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A NEW BCR METHOD FOR COUPLED
OPERATOR EQUATIONS WITH SUBMATRIX
CONSTRAINT
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Abstract In the present work, a new biconjugate residual (BCR) algorithm
is proposed in order to compute the constraint solution of the coupled operator
equations, in which the constraint solution include symmetric solution, reflec-
tive solution, centrosymmetric solution and anti-centrosymmetric solution as
special cases. When the studied coupled operator equations are consistent, it
is proved that constraint solutions can be convergent to the exact solutions
if giving any initial complex matrices or real matrices. In addition, when the
studied coupled operator equations are not consistent, the least norm con-
straint solutions above can also be computed by selecting any initial matrices.
Finally, some numerical examples are provided for illustrating the effectiveness
and superiority of new proposed method.
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solutions, submatrix constraint.
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1. Introduction

The following notations are used all throughout this essay. The set of m x n complex
matrices is denoted by the symbol C™*". The complex vector space has n dimen-
sions, and its symbol is C™. The ith entry of the n-dimensional column unit vector
e; € C™is 1. A m x n matrix with all entries one will be represented as 1"**™ and
a m x n matrix with all elements zero will be represented by 0™*™. The n x n unit
matrix is represented by the symbols I,, and S,,, respectively. For each A and B, we
use A® B to represent Kronecker product of two variables, which is A® B = (a;; B).

T
For B = (by,ba, -+ ,bn) € C™*", we have vec (B) = (blT,bQT, . ,bnT) . in which
vec (-) means vec operator. The symbols BT, BH and || B|| > stand for the transpose,
conjugate transpose and Frobenius norm of matrix B.
In addition, LCP*%™>™ represents the set of linear operator from CP*? onto

C™*n_ Particularly, when p = m and ¢ = n, LC™>*"™P*4 is written as LC™*"™. For
linear operator &/ € LCP*%™*™ we have (& (M),N) = (M, </* (N)) where &/*
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is the conjugate operator of A, for all X € CP*7 Y € C™*". As an illustration, if
X — AXB, then &/* : X — AHXBH,

The matrix J € R"™*"™ is said permutation matrix, if J = [e,,en—1, -+ ,€1],
where e; is unit vector and entry ith is 1. Thus, we have the following constraint
solutions.

Definition 1.1. If X = X7, where X € C™*" is denoted, then the matrix X €
CC™ ™ is said to be symmetric.

Definition 1.2. If X = JXJ, then the matrix X € CJC™ " (J), where J is an
n-order permutation matrix, is said to be centrosymmetric.

Definition 1.3. If X = —JXJ, then the matrix X € ACJC™*"™ (J), where J is
an n-order permutation matrix, is said to be anti-centrosymmetric matrix.

Definition 1.4. If X = PXP, then the matrix X € CPC"*" (P), where P is an
orthogonal matrix of order n x n that meets the conditions P? = P and P? = I,,,
is said to be reflexive matrix.

Definition 1.5. The operator % € LCP*1 is said self-conjugate involution if %2 =
Z and %* = %, each and every constraint solution is written as X = % (X).

Various linear matrix equations have been widely applied in science and engi-
neering [5,19,21,25], neural networks [18,22,23,33,36], robot positioning and track-
ing [4,20], intelligent structural system control [11, 26, 30], structural design [15],
vibration theory [10], linear optimal control [1,9,39], etc. For example, Lyapunov
matrix equation ATP + PA = —Q is related to solving the system stability [2].
Periodic descriptor systems’ structural analysis uses the discrete-time periodic cou-
pled Sylvester matrix equations [10]. Moreover, some quaternion equations have
been investigated [16,17,37].

There are numerous iterative techniques available to solve the numerous matrix
equations. To solve big sparse situations, Bouhamidi and Jbilou [3] presented an
iterative projection method. By developing an iteration approach, Peng et al. [27]
were able to solve the symmetric solution and its best approximation of the following
equation

AXB = C. (1.1)

For the preceding equation (1.1). Peng presented an iterative method for solving the
minimal Frobenius norm solutions in [29]. Under any linear subspace constraint, as
long as the appropriate linear projection operator is selected, the iterative method
proposed by Hailin in [12] can be slightly modified to find the general numerical
solution and its best approximation for equation

AXB+CYD =E. (1.2)

A necessary and sufficient condition for the presence of reflexive (anti-reflexive)
solutions of equations (1.2) was provided by Dehghan and Hajarian in [7]. Peng [28§]
proposed a successful method for solving the least square reflexive solution of matrix
equation

A1 X1By+ A XoBs +---+ A\ X B = C. (13)
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By expanding on the concept of the conjugate gradient approach, Dehghan and
Hajarian [8] created an effective numerical algorithm for the equation

p

j=1

In the present work, we propose a brand-new biconjugate residual (BCR) method
for obtaining the constraint solution of coupled operator equations

Zﬂ{lj (Xj),z%j (X)), ,Zﬂfm]‘ (Xj)| = [My, Ma,--- , My, (1.5)
Jj=1 Jj=1 j=1

in which «%; € LCP 9™ %" and M; € CPiX0 = 1,2, m, j = 1,2,--- ,n.
Apparently, the equations (1.5) are also included the matrix equations (1.1), (1.2),
(1.3) and (1.4). In this case, the constraint solutions covered in this work include
those that are provided in Definitions 1.1, 1.2, 1.3, and 1.4. Furthermore, using
this new BCR algorithm, we also show that it is possible to arrive at the iterative
solution of matrix equations (1.5) in a limited number of steps. We also demonstrate
that it is possible to discover the minimal Frobenius norm solutions if the rounding
error is ignored. Moreover, we have corrected some errors existed in [24]. Lastly,
numerical examples for Eq.(1.5) are provided in order to demonstrate the efficiency
and superiority of new presented algorithm.

The rest of this article is arranged as follows. To solve the constraint solutions
(X5, X3, -, X] of matrix equations, we suggest the BCR algorithm in Section 2.
(1.5). In Section 3, we demonstrate that by choosing a unique initial matrix group,
it is possible to arrive at the lowest norm solutions of the matrix equations (1.5).
We provide some numerical examples in Section 4 to demonstrate the viability of
the suggested approach. Lastly, Section 5 has the conclusion.

2. BCR algorithm for coupled operator matrix
equations (1.5)

We first present a new biconjugate residual method in this part for solving linear
matrix equations (1.5) based on BCR algorithm of matrix vector equation by in-
troducing operators and inner products, which is called Algorithm 1 in this paper.
And then we give the relevant properties of Algorithm 1.

