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NUMERICAL APPROACH FOR THE HUNTER
SAXTON EQUATION ARISING IN LIQUID
CRYSTAL MODEL THROUGH COCKTAIL
PARTY GRAPHS CLIQUE POLYNOMIAL

A. N. Nirmala and S. Kumbinarasaiah'

Abstract In this paper, a well-known nematic liquid crystal model, the
Hunter Saxton equation, is solved by the new graph theoretic polynomial ap-
proach. At first, we extracted the clique polynomials from the cocktail party
graph (CPG) and generated the generalized operational matrix of integration
through the clique polynomials of CPG. Then, an effective computational tech-
nique called the cocktail party graphs clique polynomial collocation method
(CCCM) is developed to obtain an approximate numerical solution for the
nonlinear Hunter-Saxton equation (HSE). The operational matrix of CPG re-
duces the HSE into an algebraic system of nonlinear equations that makes the
solution relatively superficial. The Newton-Raphson method solves these non-
linear algebraic equations to obtain the clique polynomial solution for HSE.
The efficiency of the CCCM is illustrated by examining two numerical ex-
amples. The solution of the HSE is presented through figures and tables for
different values of z,t, and N. The convergence analysis, tabulated results of
numerical comparison of absolute errors of CCCM with the recent numerical
methods, and error norms projected that, CCCM is considerably efficacious on
the computational ground for higher accuracy and convergence of numerical
solutions.

Keywords Hunter Saxton equation, graph-theoretic polynomial called
Clique polynomial, cocktail party graph, operational matrix, convergence anal-
ysis.
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1. Introduction

In Mathematics, Graph theory is well known for its enormous applications in applied
mathematics like the modeling of complicated chemical compounds, dynamic sys-
tems, geometric models, etc [20]. In 2010, Dehmer et al. [23] introduced graph poly-
nomials (information polynomials). In general, graph polynomials encode graph-
theoretic information of the underlying graph in various ways. Until now, plenty of
graph polynomials have been introduced [22]. Only a few are used to study non-
linear mathematical models [12,16,18,21,30]. Clique polynomial is one among the
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polynomials that we’re able to successfully operate in the study of various mathe-
matical models such as time-fractional Klein-Gordon equations [7], fractional partial
differential equations [1], convection flow problems [15], Schrédinger equations [10],
distributed order integrodifferential equations [28], etc. In the literature survey, we
observed that only clique polynomials of the complete graph were used to study the
above-mentioned differential equations. Here, the author tried to extract the clique
polynomial numerical method and implement it in studying nonlinear models. The
present paper deals with the clique polynomial of the cocktail party graph.

In the modern context of sciences, most physical phenomena are mathemati-
cally modeled as differential equations. Mathematical models convert application
zone problems into manageable mathematical formulations with a hypothetical and
arithmetical analysis. Many mathematical models are governed by partial differ-
ential equations. PDEs are encountered in many branches of sciences, such as
astrophysics, quantum mechanics, biology, fluid mechanics, environmental science,
chemistry, particle physics, etc. Solving these PDEs is quite strenuous. Current
mathematical methods fail to give closed-form solutions, and more advances are yet
to be developed. Meanwhile, many numerical techniques have been developed for
solving PDEs. Here, we developed an efficient numerical technique called a General-
ized operational matrix based on the clique polynomial of the cocktail party graph to
study the nonlinear liquid crystal model called the Hunter-Saxton equation (HSE).

In theoretical physics, HSE is an integrable PDE aroused in the study of nematic
liquid crystals. The HSE describes the propagation of weakly nonlinear orientation
waves in the nematic liquid crystal director field [11], and it is also called the
high-frequencies ubiquitous Camassa—Holm equation [6]. The universal form of the
Hunter Saxton equation [4,29] is as follows:

2E(x,t) 1 (0€(x, 1)\
Ox? +2< Oz )_0'
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Where x is the space variable and ¢ is the time variable.
The physical conditions are:

0¢(x,0)

ox
Where v(x), W(z),u(t), are smooth functions. Many numerical methods have been
proposed for the fairly accurate solution of HSE. For insane, HSE by Cubic trigono-
metric method [9], Bivariate Chebyshev method [19], Collocation method [13],
Galerkin method [27], Finite difference and Haar wavelet quasilinearization method
[3], Laguerre wavelet on time domains [17], Lipschitz metric [5], Time marching
scheme [2], Adomain Decomposition method [14], Sinc collocation method [26],
Mesh free collocation method [25], Fibonacci wavelet method [24]. Here, we ensure
that the clique polynomial of the cocktail party graph scheme is new and not yet
utilized in studying the Hunter-Saxton equation. Hence, we proposed the CCCM
to find the approximate solution of HSE via a generalized operational integration
matrix.

Arrangement of the article: The preliminaries section briefs the clique polyno-
mials of the cocktail party graph and convergence analysis. The operational ma-
trix section describes generating an operational matrix of clique polynomials. The
method of solution section explains the clique polynomial-based numerical method.
The numerical applications part shows the results of numerical examples and the

f(x,O) = U(:C)7 = W(x)7 5(0775): :u(t)' (1‘2)
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comparison of current results with the other results. Finally, the Conclusion seg-
ment provides the summative result analysis.

2. Preliminaries of cocktail party graphs clique
polynomial and convergence analysis

Clique Polynomial of Graph: In the given graph G, the clique polynomial C(z)

is defined as;
p(G)

C(z) = ao(z) + Z agr?.
6=1
Where,

ag = 0, denotes the number of cliques in graph G,
p(G) = the total number of cliques in graph G,

ap(xz) = number of zero cliques in graph G, and it is constant.

Hajiabolhassan and Mehrabadi [8] showed that C(x), always has a real root. The
coefficient a; is the vertex count, as is the edge count, and ag is the triangle count,
etc in graph G.

