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LEVENBERG-MARQUARDT METHOD WITH
A GENERAL LM PARAMETER AND A

NONMONOTONE TRUST REGION
TECHNIQUE∗
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Abstract We propose a new Levenberg-Marquardt (LM) method for solving
the nonlinear equations. The new LM method takes a general LM parameter
λk = µk[(1− θ)‖Fk‖δ + θ‖JTk Fk‖δ] where θ ∈ [0, 1] and δ ∈ (0, 3) and adopts a
nonmonotone trust region technique to ensure the global convergence. Under
the local error bound condition, we prove that the new LM method has at
least a superlinear convergence rate with the order min{1 + δ, 4 − δ, 2}. We
also apply the new LM method to solve the nonlinear equations arising from
the weighted linear complementarity problem. Numerical experiments indicate
that the new LM method is efficient and promising.
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1. Introduction

We consider the system of nonlinear equations

F (x) = 0, (1.1)

where F (x) : Rn → Rn is a continuously differentiable function. Throughout the
paper, we write the Jacobian F ′(x) as J(x) and use the notions Fk = F (xk) and
Jk = J(xk).

As it is well-known, the Levenberg-Marquardt (LM) method is one of the most
effective methods for solving the nonlinear equations (1.1). At every iteration, the
LM method computes the LM step

dk = −(JTk Jk + λkI)−1JTk Fk,

where λk is the LM parameter updated from iteration to iteration. The LM pa-
rameter λk has a great influence on the numerical performance and theoretical

†The corresponding author.
1College of Mathematics and Statistics, Xinyang Normal University, 464000
Xinyang, China
∗This work was supported by the Henan Province Natural Science Foundation
(222300420520) and the Key Scientific Research Projects of Higher Education
of Henan Province (22A110020).
Email: zly976557281@163.com(L. Zhao), tangjy@xynu.edu.cn(J. Tang)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220441


1960 L. Zhao & J. Tang

results of the LM method. Yamashita and Fukushima [26] showed, under the local
error bound condition which is weaker than nonsingularity, the LM method has
quadratic convergence if the LM parameter is chosen as λk = ‖Fk‖2. Under the
same condition, Fan and Yuan [12] proved that the LM method taking λk = ‖Fk‖
has the quadratic convergence. Although the numerical results in [12] show that
the choice of λk = ‖Fk‖ performs better than that of λk = ‖Fk‖2, it does not per-
form very well when the sequence {xk} is far from the solution set. To overcome
this difficulty, Fan [9] used λk = µk‖Fk‖ with µk being updated from iteration to
iteration by trust region techniques. In [13], Fan and Yuan extended the results
in [9, 26] and proved that the LM method taking λk = ‖Fk‖δ where δ ∈ [1, 2]
still achieves the quadratic convergence under the local error bound condition. Be-
sides λk = O(‖Fk‖), many researchers studied the convergence properties of the
LM method with λk = O(‖JTk Fk‖) (e.g., [24, 25, 30]). Ma and Jiang [15] took
λk = (1− θ)‖Fk‖+ θ‖JTk Fk‖ where θ ∈ [0, 1] and proved that the LM method has
quadratic convergence under the local error bound condition. Some other choices
of the LM parameter are given [2, 10,11].

On the other hand, many LM methods used the trust region technique to ensure
the global convergence (e.g., [9, 10, 24, 28]). Define the actual reduction and the
predicted reduction of ‖F (x)‖2 at the k-th iteration as

Aredk = ‖Fk‖2 − ‖F (xk + dk)‖2, (1.2)

and
Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2. (1.3)

The ratio of the actual reduction to the predicted reduction

rk =
Aredk
Predk

(1.4)

has been used in the LM methods to decide whether to accept the LM step and how
to adjust the parameter µk. Recently, many researchers generalized the nonmono-
tone techniques to trust region methods and proposed some efficient nonmonotone
trust region methods (e.g., [1, 8, 23, 27]). A lot of numerical experiments show that
the algorithms with nonmonotone strategies are more efficient than the algorithms
with monotone strategies.

Motivated by all of the work cited above, in this paper we aim to propose a new
LM method which takes the LM parameter

λk = µk[(1− θ)‖Fk‖δ + θ‖JTk Fk‖δ], where θ ∈ [0, 1] and δ ∈ (0, 3). (1.5)

This new LM parameter is very general which includes the LM parameters used
in [9,13,15] as special cases. Moreover, the new LM method adopts a nonmonotone
trust region technique to ensure its global convergence. Under the local error bound
condition, we prove that the new LM method has at least a superlinear convergence
rate with the order min{1 + δ, 4 − δ, 2}. This convergence result is more general
than those obtained in [9, 13, 15]. We also apply the new LM method to solve
the nonlinear equations arising from the weighted linear complementarity problem.
Numerical experiments show the local fast convergence rate and the advantages of
the new LM method.

The paper is organized as follows. In Section 2, we give a detailed description of
the new LM method and establish its global convergence. In Section 3, we derive
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the convergence order of the new LM method under the local error bound condition.
In Section 4, we apply the new LM method to solve some nonlinear equations and
report some numerical results. Finally, we deliver some conclusions in Section 5.

2. The new LM method and its global convergence

In this section, we first give a detailed description of the new LM method and then
prove its global convergence.