Algorithm 1
Step 1. Input o7; € LCPX%mixms M, € CPi*% 9y € LCP*%  arbitrary initial

group Xj(l) €Y, Sfl) €. and e >0.
Compute

M) _ % (1) (1) _ o) (1) _ p()
RY =3 oy (X)) = M, UV = 80, v = mY,
j=1

S (0.0 - S (1)
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03w (1)

Step 2. if 7, < € stop; go to Step 3 if not;
Step 3.

m

1=

(5700, ()

3 <W.(k) _<k>>
=1
(k+1) _ (k) (k)
Xj = Xj — OtkUj ,
R+ _ pk) _ Oék-VV(k)
S k) = s [ alk)
12:1< ’ 7];1£{” <S] >>
Br = — ,
(k) (k)
> (2%.27)

—_

o =

U;k+1) _ Sj(k+1) +%Uj(k)7
V;(k-&-l) _ R§k+1) +Pykv;(k)’

Wi(k+1) _ zn:ﬂ;j (Uj(k-&-l))’
j=1

S(t1) NS e (kD)
2,7 = (Ri >’
=1

ZJ(_k:Jrl) _ % (ZJ(_I@+1) npy <~(k+1))) +ryij(_k),

J
= r

Step 4. Set k := k + 1, return to step 2.

Remark 2.1. . represents a set of constraint matrices, which satisfies the general
solutions such as symmetric solution, reflexive solution, centrosymmetric solution
and anti-centrosymmetric solution in Definition 1.5.
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From Algorithm 1, we have W (k+1) Z oy ( Ukt ) and U;kﬂ) = Sj(-kﬂ) +

WkUj(k). One can now obtain by putting the second equation in the first one

Wk (2.1)
:Zn:ﬂ" (S(k+1) +r U(k)) _ iﬂ,, (S(k+1)> 4 Xn:d (U(k))
ij j kY4 i j Yk ij j .
j=1 j=1 J=1

The following equality

1 (= +1) ——(k+1)
(s (7)) 2
1 (k+1) R+ (k)
(St () o (3o (o ) o,
can be demonstrated by induction if we assume TZ Z ( kH)) and

combine it with Vi(kH) = R§k+1)+*y V(k) and Z4 =3 (Zj(l) +u (Zj(l)>) There-
(k+1) 1 (75 kt (k+ )
fore, we get Z; =3 (TZj + U ( .

Remark 2.2. The second formula in page 74 of [24], R; should be R;. The correct
and detailed proof is stated as follows.

5 (TZ(’” )P, ﬁ(k+1)P )

Z ALVUBE 1 p, (Z ALy BT> P

ZATR(kJrl BT NI ZA BT P (i A5R§k+1)3i7;> P
i=1
+ WP (Z ATV(k)BT> P, )
i=1
ZATR“““ BL+ P, (ZA R¥HD BT> P,
(Z ALVWBL 1 P, <Z A%W“BE}) PZ)

m

Z ALRMYBE 1 P, (Z ATR(k+1)BT> P

l\D\H

1 7%+ p17% P
+§’Yk j todlZy .

Lemma 2.1. The Algorithm 1 generated sequences {X;k)}, {Sj(-k)}, {U;k)} and
{Zj(k)}, j=1,2,---,n, are contained in the constraint set 7.
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Proof. By means of induction, we demonstrate the conclusion. By using 2 =T
and Algorithm 1 for k =1, X](-l) e, Sj(-l) €., we get

W (UJQ)) — (S§1)) _ SJ@) _ U}1)7

and

i=1 =1
= (B (27))
_7

in which UV, 2V e 7, j=1,2,--- n.
For k = 2, we obtain

2 (xP) =2 (x{V - ") = (x) —arw (") = xV - iUV

J J

v () = s

) = (o) e () 5 - u? =

J J

2 (UP) = (89 + ) =2 (8P) + mw (V) =5 + U = U,

that is to say X](-Q),:S*](?)7 U;2)7ZJ§2) €cs,ji=12,--,n.
Now, we assume the conclusion is real for k = u (v > 2), namely X](-u)7 SJ(-u), U;u),
Z j(-u) € .. It follows from Algorithm 1 that

w (X") = (X - auU™) = 7 (X)) - e (U) = X" — a,Uf

— y(utl)
=X; ,
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o (557) v (57 ) (57) - (5 =5
:S](‘u-i-l)7

w (UY) = (S0 40 U™) = ($00) + v (U1)

J J

_ qlutl) (w) _ rr(utl)
—Sj +’yuUj —Uj ,

and
4 (Z](-“Jrl - ( (i R U+1)) npy <§:%j* (REUH)))) +%Z](u)>
! i=1
% ( (idm* R UH))) +i_i1ﬂij* (R§u+1))> + WU (Z](-“))
A (Eeten) Sroten)

u+1)
- J
So, we can get XJ(-"H),SJ(-"H),U]("H),Z](-UH) e, 7=12--.n
Therefore, by the principle of induction, the conclusion holds. O

Remark 2.3. From Algorithm 1 and the relevant definitions of constraint solutions,
it can be seen that the matrix sequence X;k), SJ(-k), U;k)7Wi(k),ZJ(-k) generated by
Algorithm 1 belongs to the constraint solution set ..

Lemma 2.2. If the initial matriz group is selected as X( ) € <, S(l) e 7,

ji=1,2,--+ n, let the matrix sequences produced by Algorithm 1 be {Rl(k)},
{W-(k)}, i=1,2,---,m, and {Sj(k)}, {Z;k)}, then we have

K2

o) o)\ _ .
;<Wz R, > 0, u<w, (2.3)
(7 )\ _ .
; <Z ! > 0, u <, (2.4)
g ® .
; <Wl W > 0, u#v, (2.5)
En: <Z(“) Z > -0, u#wv, (2.6)

<.
I
—

i which u,v =1,2,---

Proof. We adopt induction on k since we only need to demonstrate that (2.3)-
(2.6) holds for all 0 < u < v < k. The reason is that (M, N) = (N, M) holds for M
and N. To begin with, accordance with Algorithm 1, for k& = 2 we derive

Zm: (W R

i=1
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<W4(1>’ RO _ qy )>

=1 =1
_ <WZ-(1),R51)> ——— <Wf1)7 Wfl)>
i=1 Z; <Wi W > i=1
_ i (B - i <Rg1>, zd (U;l>)>
=0,
and
> (0 57) = 3 (70 - )
j=1 j=1
= zn:l <Z;1>, SJ“)> ~ b i <Z;1>, ZJ(1)>
j= j=

- é<zjl>,z§l>> =
_ Z (20,50 - i <Rgl>, z@« (s;l>)>
UCEDE ACIACDY
=0.

zm: <WZ(1)7 Wz(2)> _ &il (i< RO R(2 En: ( ) +%Wi(1) )
i=1 Pt =
& (B L) (S )