Cocktail Party Graph: The n'" order cocktail party graph is the graph that
contains n rows of paired vertices in which all vertices except the paired ones are
not connected with the edge. The cocktail party graph of ntPorder has also referred
to as the Hyper octahedral graph, n-octahedron, Roberts graph, Complement of
the ladder rung graph, dual hypercube graph, skeleton of the cross polytope com-
plete n-partite graph and cocktail party graph is denoted with various notations
such as K, x2 and K (9),(2n,n)— Turdn graph, since the cocktail party graphs are
distance-transitive, they are distance-regular. The cocktail party graph arises in
the handshake problem [24].

Some results on the Clique Polynomial of Cocktail Party graph and con-
vergence analysis:

Theorem 2.1. Let G = (V, E) is the cocktail party graph (complete n— partite
graph), then its general form of the clique polynomial is C (Kn(g); :C) =1+ 2:5)”.
Where n denotes the number of partitions of V.

Proof. Given that, G = (V, E), be the complete n— partite graph.
For n = 1, Graph G; = {A,B} has one pair of vertices. In Graph Gy, the

O ©

Figure 1. Graph G

number of zero-cliques, i.e. ag = 1, and number of one — cliques {A, B} i.e. a; = 2.
Hence,the clique polynomial of the first-order cocktail party graph is

1
¢ (K1(2);I) = ap+ Z apr?= ag + arzt =1+ 2z.
0=1
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For n = 2, Graph G has two pair of vertices. G2 = (V = {{AB}, {C,D}},E).
In Graph Gg, the number of zero-cliques, i.e. ag = 1, number of one-cliques

Figure 2. Graph G2
{A,B,C,D} i.e. a1 = 4, number of two — cliques {AC, AD, BC, BD} i.e ay = 4.
Hence, the clique polynomial of the second-order cocktail party graph is,

2
C (Kg(g); ac) =a,+ Zagacez ap + a1zt + asx® =144z + 422 = 1+ 295)2 .
0=1

For n = 3, Graph Gj3 has three pair of vertices. That is,

GSZ(V:{{AvB}v {CvD}v{EvF}}vE)'

Figure 3. Graph G3

In Graph G3, the number of zero-cliques, i.e. ag = 1, number of one-cliques
{A,B,C,D,E,F} ie. a; = 6, number of two-cliques {AB, AC, AE, AF, BD, BE,
BF,CD,CE,CF,DE,DF} ie a; = 12, number of three-cliques {ABF, ACE,
BDE,BDF,CDE,CDF,EAB,FACY} i.e az = 8. Hence, the clique polynomial of
the third-order cocktail party graph is,

3
C (K3(2); x) =ap+ Zagx‘g: ag + alxl + a2m2 + a3x4 =1+ 6z + 1222 + 82
6=1

= (1+22)°.

Similarly, we obtained the sequence of clique polynomials of 4t 5th gth 7th
etc. ordered cocktail party graphs as,
Forn=4, C (K4(2);x) =14 8z + 242% + 3223 + 1627 = (1 + 230)4;
Forn =5, C (Ksw;z) = 1+ 102 + 402% + 802° + 80z* + 322° = (1 + 22)°;
For n =6, C (Kg2); %) = 1+ 122 + 602® + 1602® + 2402 + 1922° + 642°
= (1+22)%;
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Forn =17, C(Krg);z) =1+ 14z + 842” + 2802° + 5602 + 6722° + 4482°
+ 12827
= (1422)";.. . et

With the above observations, in general, the clique polynomial of n*"—order cocktail

party graph is of the form, C (Kn(z); x) =(1+ 290)”. O

Theorem 2.2 ( [16]). Let &(x,t) be the continuous function in L?(R x R) on
[0, 1} X [0, 1} and &(x,t) is bounded by some positive real number A, then clique
polynomial expansion of &(x,t),converges to it.

Proof. Given that, £(x,t), is the continuous function in L?(R x R) on [1,0] x [0, 1]
and £(z,t) is bounded by some positive real number A. Consider,

E(z,t) = C()T M C(),
Ea,t) = DY ay C(Kia)it) C (Kigzyiw) -
i=0 j=0
Where, a;; = <§(:17,t), C (Ki(g);t) C (Ki(g); m)> and ( .) indicate the inner prod-
uct. The unknown coefficient of the clique polynomial function is defined as,

11
aij = /0 /0 £(z,t) C (Kia);t) C (Kie);x) da dt,

1,1
aj; = / / &(x,t) C (Ki(g);t) dt C (Ki(g);x) dx.
o Jo

By the generalized mean value theorem, we have,

1 1
aij = /0 C (Ki(g);l') dx A §(n,t) C (Ki(g);t) dt.

Here, n € [0,1]. Since C (Ki@); :E) is a continuous and integrable function on
[0, 1], we consider, fol C (Ki(g); m) dx = Z. Hence, we have,

1
aij = Z/o E(n,t) C (K2);t)dt,

by generalized mean value theorem for integrals,

1

Where, w € [0, 1]. Since C (Ki(g); t) is continuous and integrable on [0, 1].
Put, [} C (Kyg);t) dt = D.
Qij = Z D f(n,w).
Where, n, w € [0,1]. Therefore, |a;;| = |Z]| |D| |&(z,w)].
Since, £(z,t) is bounded by A. Therefore, |aij| = |Z||D|/\. Therefore, Y .2,

Z;io a;; is absolutely convergent. Hence, clique polynomial expansion of &(z,t)
converges to it. O

Theorem 2.3 ( [16]). Let C’(Kn(g);x) are the clique polynomial of the cocktail
party graph of n vertices, then C (Kn(g);.%’) are uniformly continuous on [0,1].
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3. Operational matrix of clique polynomial of com-
plete graphs

Considering a few Clique polynomials of the Cocktail party graph,

Where,

C (Kl(g);x) =1+ 2z,

C (Ko);z) = 1+ 4z + 42,

C (K33 ) = 1+ 6z + 122% 4 827,

C (Kyzyiz) =1 + 8z + 2422 + 322 + 16z . . ..