Algorithm 2.1 (A new LM method for nonlinear equations)
Step 0: Choose µ0 > m0 > 0, 0 < p0 ≤ p1 ≤ p2 < 1, θ ∈ [0, 1], τ ∈ (0, 1] and
δ ∈ (0, 3). Choose x0 ∈ Rn and set W0 = ‖F0‖2. Set k := 0.
Step 1: If ‖JTk Fk‖ = 0, then stop. Otherwise, set

λk = µk[(1− θ)‖Fk‖δ + θ‖JTk Fk‖δ]. (2.1)

Step 2: Compute dk by solving the following system

(JTk Jk + λkI)d = −JTk Fk. (2.2)

Step 3: Compute Predk by (1.3) and

Ãredk =Wk − ‖F (xk + dk)‖2. (2.3)

Set

r̃k =
Ãredk
Predk

. (2.4)

Step 4: Set

xk+1 =

{
xk + dk if r̃k ≥ p0,

xk otherwise.
(2.5)

Set

Wk+1 = (1− τ)Wk + τ‖Fk+1‖2. (2.6)

Step 5: Choose µk+1 as

µk+1 =


4µk if r̃k < p1,

µk if r̃k ∈ [p1, p2],

max{µk
4
,m} otherwise.

(2.7)

Set k = k + 1 and go to Step 1.

Remark 2.1. There are two notable differences of the new LM method from ex-
isting LM methods. First, the LM parameter defined by (2.1) allows δ ∈ (0, 3)
which is more general than those used in existing LM methods where one usually
requires δ ∈ (0, 2]. Second, Algorithm 2.1 adopts a nonmonotone trust region tech-
nique. It is noticeable that Wk is a convex combination of Wk−1 and ‖Fk‖2. Since
W0 = ‖F0‖2, it follows that Wk is a convex combination of ‖F0‖2, ‖F1‖2, ..., ‖Fk‖2.
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Lemma 2.1. The predicted reduction Predk defined by (1.3) satisfies

Predk ≥ ‖JTk Fk‖min

{
‖dk‖,

‖JTk Fk‖
‖JTk Jk‖

}
. (2.8)

Proof. The result can be found in [9, Lemma 3.1].

Lemma 2.2. The sequence {xk} generated by Algorithm 2.1 satisfies ‖Fk‖2 ≤ Wk,
Wk+1 ≤ Wk and ‖Fk‖ ≤ ‖F0‖ for all k ≥ 0.

Proof. First, we prove ‖Fk‖2 ≤ Wk for all k ≥ 0. Suppose that ‖Fk‖2 ≤ Wk

holds for some k. If r̃k < p0, then by (2.5) we have xk+1 = xk and so

Wk ≥ ‖Fk‖2 = ‖Fk+1‖2. (2.9)

Otherwise, r̃k ≥ p0 and by (2.5) we have xk+1 = xk+dk. Then it follows from (2.3)
and (2.4) that

r̃k =
Wk − ‖F (xk + dk)‖2

Predk
=
Wk − ‖Fk+1‖2

Predk
≥ p0,

which together with (2.8) implies

Wk ≥ ‖Fk+1‖2 + p0Predk ≥ ‖Fk+1‖2. (2.10)

Thus, we have ‖Fk+1‖2 ≤ Wk which together with (2.6) yields

‖Fk+1‖2 ≤ (1− τ)Wk + τ‖Fk+1‖2 =Wk+1. (2.11)

Since ‖F0‖2 = W0, by induction on k, we obtain ‖Fk‖2 ≤ Wk for all k ≥ 0.
Moreover, by (2.9) and (2.10), it holds that ‖Fk+1‖2 ≤ Wk for all k ≥ 0. This
together with (2.6) gives for all k ≥ 0,

Wk+1 ≤ (1− τ)Wk + τWk =Wk.

Furthermore, we have ‖Fk‖2 ≤ Wk ≤ W0 = ‖F0‖2 for all k ≥ 0. The proof is
completed.

To establish the global convergence of Algorithm 2.1, we make the following
assumption.

Assumption 2.1. The Jacobian J(x) is bounded and Lipschitz continuous on Rn,
i.e., there exist positive constants L1 and L2 such that

‖J(x)‖ ≤ L1, ∀ x ∈ Rn, (2.12)

and
‖J(y)− J(x)‖ ≤ L2‖y − x‖, ∀ x, y ∈ Rn. (2.13)

By (2.13), we have

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L2‖y − x‖2, ∀ x, y ∈ Rn. (2.14)

Theorem 2.1. Under the conditions of Assumption 2.1, the sequence {xk} gener-
ated by Algorithm 2.1 satisfies

lim inf
k→∞

‖JTk Fk‖ = 0. (2.15)
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Proof. If the theorem is not true, then there exist a constant η > 0 and an index
k̄ such that

‖JTk Fk‖ ≥ η, ∀ k ≥ k̄. (2.16)

By the second result in Lemma 2.2, the sequence {Wk} is monotonically decreasing
and bounded below. Thus, there exists a constantW∗ ≥ 0 such that lim

k→∞
Wk =W∗.

Furthermore, by (2.6) we have

lim
k→∞

‖Fk‖2 = lim
k→∞

Wk − (1− τ)Wk−1

τ
=W∗.

Define the set of successful iterations as

K = {k|r̃k ≥ p0}.

We derive the contradictions in two cases.