N Z < (1) (1)> —M Zm: <R§2), Wi(1)>>

i=1
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& (B S ) S S )

i=1
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g

Hence, for k = 2, the equalities (2.3)-(2.6) holds. Now assume that (2.3)-(2.6) holds
for0<u<wv,0<v<Ek.
For k = u + 1, we can get

S (W, R - i (W R — a, W)
1=1 i=1
— Z <Wz(u), REU)> —ay Z <Wz(u), Wz(u)>
i=1 =1
m n ( )
u u u—1
S 5) )
i=1 =1

and
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= (47, 50) - X (4, 247)

j=1 j=1

(Zm:”* (R) +u (Z e (Rﬁ“)))) +vu12§“‘1>,5§")>

1

P

S (40, 47)

=
:j: <§ L (R(U)) oy 287, SJ(.“)> _ é <Rl(u)’ji1%” (Sj(“))>
B R ) )
In adzluon, for k =u + 1, we can obtain
; (W, i)
:ai (i <Rf-“) ~ R5u+1>,z":% (s01) + %Wi<u>>)
& 2

:ai (Z <R<u) ng (S(u+1))> _ i <R§u+1)’i% (S](.“+1))>

i=1 j=1

+Vu i <R§u) ) Wi(U) >>

:aiu (zn: <S§u+1)’ - A (Rz(u))> i< R+D ZQ{” ( ](u+1))>
j=1 i=1 i=1
3 <R§““>, > s (S§“*”)> -
+z:1 Jj=1 Z <R§u)7 Wz(u)>

ﬁ
Il
—
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=0,
GRS
(B (B ) e (S )
)

:% (Zn: glu S(u+1 Zd* (R(“H >> + i <S](.“) _ SJ(_qul)’ Z](.“)>)

Jj=1

Jj=1 =

(
3. (Z<S ot () ) - St St ()
(

RWH):i”M (S](“))> B zn: <R5u+1>,2":% (S](u+1>)>

=1 i=1 j=1

(
+%§n: <S§“’,; (ZM (R + (g‘;%; (RM))) +%_1Z§“‘”>)
("

S (6 S (5)

j=1 i=1 j=1
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+'Yu —1 <SJ(U)7 P— ’Q{zj (Rl(u))> +7u7u,1 2 <SJ(7JI),Z](’U,71)>
1= = ]:E
zﬁi Zm: <R§u+1>7 Z” P (UJ( ) %—1UJ(“_1))>

Thus, in the previous proof, we have proved the case u = v and v = u+1. So we only
need to prove that the equality statements (2.3)-(2.6) apply for all 0 < u < v + 1,
0 < v+ 1< k. Similarly, by Algorithm 1, we also get

<Wi(u)’ R§v+1)>

<Wz—(")a R, — avW}”)>

[

@
Il
=

i

N
Il
—

(W, RO) — a, 3 (W, W)

i=1

‘,Pnﬂi

h
Il
—

|
L

M-

(u) g(v+1)
(#0.5)

(7.5 - 52”)

<
I
—

3

<.
Il
—
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i <Z<u> S(v>> 8, i <ZJ(“), Z](“)>
j=1

j=1
=0,
(@) e+
21<W“ SUARE)
:Zm: <Wi(u),im] (50+9) 44 W(v>>
i=1 j=1
:Zm: <Wi(u),z”:% (SJ(_U+1>)> +%Zm:<Wf")»Wf”)>
i=1 j=1 i=1

<Riu (u+1) ZQ{U ( (v-‘rl))

~o_

L[S/ qor1) WD\ NS/ a(ob) p(utD) ()
. ( (S50, 20 =y 2V ) = 3T (S 2 — )
J

=1 j=1

3

<Z(“) Z(U+1)>

J 70

=

j=
;1<Z<u 1 (Z%; (R) 4 2 (i%; (ngn))) +%Z§”)>
(2 Bty () ) e .20

j=1

3

j=1
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5 (0 o ()

i=1 j=1

1 " v - u u
:ﬁu;@ DSty (50— st +1>)>

Jj=1

1 m v n u 1 m " n .
ﬂZ<R§ H)’Z”Q{ij (SJ( ))> _ @LZ<R§ H)’Z”Q{ii (SJ( +1))>
=1 j=1 _ =1
zﬁi i< R Z% ( U™ — vy U(u 1)>>
=1

B i i <REU+1)7 i"%ﬂ' (U;qul) _ ’yuU}u))>

Jj=1

1 & 1 &
_ Z <R§v+1)7 Wi(u) _ %—1Wi(u_l)> _ ﬁ Z< RWHD W (u+1) %Wi(u)>

i=1 i=1

m

_ 1 (v+1) 1p(ut1)
__EZ<Ri WD)

i=1

=0.

Hence, we have demonstrated that the equalities (2.3)-(2.6) keep all 0 < u < v < k,
k=2,3,---. In addition, as to u > v, by applying of the properties of inner product
we have

=1

Zn:<z(“> 2,0) =3 (20, 207).

j=1

<.
[

3

—

<.

Therefore, the proof of this lemma has been finished. O

Remark 2.4. In Lemma 2.4 of the reference [24], there are some errors on the
superscripts, subscripts and summation symbol. Now we correct them as follows.

(a).

n

) (20,2

1 [& ) 1 - 2 2
-5 Z<R§), A8} )Bij> Z<R<>ZA”5< )Bw>

j=1

<.
—
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= 2) & 2
| <R§),‘_1Aij5§ ’Bij>

Jj=

=
—

_|_

S Tp 1)pT ol

) 5 )

<R§1)v > Aij5§1)31j> =
j=1

NIE!

i=1
(b).
Em: <Z§”, Zfl“)> should be znj <Z§”, Z§l+1)>.
i=1 j=1
().
n
70 70+
j_1< i % >
Uoi=1 j=1 Uoi=1 j=1
1 «— (I+1) 1/ (n) u—1) 1 « (141) 1y (ut1) ()
— SR W — ST{REY Wl W
Bua ;< ! > B g< >
=0.
(d).
The last formula should be 2”: <ZJ(»“), Z](U)> = i <Z](U), Z](-u)>.
j=1 j=1

Remark 2.5. In the proof of Theorem 2.5 in [24], there are omissions in summation
symbols and brackets. Let’s correct them in the following.

>l

(RY = apw™ R — aw V)

K2

I
I\gER!

i=1

| RS ol [ SES oI CANTERY

e (S (RO 4,80 B\
_;HRi |+ s, (W, Wy

s (R, Z}ll A8 By

= < W<’“>> 3 <Rz(k)’ Wf’“)>

i=1

HMg

[
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K2 3

o)

2

Lemma 2.3. If matriz groups {R(k)} {Wl(k)}, {

U(k)} and {S(k)} are the se-

quences produced by Algorithm 1, then Z ’R( )H is monotonically decreasing.