Cola) = [C (Kowy;w) € (Kiwyia) ,C (Kawia) ... C (Ksyiw)] -

The definite integrals of the above polynomials and their matrix forms are as follows,

/ C (Ko(g);x) dx
0

Q

c\o\c\ac\C\
Q

Thus,

Where,

Zexe =

| | | |
\H g\H Wl= Ol= il o=

—
[\

C (K@) z) do
(Kaay; ) da
(Ks3e2y;7) da
C (Ky);z) dx

o an} o (an) (e R S1E

o

o [an} o O BRI

11
xr = |:_27 2a0507070:| Oﬁ(x)a

1 1
ZL‘+.Z'2 = |:_ 07 507070:| Cﬁ(x)a

4’774
4 1 1
2 2 = 3: 2.0 -

z+22° + 32 [ & 70’6’0’0] Ces(x),

2 3 4 1 1
x+3z° +4x° + 22" = fg,0,0,0,g,O Cs(z),

2 3 4 5 1 1
r +4x° + 8x° 4+ 8z~ 4 162° = _E70’0’0,07ﬁ 06(17)7

40 16
x + 52 + §x3 + 202* 4 162° + §x6

1 1
|:—12,O,0,0,0,0:| C6(£C) + EC (K6(2)7CC) .

/Ow Co(z)dx = Zgy6Cos(x) + Cg(x).

000 0
000 0
$00 0

, and Cg(z) =
050 0
00 - 0
00 0_ _%C (KG(Q);.’E)_
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The double integral of the above polynomials and their matrix forms are as follows:
/I/IC(K ':E)dacdac——z—1 11OOO Ces(x),
o o 0(2)» - 2 - 87 4’ 8 6
v x? m 1 1
C (Ko z)de de = — + — 0,0| C
/0 /0 ( 1(2),3)) €T ax 2 3 127 8’ ’ :| 6($),

rore 2 23t 1 11 1
C(Kypyz)dedr="++"—4+ "% =|—,——,=,0,0, = | Cs(),
/0 /0 (Kayiz) do do= -+ ==+ 3 [16 12°8 48} 6(@)

/m/zC(K 'x)dxdx—lj—l—xg—i—x‘l—l—gxs— i—iOOOi Ces(x)
o Jo 3(2)» - 2 5 - 200167 "’ 80 6 ’

8

xr xT 2 4 ) .
/ / C (Kyz); @) do do = Tty Sy By
0 2 3 5 3

1 1
= |:a_a0707070:| 06( )+7C( 6(2)3 )

24" 20 120
T o 22 5 10 * 8 16
C (Ksy;2) do do = = + 22 da? 4 2af 4 ra’
/0/0 (Ks5(2); ) do da 2+3x+3x+z+3:ﬁ+21
L L 0,0,0,0] Co(x) + O (Kraia)
= 28’ 247 s Uy Uy 6T 168 7(2)
Thus,
x x , P
/ / Co(v)dx dz = Z 6x6Cs(x) + C'6(2).
0 0
Where,
_1 1 1 ] [ ]
$ 15000 0
E-tokoo 0
1 1 1
, L_Loo0Lo - 0
Z 6x6 = 116 112 ! ) ,and  Cy(x) =
0 1600 0g 0
L1000 0 150 (Ko 7)
& 4 000 0] | 765C (Kr2); @)

The generalized single integration of n-clique polynomials is denoted as:
/ Cp(x)dx = ZpynCl(x) + C(z).
0

Where,
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_271—(;71—2) 271—(;71—2) 0 0 o 0
- 2n7(§n74) 0 2n7(§n74) 0 o 0
1 1
ann = )
1
—2(n1_1) 0 0 0 000 5n=1)
-5 0 0 0 000 O
C (Ko(g), LE) 0
C (K1(2)7 .’E) 0
C(z) = |C (Ky2);z) | and C(x) = 0
|C (Kn(2) ) | | 5:C (K@) ) |

Similarly, the double integration of n-clique polynomials, in general, is denoted
as:

/ / Co(2) dz dz = 7., Co(x) + Cn (2).
0 0

Where,
[ 1 1 -
Th=(@n=8) ~dm—@n—x 00. .. 0
1 1
4n—(4n—12) _4n—(4n—8) 00. .. 0
1 1
dn—(4n—16)  4n—(4n—12) 00. .. 0
Z;zxn =\ . ’
1 1 1
A(n—1) ~Im—2) 00000 D)
1 1
1
RTe=y) —% 00000 0 ]
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C (Koz); ) 0
C (Ki(2); ) 0
Cn(z) = |C (Ky2);z) | and C, (x) = 0
_C (KTL(Q); .T)_ _mc (K"(Q); 1’)_

4. Method of solution

The proposed method presents the clique polynomial-oriented numerical algorithm
through the generalized operational matrix of integration to deal with the HSE
under distinct ICs and BCs.

% =Ct)'M C(x), (4.1)
here,
Ct)" = [C(Kowyit), C(Kig)yt), C(Ka@)yt), -y C(Kuayit)],
C(x) = [C (Ko@), C (Ki@yz),C (Kayia) ..., C (Knyiz)]
M = [a] is the n x n matrix, where i = 0,1,2,...,n and j = 0,1,2,...,n.

Integrating equation (4.1) concerning ¢ from 0 and t we get,

0%¢(w,t) _ 0%¢(x,0) ¢
- /0 CHTM C(z) dt,

9%¢(x,t)  9%¢(x,0)
o2 Oz

7T
v [ZanC(tH— (J(t)} M C(x).