Case 1. K is infinite. In this case, by (2.8), (2.12) and (2.16), we have for all
k ∈ K and k ≥ k̄,

Wk − ‖Fk+1‖2 = Wk − ‖F (xk + dk)‖2

= Ãredk

≥ p0Predk

≥ p0‖JTk Fk‖min

{
‖dk‖,

‖JTk Fk‖
‖JTk Jk‖

}
≥ p0ηmin

{
‖dk‖,

η

L2
1

}
.

It follows from lim
k→∞

‖Fk‖2 = lim
k→∞

Wk = W∗ that lim
(K3)k→∞

dk = 0. Note that

xk+1 − xk = 0 if k /∈ K. Thus, we have

lim
k→∞

dk = 0. (2.17)

This together with (2.2) and (2.16) yields

lim
k→∞

λk = +∞. (2.18)

Due to the third result in Lemma 2.2 and (2.12), we have

(1− θ)‖Fk‖δ + θ‖JTk Fk‖δ ≤ (1− θ)‖F0‖δ + θLδ1‖F0‖δ.

So, by (2.1) and (2.18) we have

lim
k→∞

µk = +∞. (2.19)

Moreover, by the result given in the proof of [24, Theorem 2.4], we have

|‖F (xk + dk)‖2 − ‖Fk + Jkdk‖2| ≤ ‖Fk + Jkdk‖O(‖dk‖2) +O(‖dk‖4). (2.20)

Thus, from (2.8), (2.16) and (2.20), we have for k ≥ k̄,

|rk − 1| =
∣∣∣∣Aredk − PredkPredk

∣∣∣∣
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≤ |‖F (xk + dk)‖2 − ‖Fk + Jkdk‖2|

‖JTk Fk‖min

{
‖dk‖,

‖JTk Fk‖
‖JTk Jk‖

}
≤ ‖Fk + Jkdk‖O(‖dk‖2) +O(‖dk‖4)

ηmin

{
‖dk‖, ηL2

1

}
=
‖Fk + Jkdk‖O(‖dk‖2) +O(‖dk‖4)

‖dk‖
. (2.21)

Since ‖Fk + Jkdk‖ ≤ ‖F0‖+L1‖dk‖, the inequality (2.21) yields rk → 1 as k →∞.

Since Wk ≥ ‖Fk‖2 for all k ≥ 0, it holds that Ãredk ≥ Aredk and so

r̃k =
Ãredk
Predk

≥ Aredk
Predk

= rk → 1.

In view of the updating rule of µk, there exists a positive constant m̃ > m such that
µk < m̃ holds for all large k, which is a contradiction to (2.19).

Case 2. K is finite. In this case, there exists an index k̂ such that r̃k < p0 for all
k > k̂. By Step 5 of Algorithm 2.1, we have µk+1 = 4µk for all k > k̂, which yields

lim
k→∞

µk = +∞. (2.22)

By (2.12) and (2.16), we have

‖Fk‖ ≥
‖JTk Fk‖
L1

≥ η

L1
, ∀ k ≥ k̄.

It follows that

(1− θ)‖Fk‖δ + θ‖JTk Fk‖δ ≥
(1− θ)ηδ

Lδ1
+ θηδ > 0, ∀ k ≥ k̄.

Thus, by (2.1) and (2.22) we have

lim
k→∞

λk = +∞, (2.23)

which together with (2.2) and (2.16) gives

lim
k→∞

dk = 0.

By the same analysis as Case 1, we have r̃k ≥ rk → 1 as k →∞. Thus, there exists
a constant m̂ > m such that µk ≤ m̂ holds for all large k, which is a contradiction
to (2.22).

Summarizing Case 1 and Case 2, we have (2.15) and complete the proof.

3. Convergence rate of Algorithm 2.1

In this section, we analyze the convergence rate of Algorithm 2.1. We assume that
the sequence {xk} generated by Algorithm 2.1 converges to the solution set X∗ of
the nonlinear equations (1.1) and lies in some neighbourhood of x∗ ∈ X∗. We make
the following assumption.
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Assumption 3.1. (a) F (x) is continuously differentiable and ‖F (x)‖ provides a
local error bound on some neighbourhood of x∗ ∈ X∗, i.e., there exist positive con-
stants κ > 0 and ε > 0 such that

‖F (x)‖ ≥ κdist(x,X∗), ∀ x ∈ N(x∗, ε) = {x|‖x− x∗‖ ≤ ε}. (3.1)

(b) The Jacobian J(x) is Lipschitz continuous on N(x∗, ε), i.e., there exists a con-
stant L > 0 such that

‖J(y)− J(x)‖ ≤ L‖y − x‖, ∀ x, y ∈ N(x∗, ε). (3.2)

By the Lipschitzness of Jacobian given in (3.2), we have

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L‖y − x‖2, ∀ x, y ∈ N(x∗, ε). (3.3)

Thus, there exists a constant M > 0 such that

‖F (y)− F (x)‖ ≤M‖y − x‖, ∀ x, y ∈ N(x∗, ε). (3.4)

Moreover, by (3.4) we have (see [31])

‖J(x)‖ ≤M, ∀ x ∈ N(x∗, ε). (3.5)

Due to the result given by Behling and Iusem in [4, Theorem 1], if ‖F (x)‖
provides a local error bound, then there exists a positive constant ζ > 0 such that

rank(J(x̄)) = rank(J(x∗)), ∀ x̄ ∈ N(x∗, ζ) ∩X∗.