Proof. Owing to matrix groups {Rz(k)}, {Wi(k)}, {U;k)}, {S(.k)} are produced

J

with Algorithm 1, then, in accordance with Lemma 2.2, we get

Z< e ZW (s <k>)>

R Z«%J VklU;kl))>

>

)%

AW W(k>> . i<R(}k),W(k—1)

%
=1

RM, W),

Hence, by Eq.(2.7) and Lemma 2.2, we get

m 2
(& (0. w)

- <Wi(k)7 Wi(k)>

i=1

and

ol
i=1 =1

<R(k> Z”w (

)

)

(2.7)

— W ® R®) _ OékWi(k)>
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Sl S oo )

— ; <Wi(k)7Wz(k)>
(£ () o
_o = <MJ/_(;)7W(I€)> > <R§k)»Wi(k)>
=1
N _< 5’“),W§’“)> N .
;HREMHF+ Z’Z”:I<Wi<k>7wi(k>> ;HW;MHF

ST
i=1
<> [l=;
it tlF
So the conclusion on this lemma has been proved. O

m 2
Remark 2.6. Lemma 2.3 signify that > HngH)HF is strictly monotonically de-
i=1
m 2 m
creasing if > HRE’““)HF #0and 3 <R§k),Wi(k)> £0.
i=1 i=1

Theorem 2.1. If there is a solution to Eq(1.5), then for any initial matriz X; €
S (j=1,2,--+,n), the solution of Eq(1.5) can be acquired in a mazimum of u+ 1

m
iteration steps without rounding error in Algorithm 1, where u = r;u;.
i=1

Proof. Let u = ) r;u;. Suppose RZ(»k) # 0 and Wi(k) # 0 hold for i =1,2,--- | u.
i=1

Now we let W; = diag (Wl(i), Wz(i’), e ,Wf,?). By Lemma 2.2, we derive

IWill*, i = j,
(W, Wj) = (2.8)
0, i#j,
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where Wy, Wa,---, W, are the orthogonal bases of the subspace of
E= {W|W:diag(W1,W2,-~- W), Wy e CP fort =1,2,--- ,m}.

Therefore, according to (2.3), we can get R,+1 = 0.

This implies that (Xl(“ﬂ), X2(u+1), e ,XT(LUH)) are the solutions of equations.
It is verified that the solutions of equations (1.5) can be obtained in a maximum of
u + 1 iteration steps. O

Remark 2.7. Theorem 2.1 in [24] is missing the second power on the right side of
the equation. The correct formula should be (2.8).

3. The least norm solution

In this section, we investigate the least norm solutions of matrix equations (1.5), in
which #Z (A) stand for the column spaces of matrix A. First of all, we give some
lemmas.

Lemma 3.1 (Lemma 2.5, [34]). If the system of linear equations Ax = b is con-
sistent and has a solution x* € XZ (AH), then =* is the system’s only least norm
solutions.

Lemma 3.2 (Lemma 6, [31]). If and only if the matriz equations

it (3.1)

i:172a"'7m7

7

S e ( (X)) = ME

are consistent, equation (1.5) is solvable.

Remark 3.1. Let &* be the conjugate operator of &, then wvec( (X)) =
Mvec (X) ,vec(a* (X)) = MHvec(X) for all X € CP*4.

Theorem 3.1. If Eq.(1.5) have solutions X;l) €, j=1,2,--- ,n, and the initial
matriz group are chosen as

XM= Z A5 (Qi) + U (Z A (Q») : (3-2)

s = Zm: A5 (Gy) + U (Zm: L (Gi)> 7 (3.3)
i=1 i=1

where Q;,G; € CPi*% 4§ =1,2--- 'm, are arbitrary matrices, or more especially
Xj(l) =0, j=1,2,---,n, then the solutions [X1*, Xo", -+, X,,*] generalized by
Algorithm 1 are the unique least Frobrnius norm solutions of system (1.5).

Proof. By Lemma 3.2, equations (1.5) have solutions if and only if equations (3.1)
have solutions. Now we let F; and T satisfy
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vec (X1) vec (% (X1)) vec (X1)
vec(Z Ay (Xj)) =FE : , and =T
j=1
vec (Xp) vec (% (X)) vec (Xp)
Therefore coupled operator matrix equations (1.5) are equivalent to
TZ=/f,
where
By
E,
E, H
T= , 2= (vec(Xl)H, vee(Xo)? - ’UBC(Xn)H) ,
E\T
BT
E,,T
and  f = (vec(d)" vee(Mz)", -+ vee(My) ", vec(M) " vee(Mz)", -

H
vee(My)™
Assume that @); and G; are the matrices with appropriate dimensions. There-
fore, due to (3.2), (3.3) and Remark 3.1, we obtain

vec (Q1)
vec (X{l)) vee (Q2)
vec (Xél)) .
_p | ((Zm)) , (3.4)
vec (Q1
. (Xfll)) vee (Q2)
vec (Qm)

in which

r= (B Bf B () (B D) (BT
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Then we can obtain

vec (Q1)

vec (X£1)> veel@)
vee (XY

( ’ ) vee (Qm)

=T ez ()

vec (Q1)

» (XT(})) vec (Qz)

vec (Qm)

Therefore, according to Algorithm 1 and HR1||§, #0,i=1,2,---,m, in a limited
number of iterative steps, the solution {X](k)}, j =12+ ,n to equations (1.5)

can be achieved. So we get

vec (Xl(k))

vec (XQ(k))

ez ().
vee (X))
Thus, we derive
vee (X7)
vee (X3) vee (Qh) vee (Qr)
e ford : +THE] : ez (T").

- vee (Qn) vee (Qu)

vee (X7)

So, from Lemma 3.1 and formulas (3.4), if the initial groups are chosen as [X{l),

X2(1)7~-~ ,Xﬁl)} generated by formula (3.2) (especially X;l) =0,j=12,---,n).
From Remark 3.1 and Algorithm 1, the least norm constraint solution group

[X7,X5, -+, X7] of (3.4) can be obtained. Therefore, it is also the only least
Frobenius norm constrained solution of equations (1.5). O
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Remark 3.2. The matrix IT of Theorem 3.1 in [24] is error. The right II is

11
=77
Bu®A{y -+ Bpi @ ALy (PiBu) ® (PLA]}) -+ (PiBm) @ (PLAL,)
B ® ATy -+ Bpa® AL, (PaBi2) @ (P2ATy) -+ (PaBa) @ (P2AL,)

Bln ® A,{n T an by A%n (PnBln) ® (PnA{n) e (Pann) ® (PnAgm)

4. Numerical experiments

In this part, four numerical examples are provided for comparing Algorithm 1 with
modified conjugate gradient algorithm (MCG) [27,34] and another modified bicon-
jugate residual method (BCR20) [14] under different constraint solutions [6,13,35] .
Let ¢ = 1071° here. The iterative procedure in this paper is completed by MATLAB
R2020b.