Integrating equation (4.2) concerning z from 0 to x, we get,

(%(;jt) = 858(2’ 2 agg;, 0 _ agg;, 0, [ZnxnC (1) + W}TM /O " (),

0&(x,t) _ 0&(x,0) n {ag(o,t) 85(0,0)}

ox ox dr Oz

$[Z0nC0) + TW) M [ZeaC(a) + T
(4.3)

Integrating equation (4.3) concerning z from 0 to z, we get,

f((E,t) = f(O,t) + f(l’,O) - 5(070) +x {868(27 t)i ag@(ga 0)}

+/0${[an710(1€)+ W}TM [ZanC(:v)—i— C(x)]}dx,
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E(x,t) = €(0,8) + &(2,0) — 5(0’0)4”6{866(2’” B agg;,o)}
#[20nc0+ 0] 01 (20000 + TT). "

Put x = « in equation (4.4) we get,

£(a,t) = £(0,t) + £(a,0) — 5(070)4-04{85652’0 _

8552, 0) }

+ {ann C(t) + C(t)]T M {|:Z';L><n Cla) + C/(x)}}zza’

{858(2,t) B 858((3); 0)} 1 (g(mt) —£(0,1) — £(a, 0) + £(0,0) (4.5)

(67

T

. [annC’(t) + W}

x M {[Z,,C(x) + C”(a:)]}xza).

On substituting equation (4.5) in equations (4.3) and (4.4) we obtained,

afgi,t) _ 85({(92, 0) i ;(f(a,t) _ E(OJ) _ f(a, 0) + f(O, 0)

_ [Z,MC(t)Jr Wt)]T M {[Z,’MC(x)Jr C’(J:)sza> (4.6)

— T
+ [annC(t)JrC(t)] M [annC(xH C(x)],

f(xat) = E(O,t) + g(mﬂ 0) - 5(0, 0) + xé (E(O‘at) - f((),t) - 5(01,0) + 5(070)

2w+ TO] M {[Z1Cl) + C(x)}}m)

+[ZuenC) + T Y (2,0 C) + T
(@.7)

On differentiation of equation (4.7) concerning t we get,

G =2 2ol (o - 0.0 - €00+ €0.0)

ot ot ot

~[Zoac0+ TO) M {[Zicw+ T@]} )} @

+ gt{ [annc(t) + m]T M [Z;XnC(x) +C (x)} }
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Differentiating equation (4.8) concerning = we get,

0*¢(x,t) _ D { % {x; (mt) — £(0,1) — £(a, 0) + £(0,0)

ordt Oz

- [annc(tw W}T M {[Z;MC(a;H C(x)”_() H (4.9)

oo
Ox | Ot

Lo {{anc(tH W}TM |Z1xnCl@) + C(@)] H

Substituting equations (4.9), (4.7), (4.2), and (4.6) in HSE given in (4.1) and dis-

cretized by the grid points. z; = t; = ((257721)); i=1,2,..., n?, it reduced into a

system of nonlinear algebraic equations. The coefficients of the clique polynomials
were obtained by solving the resultant system of equations by Newton’s method.
On substituting these coefficients in equation (4.7), we get a graph of a theoretically
oriented solution of the Hunter Saxton equation.

5. Numerical applications

Example 5.1. Consider the HS equation [9],

9%¢(x,t) 2¢(x,t) 1 [(0€(x, 1)\
om0t +&(z,t) 92 + 3 < 7 ) =0, (5.1.1)
with physical conditions,
o 08(x,0) o o€t 2
The exact solution is
£(z,t) = 2
’ (1+4+1t)
Implementation of CCCM for N=2: Consider,
835(1’,t) _ T
Here,
. 1 all] a[2]
ct)’ = [1,142t); C(z)= : M= . (5.1.3)
1+ 2z a[3] al4]

Substituting equation (5.1.3) in equation (5.1.2) and simplifying, we get,

% = a[l] + (1 +20)a3] + (1 + 22) (a[2] + (1 + 2t)a[4]) . (5.1.4)

Integrating equation (5.1.4) concerning ¢ from 0 to ¢, we get

0%¢(z,t)

= ta[l] +t(1 + t)a[3] + (1 + 2x) (ta[2] + (1 +t)a[4]) . (5.1.5)
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Integrating equation (5.1.5) concerning z from 0 to z, we get,

& (x,t) 2

0z 1+t+§(‘¢4”—ﬂ1+wﬂﬂ)+w@ﬂu+ﬂ1+wdm>

(5.1.6)
- 2<ta[2] +t(1+ t)a[4]) + z(1+ z) (ta[2] + ¢(1 + t)al4]).

Integrating equation (5.1.6) concerning z from 0 to z, we get,

£(a,t) =20+ %ﬁ (ta[1] + £(1 + t)al3]) + ~22(3 + 22) (ta[2] + (1 + £)a[4])

6
( 2+ 1%]5 + 5 (=tal1] = 61+ H)al3]) - 2 (sal2] + (1 —|—t)a[4])> .
(5.1.7)
Differentiating equation (5.1.7) partially, concerning ¢, we get,
9¢(x, )
ot
:%xz (a[l] + ta[3] + (1 + t)a[3]) + éxQ(s + 27) (a[2] + ta[4] + (1 + t)a[4])
, ) (5.1.8)
ta <_(1+t)2 + 5 (—al1] ~ taf3] — (1 + t)a3)
-2 al2] + tald] + (14 ala) )
Differentiating equation (5.1.8) partially, concerning x, we get,
0%¢(w,t)
Ox Ot
2 1
= % 4~ (—a[l] — ta[3] — (1 + )a[3]) + z (a[1] + ta[3] + (1 + t)a[3])
(L+8)7 2 (5.1.9)
_ % (a[2] + tald] + (1 + t)afd]) + éﬁ (al2] + tal4] + (1 + t)a[4])
4 %x(?) 4+ 22 (a[2] + tald] + (1 + t)al4])) .
Substituting equations (5.1.9),(5.1.7),(5.1.6), and (5.1.5) in equation (5.1.1), we get,
HSE =~ 2 i % (all] + a[3] + 2ta[3]) + @ (a[1] + a[3] + 2ta[3])

g (a[2] + al4] + 2tal4])) + %gﬂ (a[2] + al4] + 2tal4))
1
t3T

x(3 + 2x) (a[2] + a[4] + 2ta[4]) + éx(3 + 2x) (a[2] + a[4] + 2ta[4])