We assume without loss of generality that rank(J(x̄)) = r for all x̄ ∈ N(x∗, ζ)∩X∗.
Suppose that the singular value decomposition (SVD) of J(x̄k) is

J̄k = ŪkΣ̄kV̄
T
k = (Ūk,1, Ūk,2)

 Σ̄k,1

0

 V̄ Tk,1

V̄ Tk,2

 = Ūk,1Σ̄k,1V̄
T
k,1,

where Σ̄k,1 = diag(σ̄k,1, · · · , σ̄k,r) > 0, and correspondingly the SVD of Jk is

Jk = UkΣkV
T
k

= (Uk,1, Uk,2)

Σk,1

Σk,2

V Tk,1

V Tk,2


= Uk,1Σk,1V

T
k,1 + Uk,2Σk,2V

T
k,2,

where Σk,1 = diag(σk,1, · · · , σk,r) > 0 and Σk,2 = diag(σk,r+1, · · · , σk,n) ≥ 0. In
the following, if the context is clear, we neglect the subscription k in Σk,i and
Uk,i,Vk,i(i = 1, 2) and write Jk as

Jk = U1Σ1V
T
1 + U2Σ2V

T
2 .

In the following, we denote x̄k as the vector in X∗ that satisfies

‖x̄k − xk‖ = dist(xk, X
∗).

The following lemma gives the estimations of ‖U1U
T
1 Fk‖ and ‖U2U

T
2 Fk‖ whose

proof can be found in [24, Lemma 3.4].
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Lemma 3.1. Under the conditions of Assumption 3.1, for all sufficiently large k,
(a) ‖U1U

T
1 Fk‖ ≤M‖x̄k − xk‖;

(b) ‖U2U
T
2 Fk‖ ≤ 2L‖x̄k − xk‖2,

where M and L are given in (3.4) and (3.2) respectively.

Lemma 3.2. Under the conditions of Assumption 3.1, there exists a constant c > 0
such that for all sufficiently large k,

c‖x̄k − xk‖ ≤ ‖JTk Fk‖ ≤M2‖x̄k − xk‖, (3.6)

where M is given in (3.4).

Proof. For all xk ∈ N(x∗, ε/2), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖+ ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ ε,

which implies that x̄k ∈ N(x∗, ε). Then, by (3.4) and (3.5), we have for all suffi-
ciently large k,

‖JTk Fk‖ ≤ ‖Jk‖‖Fk‖ ≤M2‖x̄k − xk‖,
which proves the right inequality in (3.6). Moreover, by (3.3) and (3.4), we can
further obtain that for all sufficiently large k,

FTk (Fk − Jk(xk − x̄k)) ≤ML‖x̄k − xk‖3. (3.7)

It follows from (3.1) and (3.7) that for all sufficiently large k,

‖FTk Jk‖ ≥
FTk Jk(xk − x̄k)

‖xk − x̄k‖

=
‖Fk‖2 − FTk (Fk − Jk(xk − x̄k))

‖xk − x̄k‖

≥ κ‖x̄k − xk‖2 −ML‖x̄k − xk‖3

‖xk − x̄k‖
= κ‖x̄k − xk‖ −ML‖x̄k − xk‖2

≥ c‖x̄k − xk‖,

where c > 0 is some constant. This proves the left inequality in (3.6).

Lemma 3.3. Under the conditions of Assumption 3.1, there exists a constant c̃ > 0
such that for all sufficiently large k,

‖dk‖ ≤ c̃‖x̄k − xk‖min{2− δ2 ,1}. (3.8)

Proof. By µk ≥ m, (3.1) and the left inequality in (3.6), we have from (2.1) that

λk ≥ m0[(1− θ)κδ + θcδ]‖x̄k − xk‖δ. (3.9)

For any k ≥ 0, since dk is a solution of the following minimization problem

min
d∈Rn

ϕk(d) := ‖Fk + Jkd‖2 + λk‖d‖2, (3.10)

by (3.3) and (3.9), we have for all sufficiently large k,

‖dk‖2 ≤
ϕk(dk)

λk
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≤ ϕk(x̄k − xk)

λk

=
‖Fk + Jk(x̄k − xk)‖2

λk
+ ‖x̄k − xk‖2

≤ L2

m0[(1− θ)κδ + θcδ]
‖x̄k − xk‖4−δ + ‖x̄k − xk‖2

≤
(

L2

m0[(1− θ)κδ + θcδ]
+ 1

)
‖x̄k − xk‖min{4−δ,2}.

By letting c̃ =
√
L2/m0[(1− θ)κδ + θcδ] + 1, we have (3.8).

Lemma 3.4. Under the conditions of Assumption 3.1, there exists a positive con-
stant Θ > m such that

µk ≤ Θ (3.11)

holds for all sufficiently large k.