In the following numerical examples, the initial iteration matrices are selected
according to the conditions of the constrained solution. Moreover, the residual and
the relative error are defined as

IR, o = 120 —2lp (4.1)

llz*|l 7

where k is the number of iterative step and z (k) is the kth solution obtained.

Example 4.1. In this example, we compute the generalized symmetric solution of
the following coupled transpose equations

A XB,+CiYTD,+ E\ZF, = G,
As X By 4 CoY Dy = G,

where

Ay = —tril (rand (m, m) , 1) 4+ diag (30 + diag (rand (m))),
By = —tril (rand (m,m) , 1) + diag (19 + diag (rand (m))),
Cy = tril (rand (m,m),1) — diag (100 + diag (rand (m))),
Dy = diag (2 + diag (rand (m))),

Ey = —tril (rand (m,m),1) — diag (51 + diag ( (
Fy = —tril (rand (m,m),1) + diag (13 + diag (r

Ay = —tril (rand (m,m) , 1) + diag (59 + diag (rand (m)
By = —tril (rand (m,m) , 1) + diag (64 + diag (rand (m)
Cy = —tril (rand (m,m) , 1) — diag (9 + diag (rand (m))),
Dy = —diag (30 + dmg (rand (m))).

rand (m))),

and (m))
)
)

)
)
)
)

)

/\AA/\

)
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Now we choose the initial matrices X, Y1) z(1) ¢ Cmem,Sj(l) e comxm,
j=1,2,3 as

(X(1)7Y(1)’Z(1)> — (S§1)7S§1)7S§1)> _ (lmxm,lmxm71m><m) )

And let (X*,Y™*, Z*) = (1™m>™ 2 x 1™mxm mxm),

Fig.1 clearly shows the convergence performance comparison results of the resid-
ual and relative error of Algorithm 1, MCG algorithm and BCR20 algorithm. From
Fig.1 (a) and Fig.1 (b), it is showed that the residual gradually decreases and tends
to be stable with the increase of iteration steps, which means that Algorithm 1 is
convergent and effective. Furthermore, it can be seen that Algorithm 1 converges
with fewer iterative steps than MCG algorithm and BCR20 algorithm.

log
log, e,

—4— Algorithm 1, m=10 —4— Algorithm 1, m=10

o
—#— MCG algorithm, m=10 A .
-8 | | ——BCR20 algorithm, m=10 i
10 k.

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
k(iterative number) K(iterative number)

(a) Comparison of Algorithm 1, MCG algo- (b) Comparison of Algorithm 1, MCG algo-
rithm and BCR2O algorithm for residual rithm and BCR2O algorithm for relative error

Fig. 1. Comparison of convergence curves for Example 4.1

In Table 1 and Table 2, we give the relationship between the iterative step
and computational time of Algorithm 1, MCG algorithm and BCR20O algorithm
on similar residual and relative error respectively. It can be more clearly seen that
Algorithm 1 requires the least number of iterative steps in terms of similar residual
and relative error, while BCR20 algorithm requires the most number of iterative
steps.

Table 1. Iterative step, residual and computational time of Fig.1

Method

Algorithm 1 log o7k —11.0132 —-10.0916 —9.0389 —8.0021 —7.0491
Steps 602 544 529 524 510
Time (s) 0.1172 0.1048 0.1027 0.1005 0.1003

MCG algorithm log o7k —11.0056 —10.3410 —9.0265 —8.7718 —7.0393
Steps 796 660 639 638 620
Time (s) 0.0680 0.0604 0.0596 0.0596 0.0595

BCR20 algorithm  log;yri —11.0029 —10.0005 —9.0168 —8.0029 —7.0000
Steps 4899 4440 4065 3801 3363

Time (s) 0.6295 0.5682 0.5141 0.4748 0.4269
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Table 2. Iterative step, relative error and computational time of Fig.1

Method

Algorithm 1 logpex —14.0256 —13.1943 —12.0075 —11.0205 —10.0141
Steps 617 597 527 522 501
Time (s) 0.1179 0.1178 0.1062 0.1028 0.1005

MCG algorithm log; g€k —14.0268 —13.3053 —12.3002 —11.0664 —10.0049
Steps 678 656 637 628 614
Time (s) 0.0670 0.0585 0.0575 0.0565 0.0563

BCR20 algorithm loggex —14.0024 —13.0000 —12.0078 —11.0028 —10.0471
Steps 5371 4749 4303 3927 3673

Time (s) 0.6643 0.5433 0.5318 0.4818 0.4377

Example 4.2. In this example, we consider the reflexive solution of equation
AXB+CXH"D=E,

where, matrices are

1.8147 + 0.7577: 0.0000 + 0.00007 0.0000 + 0.00007 0.0000 + 0.00007 0.0000 + 0.0000%
0.9058 + 0.0000z 1.2785 + 0.0318z 0.0000 + 0.0000z 0.0000 + 0.0000z 0.0000 + 0.00007%
A= [ 0.1270 + 0.0000i 0.5469 + 0.00007 1.9572 + 0.31714 0.0000 + 0.0000i 0.0000 + 0.0000i | ,
0.9134 + 0.0000z 0.9575 + 0.00007 0.4854 + 0.00007 1.7922 + 0.79524 0.0000 + 0.0000¢
0.6324 + 0.00007 0.9649 + 0.0000¢ 0.8003 + 0.0000z 0.9595 + 0.0000% 1.6787 + 0.75474

0.2760 4+ 0.0000z 0.4984 + 0.35177 0.7513 + 0.28584 0.9593 + 0.07597 0.8407 + 0.1299¢
0.6797 + 0.0000z 0.9597 + 0.0000z 0.2551 + 0.7572¢ 0.5472 + 0.05407 0.2543 + 0.56887
B =] 0.6551 + 0.0000¢ 0.3404 + 0.0000¢ 0.5060 + 0.0000: 0.1386 + 0.5308; 0.8143 + 0.46945 | ,
0.1626 + 0.0000¢ 0.5853 + 0.0000z 0.6991 + 0.0000z 0.1493 + 0.0000z 0.2435 + 0.0119:
0.1190 + 0.0000¢ 0.2238 4 0.0000z 0.8909 4 0.0000¢ 0.2575 4 0.0000z 0.9293 4 0.00007