+ 2t (1] + (14 B)al3] + (1 +22) (al2] + (1 + 1)afa]))
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x <11+2t +t(—=1+ ) (3a[1] + (5 + 2x)a[2] + (1 +t) (3a[3] + (5 + 296)@[4]))>

‘" (it + 5t (=34 6)all] + (5 -+ 62(1 + ) af2

+(1+1) (=3 + 6x)a[3] + (=5 + 62(1 + z)) a[4])))”. (5.1.10)

Discretizing the equation (5.1.10) with the defined collocation points, we get the
following system of equations:

a[1]? 8869a[2]2+81a[3}2+am 31 492 9a3]  44lal4]
4096 ' 4718592 ' 262144 72 ' 32768 ' 16384 = 262144

17 3969a[4] 1403 441a[3] ~ 8869a[4]
_ _ 5.1.11
+al3] ( 32 " 2097152) +al2] ( 1728 | 262144 2007152 ( )
79821a4]>
— ol e — O
 63a[l]®  25259a[2)*  7623a[3]” o (- 281 19767a[3]  277849a[4]
4096 524288 262144 2112 262144 2097152

1 217437a[4]) a[1]<1 1797a(2] 693a[3]_19767a[4]>

3 —— — — _ —
+al3] < 32 2097152 88 32768 16384 262144

_ 29af4]  3056339a[4]°

96 33554432
(5.1.12)
_ 175a[1]®  981875a[2]®  29575a[3]°
4096 4718592 262144
2 3505  242125a[3]  12764375a[4]
2496 786432 18874368
a3 39 3147625a[4] A 73 18625a[2]  2275a[3]  242125a[4]
32 6291456 104 98304 16384 786432
2
N 115a[4]  165936875a[4)*
48 301989888
(5.1.13)

49a[1]*  45227a[2)” N 11025a(3]? o) 10963 | 11025a[3]  226135a[4]
4096 4718592 262144 2880 | 262144 6291456

o (¥ 735a[2]  735a[3]  11025a[4] 3 (108 165375a[4]
24 ' 32768 ' 16384 | 262144 32 2097152

| 25lal4] 1130675a[4]°
32 33554432

(5.1.14)

Solving the system of above equations (5.1.11 — 5.1.14) by the Newton’s method,
we obtained the roots as, a[l] = 0;a[2] = 0;a[3] = 0;a[4] = 0. Substituting these
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unknown coefficients of clique polynomials of the Cocktail party graph in equation
(5.1.7), we obtained the clique polynomial solution for Hunter Saxton equation with
the given initial and boundary conditions in Example 5.1 as, &(z,t) = f—fr”t, which
is the same as the exact solution. Here, the solution of the HSE is derived by the
CCCM with different values of N (size of the operational matrix of integration)
along with collocation points. The broad-spectrum steps to obtain the solution of
the HSE for all the projected cases are illustrated in section 4. Tables 1-3 reveal
that absolute error by the proposed method is better than the other methods in
the literature. Table 4 assures the efficiency of the proposed method for discrete
t with fixed x. Table 5 compares the error norms of the projected method with
other methods mentioned in the literature. Table 6 indicates the error analysis
of the CCCM method for fixed x. The graphical interpretation of the accurate
solution and the CCCM solution is showcased in Figures 4-9. Figure 9 depicts
the comparison of absolute errors of CCCM with the recent numerical methods
in [17,19,24].

Table 1. Numerical comparison of absolute errors (AE) at ¢ = 0.1 and N = 10.

x/128| Accurate| Solution | AE by | AE by | AE by | AE
Solution | by the | HWQA BGFCF B-spline | by the

cccMm [3] collo- collo- CCcCcM
cation cation
method method
[19] [9]

100 | 7.75 x 10716 | 5.08x10°®
10° | 2.93 x 10715 | 5.84x 1078
10® | 1.45 x 10715 | 7.16x1078
10® | 1.10 x 1074 | 6.60x1078
10° | 1.82 x 1074 | 6.33x1078
10 | 9.20 x 1074 | 5.93x10°8
104 | 8.73 x10'* | 5.86x10°8
104 | 7.89 x107'* | 5.79x10°8
10* | 6.86 x 10714 | 5.17x1078
104 | 5.86 x 1074 | 5.53x1078
104 | 5.09 x107'* | 5.54x10°8
103 | 1.26 x 10713 | 1.29x1078
10 | 1.20 x10713 | 1.02x1078

1 0.014204 | 0.014204 | 4.61
3 0.042613 | 0.042613 | 3.43
5 0.071022 | 0.071022 | 5.40
7
9

0.099431 | 0.099431 | 7.52
0.127840 | 0.127840 | 9.68
59 0.838068 | 0.838068 | 6.35
61 0.866477 | 0.866477 | 6.56
63 0.894886 | 0.894886 | 6.78
65 0.923295 | 0.923295 | 6.99
67 0.951704 | 0.951704 | 7.21
69 0.980113 | 0.980113 | 7.42
119 1.690340 | 1.690340 | 1.28
121 1.718750 | 1.718750 | 1.30
123 1.747159 | 1.747159 | 1.32 x 107 | 1.31 x 1073 | 7.40x10°
125 1.775568 | 1.775568 | 1.34 x 103 | 1.52 x 1073 | 4.51x10°
127 1.803977 | 1.803977 | 1.37 x 103 | 1.51 x 10713 | 1.52x107

XXX [X|IX|X[|[X[|X[|X|X|X]|X|X]|X|X

(=) Nl Bl Rl ol Nl ol Hol ol Foll Hojl Hol Rl Rol Nl R

Example 5.2. Consider the HS equation [17],

9% (x,t) 2E(x,t) 1 [0€(x,t)\*
oot @D +z< e ) =0 (5:2.1)
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Table 2. Numerical comparison of absolute errors (AE) at ¢ = 0.01 and N = 10.