Proof. First we prove that for all sufficiently large k, the predicted reduction
Predk satisfies

Predk ≥ c̄‖Fk‖‖dk‖max{1, 2
4−δ }, (3.12)

where c̄ > 0 is some constant. We consider two cases. If ‖x̄k − xk‖ ≤ ‖dk‖, then by
(3.1), (3.3), (3.8) and the fact that dk is the solution of (3.10), we have

‖Fk‖ − ‖Fk + Jkdk‖ ≥ ‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖
≥ κ‖x̄k − xk‖ − L‖x̄k − xk‖2

≥ c̄1‖x̄k − xk‖
≥ c̄2‖dk‖max{1, 2

4−δ }, (3.13)

where c̄1, c̄2 > 0 are some constants. Otherwise, ‖x̄k − xk‖ < ‖dk‖. In this case, by
the third inequality of (3.13), we have

‖Fk‖ − ‖Fk + Jkdk‖

≥ ‖Fk‖ −
∥∥∥∥Fk +

‖dk‖
‖x̄k − xk‖

Jk(x̄k − xk)

∥∥∥∥
≥ ‖Fk‖ −

∥∥∥∥(1− ‖dk‖
‖x̄k − xk‖

)
Fk +

‖dk‖
‖x̄k − xk‖

(Fk + Jk(x̄k − xk))

∥∥∥∥
≥ ‖dk‖
‖x̄k − xk‖

(‖Fk‖ − ‖Fk + Jk(x̄k − xk)‖)

≥ c̄1‖dk‖. (3.14)

Thus, by (3.13) and (3.14), for all sufficiently large k,

Predk = ‖Fk‖2 − ‖Fk + Jkdk‖2

= (‖Fk‖+ ‖Fk + Jkdk‖)(‖Fk‖ − ‖Fk + Jkdk‖)
≥ c̄‖Fk‖‖dk‖max{1, 2

4−δ },

where c̄ > 0 is some constant. Since δ ∈ (0, 3), we have max{1, 2
4−δ} < 2. Also note

that ‖Fk + Jkdk‖ ≤ ‖Fk‖ by (3.13) and (3.14). Thus, by (2.20) and (3.12), for all
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sufficiently large k,

|rk − 1| =

∣∣∣∣Aredk − PredkPredk

∣∣∣∣
≤ |‖F (xk + dk)‖2 − ‖Fk + Jkdk‖2

c̄‖Fk‖‖dk‖max{1, 2
4−δ }

≤ ‖Fk + Jkdk‖O(‖dk‖2) +O(‖dk‖4)

c̄‖Fk‖‖dk‖max{1, 2
4−δ }

→ 0. (3.15)

Furthermore, we have

r̃k =
Ãredk
Predk

≥ Aredk
Predk

= rk → 1.

Hence, there exists a positive constant Θ > m such that µk < Θ holds for all
sufficiently large k. The proof is completed.

Now we give the convergence order of Algorithm 2.1 as follows.

Theorem 3.1. Under the conditions of Assumption 3.1, the sequence {xk} con-
verges to the solution set X∗ at least superlinearly with the order min{1+δ, 4−δ, 2}

Proof. Since J(x) is Lipschitz continuous, by the theory of matrix perturbation
[18], we have

‖diag(Σ1 − Σ̄1,Σ2)‖ ≤ ‖Jk − J̄k‖ ≤ L‖x̄k − xk‖,

which gives

‖Σ1 − Σ̄1‖ ≤ L‖x̄k − xk‖ and ‖Σ2‖ ≤ L‖x̄k − xk‖. (3.16)

Since {xk} converges to the solution set X∗, we assume that L‖x̄k − xk‖ ≤ σ̄r/2
holds for all sufficiently large k. Then it follows from (3.16) that for all sufficiently
large k

‖(Σ2
1 + λkI)−1‖ ≤ ‖Σ−2

1 ‖ ≤
1

(σ̄r − L‖x̄k − xk‖)2
≤ 4

σ̄2
r

. (3.17)

Moreover, by Lemma 3.4, (3.4) and the right inequality in (3.6), we have from (2.1)
that

λk ≤ Θ[(1− θ)M δ + θM2δ]‖x̄k − xk‖δ. (3.18)

By the SVD of Jk, we compute

dk = −V1(Σ2
1 + λkI)−1Σ1U

T
1 Fk − V2(Σ2

2 + λkI)−1Σ2U
T
2 Fk.

So, we have

Fk + Jkdk = Fk − U1Σ1(Σ2
1 + λkI)−1Σ1U

T
1 Fk − U2Σ2(Σ2

2 + λkI)−1Σ2U
T
2 Fk

= λkU1(Σ2
1 + λkI)−1UT1 Fk + λkU2(Σ2

2 + λkI)−1UT2 Fk,

which together with Lemma 3.1, (3.17), (3.18) and ‖(Σ2
2 + λkI)−1‖ ≤ λ−1

k yields

‖Fk + Jkdk‖ ≤ λk‖(Σ2
1 + λkI)−1‖‖UT1 Fk‖+ ‖UT2 Fk‖‖
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≤ 4Θ[(1− θ)Mδ + θM2δ]

σ̄2
r

‖x̄k − xk‖1+δ + 2L‖x̄k − xk‖2

≤ C‖x̄k − xk‖min{1+δ,2}, (3.19)

where C = 4Θ[(1− θ)Mδ + θM2δ]/σ̄2
r + 2L. Furthermore, by (3.1), (3.3), (3.8) and

(3.19), we have

dist(xk+1, X
∗) = ‖x̄k+1 − xk+1‖

≤ 1

κ
‖F (xk+1)‖ =

1

κ
‖F (xk + dk)‖

≤ 1

κ
(‖Fk + Jkdk‖+ L‖dk‖2)

≤ 1

κ

(
C‖x̄k − xk‖min{1+δ,2} + Lc̃2‖x̄k − xk‖min{4−δ,2})

≤ C + Lc̃2

κ
‖x̄k − xk‖min{1+δ,4−δ,2}

= O(dist(xk, X
∗)min{1+δ,4−δ,2}).

The proof is completed.