0.9631 — 2.9037¢ 0.6241 + 0.0000z 0.0377 4 0.0000z 0.2619 + 0.00007 0.1068 + 0.00007%
0.5468 + 0.0000z 0.6791 — 2.74417 0.8852 + 0.00007 0.3354 + 0.00007 0.6538 + 0.0000¢
C =] 0.5211 + 0.0000¢ 0.3955 + 0.00004 0.9133 — 2.8594i 0.6797 + 0.00007 0.4942 + 0.00007 | »
0.2316 + 0.0000z 0.3674 + 0.00007 0.7962 + 0.00007 0.1366 — 2.02874 0.7791 + 0.0000¢
0.4889 + 0.0000z 0.9880 + 0.0000z 0.0987 + 0.00007 0.7212 + 0.00007 0.7150 — 2.47113

0.0596 — 0.39937 0.0967 + 0.0000¢ 0.6596 + 0.0000¢ 0.4538 4 0.0000z 0.1734 4 0.00002
0.6820 — 0.5269:¢ 0.8181 — 0.4317¢ 0.5186 + 0.0000z 0.4324 + 0.0000z 0.3909 + 0.00002
D =] 0.0424 — 0.4168i 0.8175 — 0.0155i 0.9730 — 0.19814 0.8253 + 0.00007 0.8314 + 0.00007
0.0714 — 0.65697 0.7224 — 0.9841% 0.6491 — 0.4897¢ 0.0835 — 0.7379¢ 0.8034 4 0.0000¢

0.5216 — 0.62807 0.1499 — 0.1672¢ 0.8003 — 0.3395¢ 0.1332 — 0.26917 0.0605 — 0.9831%
Here, we choose the initial matrices X(1) € CPC®*® (P), S1) € CPC>*® (P)
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as

—0.2900 + 0.6713i 0 0 0.8308 — 1.5096i —0.2854 + 0.4219i
—0.0966 + 0.7364i 0 0 0.0556 — 2.0454i —0.0749 + 5.2002i
XW =5W =1 _0.5804 +1.8934i 0 0 0.0719 — 1.0964i —0.6272 — 1.7749i |,
—0.4833 — 2.8318i 0 0 —0.5475 — 0.9384i —1.4595 — 5.4380i

—0.5804 + 1.89347 0 0 —0.0402 + 1.45627 1.0761 — 0.9343:

and the orthogonal matrix in Definition 1.4 is selected as

10 000
0-1000
P=100 -100
00 010

00 001
Let

3.3918 + 3.75087 0 0 1.0618 4 3.35227 0.3074 4 0.0000¢
0.0000 + 0.0000z 0 0 0.0000 + 0.0000z 0.0000 + 0.0000z
X* =1 0.0000 + 0.0000i 0 0 0.0000 + 0.00007 0.0000 + 0.0000 | ,
1.0626 + 2.44807 0 0 0.1816 + 2.2334¢ 1.0542 + 0.00007

0.1376 4 0.00007 0 0 0.5330 + 0.0000z 0.9148 + 2.8486¢

through iteration of Algorithm 1, we get

3.3918 + 3.7508i 0 0 1.0618 + 3.3522i 0.3074 + 0.0000i
0.0000 + 0.0000i 0 0 0.0000 + 0.0000i 0.0000 + 0.00004
X =1 0.0000 + 0.0000i 0 0 0.0000 + 0.0000i 0.0000 + 0.0000i
1.0626 + 2.4480i 0 0 0.1816 + 2.2334i 1.0542 + 0.0000i

0.1376 + 0.00007 0 0 0.5330 + 0.00007 0.9148 + 2.84861
€ CPC>*®(P).

Fig.2 illustrates the convergence performance comparison results of the residual
and relative error of Algorithm 1, MCG algorithm and BCR20 algorithm. Fig.2 (a)
and Fig.2 (b) show that Algorithm 1 is convergent and effective with the increase
of iterative steps. Moreover, we can see that Algorithm 1 is faster than MCG
algorithm and BCR2O algorithm.
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—— Algorithm 1

4
24 _ £ MCG algorithm

& —&— BCR20 algorithm
0

log, "
09,8,

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
k(iterative number) K(iterative number)

(a) Comparison of Algorithm 1, MCG algo- (b) Comparison of Algorithm 1, MCG algo-
rithm and BCR2O algorithm for residual rithm and BCR2O algorithm for relative error

Fig. 2. Comparison of convergence curves for Example 4.2

In Table 3 and Table 4, we give the relationship between the iterative step
and computational time of Algorithm 1, MCG algorithm and BCR20O algorithm
on the similar residual and relative error respectively. It can be more clearly seen
that Algorithm 1 requires the least number of iterative steps and has the best
convergence effect in terms of similar residual and relative error.

Table 3. Iterative step, residual and computational time of Fig.2

Method

Algorithm 1 log o7k —13.2319 —-12.2240 -11.0776 —10.4607 —9.1615
Steps 132 125 120 118 115
Time (s) 0.0288 0.0284 0.0282 0.0281 0.0281

MCG algorithm log o7k —13.3343 —12.0808 —11.0865 —10.0900 —9.1201
Steps 157 149 147 143 141
Time (s) 0.0148 0.0148 0.0147 0.0145 0.0143

BCR20O algorithm  log¢7x —13.0009 —12.0672 —11.0390 —10.0388 —9.0031
Steps 5016 4868 4644 4216 3628
Time (s) 0.3839 0.3706 0.3534 0.3271 0.2815

Table 4. Iterative step, relative error and computational time of Fig.2
Method
Algorithm 1 loggex —14.0878 —13.3449 —12.0370 —11.3456 —10.7950

Steps 132 121 118 116 115
Time (s) 0.0296 0.0291 0.0285 0.0285 0.0281
MCG algorithm logpex —14.3124 —-13.5853 —12.2099 —11.0374 —10.4737

Steps 153 148 144 141 139

Time (s) 0.0155 0.0148 0.0146 0.0145 0.0145
BCR20 algorithm  loggeg —14.0036 —13.0107 —12.0219 —11.1523 —10.1196

Steps 5014 4820 4634 4184 3606

Time (s) 0.3680 0.3516 0.3399 0.3129 0.2884
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Example 4.3. We consider the anti-centrosymmetric solutions of the following
generalized coupled matrix equations