x/128| Accurate| Solution | AE by | AE by | AE by | AE
Solution | by the | HWQA BGFCF B-spline | by the
CcCcCcM [3] collo- collo- CCCM
cation cation
method method
[19] [9]
1 0.015470 | 0.015470 | 7.36 x 102 | 6.76x 1077 | 7.37x107'°| 0
3 0.046410 | 0.046410 | 5.21 x 108 | 3.93 x 10 | 5.34x10° | 0
5 0.077351 | 0.077351 | 6.91 x 108 | 3.19 x 10716 | 9.68x10° | 0
7 0.108292 | 0.108292 | 1.10 x 107 | 8.30 x 10717 | 1.03x10°® | 0
9 0.139232 | 0.139232 | 1.32 x 107 | 3.83 x 10717 | 9.01x107° | 0
59 0.912747 | 0.912747 | 8.88 x 107 | 2.50 x 107'® | 8.26x107 | 0
61 0.943688 | 0.943688 | 9.16 x 107 | 3.17x 107*® | 8.17x107° | 0
63 0.974628 | 0.974628 | 9.46 x 107 | 3.74x 107'® | 8.07x107 | 0
65 1.005569 | 1.005569 | 9.76 x 1077 | 4.11x 107 | 7.96x10° | 0
67 1.036509 | 1.036509 | 1.01 x 10 | 4.21x 107! | 7.85x10° | 0
69 1.067450 | 1.067450 | 1.04 x 10 | 4.03x 1071 | 7.72x10° | 0
119 1.840965 | 1.840965 | 1.79 x 10 | 4.71x 107! | 1.80x10° | 0
121 1.871905 | 1.871905 | 1.82 x 10 | 3.29x 107! | 1.42x10° | 0
123 1.902846 | 1.902846 | 1.85 x 10 | 3.56 x 107'° | 1.03x10 | 0
125 1.933787 | 1.933787 | 1.88 x 10 | 6.09 x 107'° | 6.29%x107'°| 0
127 1.964727 | 1.964727 | 1.91 x 10 | 6.49x 107'% | 2.13x107'9| 0

Exact Solution CCCM Solution Ab59|Ute error

Figure 4. Graphical representation of the Exact, CCCM solution along with its absolute error at N =
4 (Example 5.1).

with physical conditions,

B 2 CO0(2,0)  2(14t)+25(1+1) 24238
&(x,0) = (24 3z)3 + 22+ 2; pra 110 ; £(0,t) = 110
(5.2.2)

2
242z (1+)+(243z(1+1)) 3
proposed method solution to this problem is illustrated in Tables 10 and 11 for

discrete values of x and ¢ concerning the fixed t and x respectively. Tables 7-9 display
the absolute error analysis of recent numerical methods with the proposed CCCM

, is the exact solution of Example 5.2. The
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Table 3. Numerical comparison of absolute errors (AE) at ¢ = 0.001 and N = 10.

x/128| Accurate| Solution | AE by | AE by | AE by | AE
Solution | by the | HWQA BGFCF B-spline by the

CcCcCcM [3] collo- collo- CcCccM
cation cation
method method
(19] (9]

1 0.015609 | 0.015609 | 1.00 x 107" | 7.19 x 10°'° | 7.60x 10712
3 0.046828 | 0.046828 | 5.00 x 107" | 4.10 x 107*® | 6.70x 10!
5 0.078046 | 0.078046 | 7.00 x 107! | 3.38 x 107'® | 1.78x 10710
7
9

0.109265 | 0.109265 | 1.00 x 10719 | 9.97 x 1071 | 3.27x 10710
0.140484 | 0.140484 | 1.00 x 10719 | 6.05 x 10°'? | 4.97x 10710
59 0.920954 | 0.920954 | 1.10 x 107 | 2.74 x 1077 | 8.46 x 1010
61 0.952172 | 0.952172 | 2.00 x 10719 | 3.42 x 1077 | 8.36x 10710
63 0.983391 | 0.983391 | 4.00 x 10719 | 4.01 x 1077 | 8.32x 10710
65 1.014610 | 1.014610 | 1.00 x 10 | 4.38 x 10°'7 | 8.30x 10719
67 1.045829 | 1.045829 | 1.00 x 109 | 4.48 x 10717 | 8.29x 10710
69 1.077047 | 1.077047 | 2.00 x 10 | 4.28 x 10717 | 8.26x 10710
119 1.857517 | 1.857517 | 4.00 x 10 | 4.99 x 10717 | 1.83x 10710
121 1.888736 | 1.888736 | 4.00 x 10 | 3.55 x 10717 | 1.43x 10719
123 1.919955 | 1.919955 | 4.00 x 109 | 3.97 x 10717 | 1.02x 10710
125 1.951173 | 1.951173 | 4.00 x 10 | 6.72 x 10717 | 6.21x 107!
127 1.982392 | 1.982392 | 4.00 x 10 | 6.82 x 10717 | 2.08x 107!

(=l el el ol o) ol Nl Hol Hoj ol Ha )l Hol ol Ho )l Nl K]

Table 4. Numerical comparison of absolute errors (AE) at = 0.1, 0.01 and 0.001(IN = 10).

t/128 xz = 0.1 z = 0.01 z =0.1
Accurate| Solution| AE Accurate| Solution| AE Accurate Solution| AE
Solu- by the | by the | Solu- by the | by the | Solu- by the | by the
tion CCCM | CCCM]| tion CCCM | CCCM| tion CCCM | cCCM