Remark 3.1. (a) Theorem 3.1 indicates that the sequence {xk} converges to the
solution set X∗ superlinearly for δ ∈ (0, 1), and quadratically for δ ∈ [1, 2]. These
results are the same as those obtained for the LM method (e.g., [10,13]). However,
Theorem 3.1 also shows that {xk} converges to X∗ superlinearly with the order 4−δ
when δ ∈ (2, 3). Therefore, Theorem 3.1 generalizes existing convergence results of
the LM method.
(b) By (3.1), (3.4) and Theorem 3.1, we have

‖Fk+1‖ = O(‖x̄k+1 − xk+1‖) = O(dist(xk, X
∗)min{1+δ,4−δ,2})

= O(‖Fk‖min{1+δ,4−δ,2}).

This indicates that the sequence {‖Fk‖} converges to zero at least superlinearly
with the order min{1 + δ, 4− δ, 2}.

4. Application to weighted linear complementarity
problems

Numerical performances of the LM method for solving some singular problems have
been done in [2, 10, 13, 15, 30] which clearly show the efficiency of the LM method.
In this section, we pay particular attention to the performances of the LM method
for solving nonlinear equations arising from the weighted linear complementarity
problem (wLCP).

4.1. Nonlinear equations arising from wLCP

The weighted linear complementarity problem (wLCP) was introduced by Potra [16]
which is to find vectors x ∈ Rn, s ∈ Rn, y ∈ Rm such that

(wLCP) x ≥ 0, s ≥ 0, Px+Qs+Ry = a, xs = w. (4.1)
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Here P ∈ R(n+m)×n, Q ∈ R(n+m)×n, R ∈ R(n+m)×m are given matrices, a ∈ Rn+m

is a given vector, w ≥ 0 is a given weight vector (the data of the problem) and xs is
the componentwise product of the vectors x and s. The significance of studying the
wLCP lies in the fact that a lot of equilibrium problems in economics can be formu-
lated in a natural way as wLCP [16]. Moreover, those formulations lend themselves
to the development of highly efficient algorithms for solving the corresponding equi-
librium problems [16]. For example, the Fisher market equilibrium problem, which
can be modelled as a nonlinear CP, can also be formulated as a wLCP that can
be efficiently solved by interior-point methods [16]. In recent years, the wLCP has
received considerable attention from researchers (see, [3, 6, 7, 14,17,19–22,29]).

To equivalently reformulate the wLCP as a system of nonlinear equations, we
consider the following weighted complementarity function

φc(a, b) = (a+ b)3 −
(√

a2 + b2 + 2c
)3
, ∀(a, b) ∈ R2,

where c ≥ 0 is a constant.

Lemma 4.1. (a) The function φc satisfies

φc(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = c.

(b) The function φc is continuously differentiable at any (a, b) ∈ R2 with

∇φc(a, b) =

3[(a+ b)2 − a
√
a2 + b2 + 2c]

3[(a+ b)2 − b
√
a2 + b2 + 2c]

 .

Let z := (x, s, y). Then, due to Lemma 4.1, solving the wLCP is equivalent to
computing a solution of the following nonlinear equations

F (z) =



Px+Qs+Ry − a

φw1(x1, s1)

...

φwn(xn, sn)


= 0, (4.2)

where w = (w1, ..., wn)T is the weight vector given in the wLCP. Since the func-
tion F (z) is continuously differentiable at any z ∈ R2n+m, we can apply the LM
method to solve the nonlinear equations (4.2) so that a solution of the wLCP can
be obtained.

By Lemma 4.1 (b), the Jacobian of F (z) is given as

J(z) =

 P Q R

diag
(
∂φwi

∂xi

)
diag

(
∂φwi

∂si

)
0

 , (4.3)

where

∂φwi

∂xi
= 3
[
(xi + si)

2 − xi
√
x2
i + s2

i + 2wi
]
,
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∂φwi

∂si
= 3
[
(xi + si)

2 − si
√
x2
i + s2

i + 2wi
]
.

In the following, we show that the Jacobian J(z) satisfies the Lipschitz continuity,
i.e., Assumption 3.1 (b) holds for the nonlinear equations (4.2).

Theorem 4.1. The Jacobian J(z) given in (4.3) is Lipschitz continuous on the
closed and convex set N(z) = {z ∈ R2n+m|‖z‖ ≤ %} for any % > 0.

Proof. Obviously, we only need to prove that the gradient ∇φc(a, b) is Lipschitz
continuous on the closed and convex set Ω := {(a, b) ∈ R2|‖(a, b)‖ ≤ ζ} for any
ζ > 0. Let hc(a, b) =

√
a2 + b2 + 2c. It is easy to see that

hc(a, b) ≤
√
ζ2 + 2c, ∀ (a, b) ∈ Ω. (4.4)

We consider the following three cases.

Case 1. c > 0. In this case, hc(a, b) > 0 for any (a, b) ∈ Ω. Thus, φc is twice
continuously differentiable at any (a, b) ∈ Ω with

∇2φc(a, b) =


∂2φc

∂a2

∂2φc

∂a∂b

∂2φc

∂b∂a

∂2φc

∂b2

 ,
where

∂2φc

∂a2
= 3
{

2(a+ b)−
(
a2/hc(a, b) + hc(a, b)

)}
,

∂2φc

∂b2
= 3
{

2(a+ b)−
(
b2/hc(a, b) + hc(a, b)

)}
,

∂2φc

∂a∂b
=
∂2φc

∂b∂a
= 3
{

2(a+ b)− ab/hc(a, b)
}
.

