for the reaction-diffusion system
with delay and spatial average established by Song and Shi [16] to the system (1.5).
It can be seen from Fig.2 that the double Hopf bifurcation exists for the system (1.5)
with delay and spatial average when the diffusive coefficient d; is small. Finally,
the spatially stable homogeneous or non-homogeneous periodic solutions are shown
by numerical simulations.

In addition, the nonlocal term appears in the reaction term in this paper. More
recently, Song et al. [17] established a diffusive consumer-resource model with non-
local perception of resource availability, where the nonlocal term appears in the
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Figure 5. The simulations for species u of the system (1.5). Parameter values are di = 3,8 =

0.8, = 3,1 = 1.5. (The top row): do = 0.2, 7 = 0.6 which corresponds to P4 and the corresponding
initial conditions are u(z,t) = 0.64 — 0.5c0s(0.5z), v(z,t) = 0.2304 — 0.1cos(0.5z) for t € [—7,0]; (The

middle row): d2 = 0.2,7 = 1.16 which corresponds to P5 and the corresponding initial conditions
are u(xz,t) = 0.64 + 0.01cos(0.5x), v(x,t) = 0.2304 + 0.01cos(0.5z) for t € [—7,0]; (The bottom row):
ds = 0.2,7 = 1.63 which corresponds to Pg and the corresponding initial conditions are w(z,t) =

0.64 — 0.1cos(z), v(z,t) = 0.2304 — 0.5cos(x) for ¢t € [—7,0].

diffusion term. The biological meanings of the two modeling methods are com-
pletely different. We hope that our next work will be to apply the new methods
developed in reference [17] to our specific model.

Acknowledgement

The authors would like to thank the anonymous referees for their helpful comments
which have improved the presentation of the paper.



Stability and Hopf bifurcation 1957

References

1]

[15]

[16]

V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in popula-
tion systems, Nonlinear Anal.-Real World Appl., 2011, 12(4), 2319-2338.

M. Banerjee and V. Volpert, Prey-predator model with a nonlocal consumption
of prey, Chaos, 2016, 26(8), 083120.

A. Bayliss and V. A. Volpert, Complex predator invasion waves in a holling-
tanner model with nonlocal prey interaction, Physica D, 2017, 346, 37-58.

P. A. Braza, Predator-prey dynamics with square root functional responses,
Nonlinear Anal.-Real World Appl., 2012, 13(4), 1837-1843.

N. F. Britton, Spatial structures and periodic travelling waves in an integro-
differential reaction-diffusion population model, STAM J. Appl. Math., 1990,
50(6), 1663-1688.

T. Faria, Normal forms and Hopf bifurcation for partial differential equations
with delays, Trans. Am. Math. Soc., 2000, 352(5), 2217-2238.

M. A. Fuentes, M. N. Kuperman and V. M. Kenkre, Nonlocal interaction effects
on pattern formation in population dynamics, Phys. Rev. Lett., 2003, 91(15),
158104.

J. Furter and M. Grinfeld, Local vs. non-local interactions in population dy-
namics, J. Math. Biol., 1989, 27(1), 65-80.

Z. Ge and Y. He, Diffusion effect and stability analysis of a predator-prey sys-
tem described by a delayed reaction-diffusion equations, J. Math. Anal. Appl.,
2008, 339(2), 1432-1450.

W. Ni, J. Shi and M. Wang, Global stability and pattern formation in a nonlocal
diffusive Lotka-Volterra competition model, J. Differ. Equ., 2018, 264(11), 6891—
6932.

S. Pal, S. Ghorai and M. Banerjee, Analysis of a prey-predator model with
non-local interaction in the prey population, Bull. Math. Biol., 2018, 80(4),
906-925.

Y. Peng and K. Yu, Turing pattern of a diffusive predator-prey model with
nonlocal delay and herd behavior, J. Math. Anal. Appl., 2023, 527(1), 127346.

Y. Peng and G. Zhang, Dynamics analysis of a predator-prey model with herd
behavior and nonlocal prey competition, Math. Comput. Simulat., 2020, 170,
366—378.

Y. Song, Y. Peng and T. Zhang, The spatially inhomogeneous Hopf bifurcation
induced by memory delay in a memory-based diffusion system, J. Differ. Equ.,
2021, 300, 597-624.

Y. Song, Y. Peng and X. Zou, Persistence, stability and Hopf bifurcation in
a diffusive ratio-dependent predator-prey model with delay, Int. J. Bifurcation
Chaos, 2014, 24(7), 1450093.

Y. Song and Q. Shi, Stability and bifurcation analysis in a diffusive predator-
prey model with delayed and spatial average, Math. Meth. Appl. Sci., 2023,
46(5), 5561-5584.

Y. Song, H. Wang and J. Wang, Cognitive consumer-resource spatiotemporal
dynamics with nonlocal perception, J. Nonlinear Sci., 2024, 34(1), 19.



1958 Y. Peng & Y. Li

[18] Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population
model with delay effect, J. Differ. Equ., 2009, 247(4), 1156-1184.

[19] X. Tang and Y. Song, Stability, Hopf bifurcations and spatial patterns in a
delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput.,
2015, 254, 375-391.

[20] M. Wang, Stability and Hopf bifurcation for a prey-predator model with prey-
stage structure and diffusion, Math. Biosci., 2008, 212(2), 149-160.

[21] R. Wang and W. Zhao, Eztinction and stationary distribution of a stochastic
predator-prey model with Holling II functional response and stage structure of
prey, J. Appl. Anal. Comput., 2022, 12(1), 50-68.

[22] W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey
system with Ivlev-type functional response, Ecol. Model., 2010, 221(2), 131-140.

[23] S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive
predator-prey model with nonlocal prey competition, Nonlinear Anal.-Real
World Appl., 2019, 48, 12-39.

[24] X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with
diffusion effects, Appl. Math. Comput., 2007, 192(2007), 552-566.

[25] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homoge-
neous diffusive predator-prey system, J. Differ. Equ., 2009, 246(5), 1944-1977.

[26] S. Yuan, C. Xu and T. Zhang, Spatial dynamics in a predator-prey model with
herd behavior, Chaos, 2013, 23(3), 033102.

[27] X. Zhao, Global attractivity in a class of nonmonotone reaction-diffusin equa-
tions with time delay, Can. Appl. Math. Q., 2009, 17(1), 271-281.

[28] C. Zhu and Y. Peng, Stability and bifurcation analysis in a nonlocal diffusive
predator-prey model with hunting cooperation, J. Nonl. Model. Anal., 2023,
5(1), 95-107.

[29] W. Zuo and J. Wei, Stability and Hopf bifurcation in a diffusive predator-prey
system with delay effect, Nonlinear Anal.-Real World Appl., 2011, 12(4), 1998
2011.



	Introduction
	Stability and Hopf bifurcations
	Normal form of Hopf bifurcation
	Numerical simulations
	Simultaneous occurrence of spatially homogeneous and non-homogeneous Hopf bifurcation
	Occurrence of only spatially homogeneous Hopf bifurcation

	Conclusion