1 0.198449 | 0.198449 | 0 0.019844 | 0.019844 | 0 0.001984 | 0.001984 | 0

3 0.195419 | 0.195419 | 0 0.019541 | 0.019541 | 0 0.001954 | 0.001954 | 0

5 0.192481 | 0.192481 | 0 0.019248 | 0.019248 | 0 0.001924 | 0.001924 | 0

7 0.189629 | 0.189629 | 0 0.018962 | 0.018962 | 0 0.001896 | 0.001896 | 0

9 0.186861 | 0.186861 | 0 0.018686 | 0.018686 | 0 0.001868 | 0.001868 | 0

59 0.136898 | 0.136898 | 0 0.013689 | 0.013689 | 0 0.001368 | 0.001368 | 0

61 0.135449 | 0.135449 | 0 0.013544 | 0.013544 | 0 0.001354 | 0.001354 | 0

63 0.134031 | 0.134031 | 0 0.013403 | 0.013403 | 0 0.001340 | 0.001340 | 0

65 0.132642 | 0.132642 | 0 0.013264 | 0.013264 | 0 0.001326 | 0.001326 | 0
67 0.131282 | 0.131282 0.013128 | 0.013128 0.001312 | 0.001312
69 0.129949 | 0.129949 0.012994 | 0.012994 0.001299 | 0.001299
119 | 0.103643 | 0.103643 0.010364 | 0.010364 0.001036 | 0.001036
121 | 0.102811 | 0.102811 0.010281 | 0.010281 0.001028 | 0.001028
123 | 0.101992 | 0.101992 0.010199 | 0.010199 0.001019 | 0.001019
125 | 0.101185 | 0.101185 0.010118 | 0.010118 0.001011 | 0.001011
127 | 0.100392 | 0.100392 0.010039 | 0.010039 0.001003 | 0.001003

o|o|o|o|o|o|o
(==} en) el Hen ) el ol N o)
o|o|o|o|o|o|o
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Table 5. Comparison of error norms at ¢ = 0.1, 0.01, 0.001 for Example 5.1.
t=0.1

Error CcCCCM HWQA BGFCF Cubic
Method | method [6] | collocation trigonomet-
method [19] | ric B-spline
collocation
method [9]
Lo 0 3.40 x 1073 3.56 x 10713 1.97 x 1077
RMS 0 8.52 x 1074 8.90 x 10714 | 493 x 1078
Lo 0 1.37 x 1073 1.52 x 10713 7.16 x 1078
t = 0.01
L, 0 4.76 x 10~ 1.43 x 10~ 14 2.65 x 1078
RMS 0 1.19 x 1076 3.59 x 10715 6.63 x 107
Lo 0 1.91 x 1076 6.49 x 1015 1.03 x 1078
t = 0.001
L, 0 9.35 x 107° 1.54 x 10716 2.15 x 1079
RMS 0 2.33 x 1079 3.85 x 10717 | 5.38 x 10710
Lo 0 4.00 x 107° 6.82 x 10717 8.46 x 10710

Table 6. Comparision of error norms at @ = 0.1, 0.01, 0.001 for Example 5.1

Error | CCCM Error | CCCM Error | CCCM
Method Method Method

Lo 4.3884 x 10717 | Lo 5.2041x 10718 | Ly 3.7557 x 10719

RMS | 1.1331 x 107 | RMS | 1.3437x107'® | RMS | 9.6974 x 10~2°

Lo 2.7755 x 10717 | L 3.4694 x 10718 | L 2.1684 x 10~1°

Exact Solution

CCQM Solution

Absolute error

o
R
B
e e e
o e e

Figure 5. Graphical representation of the Exact, CCCM solution along with its absolute error at N =
10 (Example 5.1).

the obtained results were so close to the exact solution. Tables 10-11 provides the
error analysis of the CCCM solution for different values of « and ¢. A graphical
comparison of the accurate solution, CCCM solution, and the absolute error by the
CCCM is shown in figures 10-12, and figures 13 and 14 indicate the error analysis.
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(o] T T —0 =
-& Exact solution at x=0.1
0.25 —— CCCM solution at x=0.1
-& Exact solution at x=0.2
— CCCM solution at x=0.2
0.20+ @& Exact solution at x=0.3
— CCCM solution at x=0.3
-& Exact solution at x=0.4
g 0.15} — CCCM solution at x=0.4
A -@- Exact solution at x=0.5
— CCCM solution at x=0.5
0.10
0.05;
0.00 M b m ow o g PR
0.0 0.2 0.6 0.8 1.0
(o] O

Figure 6. Graphical representation of the Exact, CCCM solution at fixed x = 0.1,0.2,0.3,0.4,0.5 and

t € [0,1], At = 0.1 for Example 5.1(N = 4).

o

40

-& Exact solution at t=0.1

CCCM solution at t=0.1
-m- Exact solution at t=0.2
300 CCCM solution at t=0.2
& Exact solution at t=0.3
— CCCM solution at t=0.3
@& Exact solution at t=0.4
20} — CCCM solution at t=0.4
-&- Exact solution at t=0.5
— CCCM solution at t=0.5

S(x,t)

10

0.0 0.2

0.6 0.8 1.0

Figure 7. Graphical representation of the Exact CCCM solution at N = 10,t = 0.1,0.2,0.3,0.4,0.5

and z € [0, 1], Az = 0.1 for Example 5.1.

6. Conclusion

Here, we presented an efficient numerical method for the Hunter Saxton equation
using the Clique polynomial of the cocktail party graph. As per the literature
survey, the proposed method is a novel scheme for the Hunter-Saxton equation.
Clique polynomials of Cocktail party graphs are effectively transformed into HSE
through an operational matrix. The obtained numerical results are almost closer to
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—e— Absolute Error at x=0.1
" —-—a-- Absolute Error at x=0.2
1.x107 -==-#---- Absolute Error at x=0.3
—--0--- Absolute Error at x=0.4
L _9 —=-—Absolute Error at x=0.5
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Figure 8. Graphical representation of Absolute errors of Example 5.1 at N = 3, ¢t € [0,1], At = 0.1,z =
0.1,0.2,0.3,0.4,0.5.
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< --a-- A.E Error at t=0.1 by Fibonacci wavelet method ‘.‘
2.x1078F .o AE Error att=0.1 by Haar wavelet method Y
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Figure 9. Graphical representation of comparison of absolute errors of various numerical methods for
Example 5.1 at z € [0,1], Az = 0.1,t = 0.1, N = 3.