By (4.4), we have for any (a, b) ∈ Ω,

max{a2/hc(a, b), b2/hc(a, b), ab/hc(a, b)} ≤ hc(a, b) ≤
√
ζ2 + 2c.

Thus, there exists a constant C > 0 independent of (a, b) ∈ Ω such that

‖∇2φc(a, b)‖ ≤ C, ∀ (a, b) ∈ Ω.

By Mean Value Theorem, we have that

‖∇φc(a1, b1)−∇φc(a2, b2)‖ ≤ C‖(a1, b1)− (a2, b2)‖

holds for any (a1, b1), (a2, b2) ∈ Ω and prove the desired result.

Case 2. c = 0 and (0, 0) /∈ Ω. In this case, h0(a, b) =
√
a2 + b2 > 0 for any

(a, b) ∈ Ω. Thus, φ0 is twice continuously differentiable at any (a, b) ∈ Ω. By
following exactly the same steps as in the Case 1, we can prove the desired result.

Case 3. c = 0 and (0, 0) ∈ Ω. Then, similarly as Case 1, we can prove that there
exists a constant C̄ > 0 independent of (a, b) such that

‖∇2φ0(a, b)‖ ≤ C̄, ∀ (a, b) 6= (0, 0) ∈ Ω.
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Then, by [5, Lemma 2.6], we have

‖∇φ0(a1, b1)−∇φ0(a2, b2)‖ ≤ C̄‖(a1, b1)− (a2, b2)‖ (4.5)

holds for all (a1, b1), (a2, b2) ∈ Ω with (0, 0) /∈ [(a1, b1), (a2, b2)]. Moreover, since
∇φ0(0, 0) = (0, 0), the inequality (4.5) also holds in case (a1, b1) = (a2, b2) =
(0, 0). Therefore, we can assume (a1, b1) 6= (0, 0) ∈ Ω. Since φ0 is continuously
differentiable for all (a, b) ∈ R2 with ∇φ0(0, 0) = (0, 0), by using a continuity
argument, we obtain that the inequality (4.5) remains true for all (a2, b2) ∈ Ω.
Thus, the inequality (4.5) holds for all (a1, b1), (a2, b2) ∈ Ω which proves the desired
result.

4.2. Computational experiments

In this subsection, we apply Algorithm 2.1 to solve the nonlinear equations (4.2)
with

P =

 A

M

 , Q =

 0

−I

 , R =

 0

−AT

 , a =

 b

−f

 , (4.6)

where A ∈ Rm×n is a full row rank matrix with m < n, b ∈ Rm, f ∈ Rn and
M ∈ Rn×n is an symmetric positive semidefinite matrix. It is worth pointing
out that the wLCP (4.1) with (4.6) is the optimality conditions of the quadratic
programming and weighted centering problem [16, Theorem 2.1]. In experiments, we
generate a random matrix A ∈ Rm×n with full row rank and set M = BBT /‖BBT ‖
with B = rand(n, n). Then we choose x̂ = rand(n, 1), f = rand(n, 1) and set
b = Ax̂, ŝ = Mx̂+f and w = x̂ŝ. The parameters used in Algorithm 2.1 are chosen
as p0 = 10−4, p1 = 0.25, p2 = 0.75,m0 = 10−8, τ = 0.5 and µ0, θ, δ are specified in
the experiments.

First, to observe the local convergence behavior, we generate one test problem
with n = 100 and m = 50 and solve it by Algorithm 2.1 with µ0 = 10−4. We test
the following LM parameters:

(i) θ = 0, i.e., λk = µk‖Fk‖δ.
(ii) θ = 0.5, i.e., λk = µk

‖Fk‖δ+‖JTk Fk‖
δ

2 .
(iii) θ = 1, i.e., λk = µk‖JkFk‖δ.

The starting point is chosen as x0 = s0 = (1, ..., 1)T and y0 = (0, ..., 0)T . Table 1
gives the value of ‖F (zk)‖ at the k-th iteration.

From Table 1, three observations can be made here.
(a) Algorithm 2.1 has at least superlinear convergence rate for δ ∈ (0, 3).
(b) Algorithm 2.1 taking δ ∈ [1, 2) converges faster than that taking δ ∈ (0, 1)∪

[2, 3).
(c) The efficiency of Algorithm 2.1 is reduced in initial steps when δ ∈ [2, 3).

These observations confirm the theoretical results of the new LM method.
Next, we further investigate the influences the the parameter θ on Algorithm 2.1.

We test Algorithm 2.1 with δ = 1, i.e., λk = µk[(1− θ)‖Fk‖+ θ‖JTk Fk‖]. For each
problem with different sizes n(= 2m), we generate five instances and solve them
by Algorithm 2.1. For the purpose of comparison, we also apply the LM method
studied by Fan [9] to solve these problems. It is worth pointing out that Fan’s LM
method [9] took λk = µk‖Fk‖ with µk being updated by the trust region technique.
The starting point is chosen as before. We use ‖F (zk)‖ < 10−6 and iter < 30
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Table 1. The value of ‖F (zk)‖ at the k-th iteration