A1 X 1By + C1 XDy = Ey,

A3 X 1By + C3 XDy = By,

in which the coefficients matrices are

8 1—-9i 9 1 i 7T+i
Ai=|996+5i5-2 |, Bi= 0 3i4-—5i |,
1 0 2 2439 5+5¢
4—-334+7 8430 T+5i4—3i 5
Cy = 5 2+4+2i64+9 |, D1= 8 4+89-3i |,
i T—i —Ti 0 54 5
7 0 3 3i 6 i T2 Ti
Ay =1 1+49i84+6i |, Ba=]4 5 9|, Co= i 5443 |,
6—9: 0 8—8; 37-2i5 0 7541
3—i7—11:0 —112 +292; 412+ 342i 374 + 482;
Dy =| 6i 0 0|, Ei=| —366— 1947 —478 + 786i 290 — 366 | »
144 2 8 118 42267 98 + 1847 270 — 704

6 + 2147 254 + 2367 120 + 600:
Ey = | 180 — 384i —119 — 369i 146 — 378i
18 — 647 —15— 1457 —20 — 2621

Here, we choose the initial matrices XJ(»I) € ACJC3*3 () ,SJ(-l) € ACJC3*3 (),
(j=1,2), as

0 10 0 10 001
xP=xV=| 0|, sV=s=|-ioil|l.J=]010
0 —0 0 —:0 100
2t 8 O 0 —2¢ -2
Let X;=18 0 -8 |, X5=1|—-i 0 1 . By Algorithm 1, we get

0 —8 —2: 2t 20 0
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1.9999¢ 7.9999: 0.0000

XM = | 7.0999; 0.0000 —7.9999i | € ACTC¥3 (J),
0.0000 —7.9999i —2.0000i
0.0000 —2.0000i —2.0000i

X5 = —1.0000i 0.0000 1.0000i | € ACJTC?*3(J).

2.0000¢ 2.0000z 0.0000

In Fig.3, the convergence performance comparison results of the residual and
relative error of Algorithm 1, MCG algorithm and BCR20 algorithm are demon-
strated. By Fig.3 (a) and Fig.3 (b), it can be seen that Algorithm 1 converges faster
than MCG algorithm and BCR20 algorithm, and Algorithm 1 and MCG algorithm
have better convergence accuracy than BCR20 algorithm. From Fig.3, we can draw
a conclusion that with the increase of iterative step, the residual gradually tends to
be stable, which means that Algorithm 1 is convergent and effective.

log, "
09, 8,

0 50 100 150 200 250 300 0 50 100 150 200 250 300
K(iterative number) K(iterative number)

(a) Comparison of Algorithm 1, MCG algo- (b) Comparison of Algorithm 1, MCG algo-
rithm and BCR2O algorithm for residual rithm and BCR2O algorithm for relative error

Fig. 3. Comparison of convergence curves for Example 4.3

In Table 5 and Table 6, we give the relationship between the iterative step and
computational time of Algorithm 1, MCG algorithm and BCR20O algorithm on the
similar residual and relative error. It can be clearly seen that Algorithm 1 requires
the least number of iterative steps for similar residual and relative error.

Example 4.4. We solve the centrosymmetric solutions of generalized coupled equa-
tions

A X1Bi + Ao XoBigs + A13X3B13 = My,

A21X1Ba1 + A2 X2 B + A3 X3Basz = Mo,
with parametric matrices
A1 = —triu(rand(m,m), 1) + diag(37 + diag(rand(m))),
By1 = —triu(rand(m,m), 1) + diag(57 + diag(rand(m))),

Az = —triu(rand(m,m), 1) — diag(73 + diag(rand(m))),
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Table 5. Iterative step, residual and computational time of Fig.3
Method
Algorithm 1 log, o7k —11.0798 —10.7152 —9.3829 —8.4575 —T7.7838
Steps 27 2 24 23 22
Time (s) 0.0326 0.0318 0.0302 0.0300 0.0299
MCG algorithm log o7k —11.0179 —-10.0331 —9.2481 —8.1853 —7.3318
Steps 63 49 42 38 34
Time (s) 0.0179 0.0171 0.0168 0.0167 0.0165
BCR20 algorithm  log¢7x —11.0699 —10.0575 —9.1060 —8.1707 —7.2459
Steps 215 199 181 167 155
Time (s) 0.0491 0.0430 0.0416 0.0404 0.0397
Table 6. Iterative step, relative error and computational time of Fig.3
Method
Algorithm 1 logpex —14.2750 —13.0706 —12.1851 —11.5657 —10.0645
Steps 26 24 23 22 21
Time (s) 0.0379 0.0376 0.0375 0.0374 0.0371
MCG algorithm loggex —14.0800 —13.0806 —12.1299 —11.2427 —10.0157
Steps 62 48 40 36 33
Time (s) 0.0214 0.0194 0.0192 0.0184 0.0178
BCR20 algorithm log;gex —14.0894 —13.1151 —12.1649 —11.0526 —10.0202
Steps 213 197 181 163 151
Time (s) 0.0442 0.0441 0.0400 0.0393 0.0386
Bia = —triu(rand(m,m), 1) + diag(7 + diag(rand(m))),
Az = —triu(rand(m, m), 1) — diag(100 4+ diag(rand(m))),
B3 = diag(70 + diag(rand(m))),
Aoy = triu(rand(m, m), 1) + diag(60 + diag(rand(m))),
By = —triu(rand(m, m), 1) + diag(77 + diag(rand(m))),
Ao = —triu(rand(m, m), 1) — diag(27 + diag(rand(m))),
Bgy = —triu(rand(m,m), 1) + diag(39 + diag(rand(m)),
Asg = —triu(rand(m,m), 1) — diag(99 + diag(rand(m))),
Bos = diag(33 + diag(rand(m))),
My = rand (m), My =rand(m).
We choose the initial matrix X;l), S](I) € CJC™* ™ (J) as X(l) S(l) ]mxm

)

j=1,2,3, J = flipud (eye (m)), and let X = 1™*™ X3 = rcmd( )+J rand (m)-

J, X35 = 2eye (m).
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Through Algorithm 1, we get

0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999

X =1 1.0000 1.0000 0.9999 1.0000 1.0000 | € CJC™ ™ (),
0.9999 0.9999 0.9999 0.9999 0.9999
0.9999 0.9999 0.9999 0.9999 0.9999
1.4846 0.4966 1.1735 0.8646 1.3744
1.7796 0.9727 0.9352 0.7574 1.7259
X% = | 0.3417 0.8438 1.7670 0.8438 0.3417 | € CJC™ ™ (),

1.7259 0.7574 0.9353 0.9727 1.7796
1.3744 0.8646 1.1735 0.4966 1.4846

2.0000 0.0000 0.0000 0.0000 0.0000
0.0000 2.0000 0.0000 0.0000 0.0000
X§130) = | 0.0000 0.0000 2.0000 0.0000 0.0000 | € CJC™*™ (.J).
0.0000 0.0000 0.0000 2.0000 0.0000

0.0000 0.0000 0.0000 0.0000 2.0000

In Fig.4, according to the Definition 1.2, r; and e; of Algorithm 1, MCG al-
gorithm and BCR20 algorithm are given. According to Fig.4(a) and Fig.4(b),
Algorithm 1 converges faster and has better convergence accuracy than MCG al-
gorithm and BCR2O algorithm, which means that Algorithm 1 is convergent and
effective in solving the central symmetric solution.