δ = 0.6 δ = 1.0 δ = 1.5 δ = 2 δ = 2.2

θ = 0 k = 1 7.3940 7.3615 7.1490 44.9536 53.5820

k = 2 1.4243 1.4095 1.5719 21.3399 51.9793

k = 3 0.3603 0.2656 0.1937 3.6613 45.8181

k = 4 0.0705 0.0427 0.0111 1.5099 26.2801

k = 5 0.0084 0.0037 2.7974e-04 0.1865 4.7418

k = 6 1.7980e-04 3.6944e-05 3.0876e-07 0.0064 2.5236

k = 7 8.7850e-08 3.7522e-09 3.9399e-13 2.3145e-05 0.6067

k = 8 3.4460e-14 2.9348e-14 0 7.1417e-10 0.0652

k = 9 0 0 0 2.5806e-14 0.0018

k = 10 0 0 0 0 4.8512e-06

k = 11 0 0 0 0 4.0442e-11

θ = 0.5 k = 1 7.3739 7.1787 7.4973 36.6905 52.5572

k = 2 1.4149 1.3341 1.9771 9.7323 47.0581

k = 3 0.2936 0.1584 0.2898 3.4634 29.1759

k = 4 0.0510 0.0113 0.0139 1.6859 5.9672

k = 5 0.0050 2.5241e-04 2.8185e-04 0.3429 3.2019

k = 6 6.5933e-05 2.4935e-07 3.1004e-07 0.0293 1.3536

k = 7 1.1888e-08 2.5763e-13 3.9592e-13 8.8565e-04 0.4265

k = 8 2.6622e-14 0 0 1.3332e-06 0.0662

k = 9 0 0 0 3.0416e-12 0.0052

k = 10 0 0 0 0 4.5166e-05

k = 11 0 0 0 0 3.4861e-09

k = 12 0 0 0 0 2.6096e-14

θ = 1 k = 1 7.3626 7.0494 7.8009 18.3519 31.2565

k = 2 1.4098 1.2873 2.3134 3.0913 7.0409

k = 3 0.2663 0.1559 0.4035 0.8192 3.3569

k = 4 0.0429 0.0111 0.0227 0.0626 1.5570

k = 5 0.0037 2.4747e-04 3.0924e-04 8.2097e-04 0.4177

k = 6 3.7527e-05 2.3615e-07 3.1045e-07 4.0869e-07 0.0577

k = 7 3.8708e-09 2.2738e-13 3.9534e-13 1.9931e-13 0.0040

k = 8 2.5699e-14 0 0 0 2.7297e-05

k = 9 0 0 0 0 1.2737e-09

k = 10 0 0 0 0 3.1010e-14

as the stopping criterion where iter denotes the number of iterations. Numerical
results are listed in Table 2 where AIT and ACPU denote the average number of
iterations and the average CPU time in seconds respectively, and ∗ stands for that
the algorithm fails to solve some instances as the iteration number is greater than 30
and the average is based on the successful instances through our numerical report.

From Table 2, we may see that Algorithm 2.1 with θ = 0 always outperforms
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Table 2. Comparison of Algorithm 2.1 with different values of θ

µ0 θ = 0 θ = 0.5 θ = 1 Fan-LM

n AIT ACPU AIT ACPU AIT ACPU AIT ACPU

10−4 100 6.8 0.04 6.6 0.02 6.6 0.02 6.8 0.02

300 7.2 0.22 7.0 0.24 7.0 0.24 7.2 0.22

500 7.2 0.78 7.0 0.67 7.0 0.69 7.4 0.70

700 7.0∗ 1.42 7.0 1.39 7.0 1.46 7.0 1.51

900 7.0 2.52 7.0 2.54 7.0∗ 2.97 7.5∗ 2.75

1100 7.4 4.53 7.2 4.68 8.8∗ 5.11 7.4 4.25

1300 7.2 6.64 8.4 7.89 10.2 9.26 7.2 6.24

1500 7.8 10.04 7.4 9.88 10.3∗ 14.11 7.7∗ 10.83

10−2 100 6.4 0.02 6.4 0.02 6.4 0.02 6.6 0.03

300 6.8 0.21 6.6 0.19 7.2 0.21 6.6 0.17

500 7.0 0.81 7.0 0.77 7.6 0.82 7.0 0.70

700 7.0 1.50 7.8 1.73 8.6 1.77 7.0 1.51

900 8.0 3.10 8.6 3.27 8.4 3.26 7.4 2.70

1100 7.2 4.46 8.4 5.17 8.2∗ 5.37 8.2 4.81

1300 8.0 7.51 9.4 8.86 8.0∗ 7.47 8.0∗ 7.98

1500 7.6 10.20 9.2∗ 12.32 8.6 11.49 8.2 10.64

or at least performs as well as it with θ = 0.5 or θ = 1 in most cases. Moreover,
we may observe that Algorithm 2.1 taking θ = 0, i.e., λk = µk‖Fk‖, performs
better than Fan’s LM method [9] which also took λk = µk‖Fk‖. This indicates
that the nonmonotone trust region technique introduced in this paper improves the
numerical performance of the LM method. We have tested Algorithm 2.1 with other
values of δ and the computation effect is similar.

5. Conclusions

In this paper we have improved the Levenberg-Marquardt method by taking a
general LM parameter and adopting a nonmonotone trust region technique. We
have proved that the new LM method has global convergence and its convergence
order is min{1 + δ, 4− δ, 2} where δ ∈ (0, 3) under the local error bound condition.
We have also applied the new LM method to solve the nonlinear equations arising
from the weighted linear complementarity problem where the associated mapping
satisfies the Lipschitz continuity of the Jacobian. The numerical results showed
that the new LM method is efficient and promising.
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