Iogmrk
log, e,

h

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Kiiterative number) K(iterative number)

(a) Comparison of Algorithm 1, MCG algo- (b) Comparison of Algorithm 1, MCG algo-
rithm and BCR20O algorithm for residual rithm and BCR2O algorithm for relative error

Fig. 4. Comparison of convergence curves for Example 4.4

In Table 7 and Table 8, we give the relationship between the iterative step and
the computational time of Algorithm 1, MCG algorithm and BCR20O algorithm on
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similar residual and relative error. It can be seen more clearly that Algorithm 1
requires fewer iterative steps, and BCR20 requires the largest number of iterative
steps both in terms of residual and relative error.

Table 7. Iterative step, residual and computational time of Fig.4

Method
Algorithm 1 log o7k —10.7091 —9.4503 —8.2242 —7.5802 —6.4563
Steps 79 75 71 69 67
Time (s) 0.0427 0.0423 0.0423 0.0419 0.0417
MCG algorithm log o7k —10.2239 —9.1721 —-8.2741 —7.5080 —6.6601
Steps 118 108 96 95 88
Time (s) 0.0234 0.0233 0.0233 0.0232 0.0228
BCR20 algorithm  logqrk —10.0122 —9.0263 —8.0236 —7.0083 —6.0066
Steps 4566 3617 3283 2415 2165
Time (s) 0.3868 0.2967 0.2555 0.2030 0.1859
Table 8. Iterative step, relative error and computational time of Fig.4
Method
Algorithm 1 logqgex —13.1816 —12.1682 —11.1107 —10.8798 —9.6489
Steps 79 74 69 67 65
Time (s) 0.0481 0.0468 0.0440 0.0419 0.0419
MCG algorithm logqpex —13.0076 —12.1675 —11.0572 —10.7582 —9.7025
Steps 331 107 95 93 88
Time (s) 0.0336 0.0260 0.0240 0.0230 0.0230
BCR20 algorithm  loggey, —13.0062 —12.0056 —11.0012 —10.0288 —9.1210
Steps 5598 4562 3539 3287 2349

Time (s) 0.4584 0.3703 0.2898 0.2782 0.2009

From Fig.5(a) and Fig.5(b), we can clearly see that with the increase of the value
of m, the convergence speed of residual and iterative error gradually slows down.
With the continuous increase of matrix dimension, when the residual tends to be
stable, the number of iterative steps required increases, and the running time of the
program becomes longer. How to reduce the calculation time and amount, and how
to improve and optimize the algorithm are the problems that we will continue to
study in the future.

In Table 9 and Table 10, we give the relationship between the iterative step and
the calculation time of Algorithm 1 on the similar residual and relative error in
different m values. It can be seen that under the action of Algorithm 1, the number
of iterative steps increases with the increase of m value on the residual and relative
error.

In this section, four kinds of constrained solutions (symmetric solution, reflexive
solution, centrosymmetric solution and anti-centrosymmetric solution) of coupled
operator matrix equations are solved respectively. From the corresponding figures
of the above four numerical examples obtained through Algorithm 1, it can be
clearly concluded that with the increase of the number of steps, the residual and
the relative error are gradually tend to be stable, which verifies the convergence and
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Fig. 5. Comparison of convergence curves for different values of m in Example 4.4

Table 9. Iterative step, residual and computational time of Fig.5

Method
Algorithm 1 log; o7k —10.0033 —9.0165 —8.0114 —7.0040 —6.0003
with m =30 Steps 2548 2375 2175 1996 1810
Time (s) 0.7812 0.7505 0.6611 0.6126 0.5773
Algorithm 1 log; o7k —10.0018 —9.0024 —8.0000 —-7.0020 —6.0001
with m =40 Steps 3558 3292 3015 2735 2474
Time (s) 1.8870 1.6815 1.5084 1.3714 1.2546
Algorithm 1 log; o7k —10.0070  —9.0009 —8.0109 —-7.0326 —6.0042
with m =50  Steps 4419 4035 3707 3377 3025
Time (s) 4.6694 4.1888 3.8699 3.5581 3.1489
Algorithm 1 log; o7 —10.0019 —9.0022 —8.0029 —7.0006 —6.0007
with m =60 Steps 5563 4943 4548 4156 3786
Time (s) 13.5856 11.9349  10.8805  9.7150 8.4794

Table 10. Iterative step, relative error and computational time of Fig.5

Method
Algorithm 1 log;yex —13.0146 —12.0090 —11.0058 —10.0001 —9.0016
with m =30 Steps 2495 2331 2138 1947 1759
Time (s) 0.9564 0.9261 0.8596 0.7671 0.6586
Algorithm 1 log;ex —13.0066 —12.0004 —11.0028 —10.0028 —9.0095
with m =40 Steps 3451 3196 2911 2629 2373
Time (s) 1.7897 1.5910 1.4696 1.3549 1.2876
Algorithm 1 log; ek —13.0002 —12.0035 —11.0029 —10.0081 —9.0054
with m =50 Steps 4218 3874 3558 3200 2874
Time (s) 4.3644 4.1643 3.7216 3.4211 3.0674
Algorithm 1 log; ek —13.0045 —12.0001 —11.0039 —10.0022 —9.0027
with m =60  Steps 5140 4723 4321 3944 3561
Time (s) 11.7156 10.7456 9.4401 8.1944 7.1374
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effectiveness of Algorithm 1. From Table 1 to Table 8, the convergence speed of
Algorithm 1 is faster than that of MCG algorithm and BCR20 algorithm in terms
of similar residual and relative error.

5. Concluding remark

In this present work, we provide a biconjugate residual (BCR) method for obtaining
coupled matrix equation with submatrix constraints by introducing operators. The
presented new algorithm can solve many matrix equations and many constraints
solutions, for example symmetric solution, reflective solution and centro-symmetric
solution. Compared with the algortihm in [24], the provided new algorithm can solve
the constraint solution of coupled matrix equations in complex field. In additon,
the sufficient conditions for the convergence of new BCR algorithm are given. Some
errors or typos in [24] have been corrected. Some numerical examples are provided
to illustrate the effectiveness and superiority of new algorithm.
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