the exact solution when compared with the HWQA Solution [3], BGFCF colloca-
tion method [9], B-Spline collocation method [19], Fibonacci wavelet method [24],
Laguerre wavelet method [17]. Convergence analysis assured the efficiency of the
CCCM method and produced in terms of theorems. Application of the method
through numerical examples reflects good agreement with an exact solution in the
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Table 7. Numerical comparison of absolute errors (AE) of the proposed CCCM with the FWM, LWM,

and BSM of Example 5.2 for t = 0.1, N = 4.

x Accurate | Solution | AE by | AE by | AE by | AE by the
Solution | by the | Fib- Laguerre B-spline CcCCM
CCCM bonocci wavelet collo-

wavelet method cation

method [17] method

[24] [19]
0.1 3.287218 | 3.287218 | 1.06 x 10*° | 1.80 x 10°*° | 1.33x 10 | 1.07x 107
0.2 3.603134 | 3.603134 | 4.03 x 101° | 1.51 x 10°*° | 5.79x 10 | 1.37x 107
0.3 3.913602 | 3.913602 | 2.57 x 101° | 3.92 x 10 | 1.05x 10® | 6.20x 10°1°
0.4 4.219412 | 4.219412 | 2.55 x 10719 | 1.47 x 10® | 5.64 x 107 | 6.10x 107
0.5 4.521173 | 4.521173 | 1.10 x 10 | 1.67 x 10® | 5.45 x 107 | 1.54x 1073
0.6 4.819368 | 4.819368 | 2.27 x 1071 | 1.90 x 10® | 5.35 x 1077 | 2.77x 10713
0.7 5.114386 | 5.114386 | 1.99 x 10''° | 3.53 x 108 | 5.82 x 108 | 3.97 x 10°13
0.8 5.406549 | 5.406549 | 2.14 x 1010 | 8.83 x 108 | 3.52 x 108 | 4.58 x 10713
0.9 5.696123 | 5.696123 | 1.09 x 10 | 2.43 x 10® | 1.18 x 108 | 3.69 x 103

Table 8. Numerical comparison of absolute errors (AE) of the proposed CCCM with the FWM, LWM,

and BSM of Example 5.2 for t = 0.01, N = 4.

x Accurate | Solution | AE by | AE by | AE by | AE by the
Solution | by the | Fib- Laguerre B-spline CcCCM
ccCcM bonocci wavelet collo-

wavelet method cation

method [17] method

[24] [19]
0.1 3.868180 | 3.868180 | 8.87 x 101! | 2.58 x 10719 | 3.81x 107 | 4.54x 10716
0.2 4.213040 | 4.213040 | 3.37 x 10719 | 3.98 x 10710 | 8.65x 10® | 3.15 x 10°1°
0.3 4.552303 | 4.552303 | 2.20 x 10719 | 2.69 x 10° | 8.03 x 10® | 9.26 x 10°1°
0.4 4.886736 | 4.886736 | 2.40 x 10719 | 7.10 x 10° | 3.27 x 108 | 1.95 x 10714
0.5 5.216939 | 5.216939 | 6.34 x 10710 | 8.98 x 10 | 8.18 x 108 | 3.36 x 104
0.6 5.543393 | 5.543393 | 1.90 x 1010 | 2.05 x 10 | 8.74 x 10 | 4.97 x 10
0.7 5.866489 | 5.866489 | 1.41 x 1010 | 2.46 x 10 | 9.45 x 10 | 6.35 x 104
0.8 6.186554 | 6.186554 | 1.64 x 101° | 1.56 x 10 | 5.73 x 10 | 6.77 x 104
0.9 6.503863 | 6.503863 | 7.01 x 101° | 8.65 x 10 | 1.93 x 10 | 5.16 x 1074

given domain. The absolute error analysis of example 1 of the proposed method
solution with the exact solution is zero, confirming the CCCM’s ability. Increasing
the values of N (size of the matrix) leads to a better result, as seen in Tables 10-11.
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Table 9. Numerical comparison of absolute errors (AE) of the proposed CCCM with the FWM, LWM,
and BSM of Example 5.2 for ¢t = 0.001, N = 4.

x Accurate | Solution | AE by | AE by | AE by | AE by the
Solution | by the | Fib- Laguerre B-spline CcCCM
ccCM bonocci wavelet collo-

wavelet method cation

method [17] method

[24] [19]
0.1 3.934893 | 3.934893 | 8.77 x 1071 | 1.35 x 10719 | 7.29 x 10 | 7.52x 1077
0.2 4.282935 | 4.282935 | 3.33 x 1071% | 5.31 x 10719 | 6.15 x 10 | 3.87 x 10716
0.3 4.625364 | 4.625364 | 2.18 x 10719 | 8.25 x 10719 | 7.05 x 10 | 1.05 x 101°
0.4 4.962946 | 4.962946 | 2.39 x 10719 | 1.05 x 1071% | 8.99 x 10 | 2.13 x 101°
0.5 5.296278 | 5.296278 | 6.00 x 101° | 1.36 x 10°1° | 8.87 x 10 | 3.59 x 10°%°
0.6 5.625842 5.625842 1.90 x 10710 | 2.05 x 10710 | 8.74 x 10 | 5.23 x 10715
0.7 5.952031 5.952031 1.37 x 10719 | 6.20 x 107 | 9.97 x 1071° | 6.66 x 1071®
0.8 6.275169 | 6.275169 1.61 x 10719 | 1.25 x 10 | 6.06 x 10710 | 7.02 x 101®
0.9 6.595531 6.595531 6.73 x 10710 | 1.80 x 10719 | 2.04 x 10710 | 5.33 x 1015

Table 10. Numerical comparison of absolute errors (AE) at ¢ = 0.1,0.01,0.001 and N = 10, for
Example 5.2.

x/128| Solution | AE by the | Solution | AE by the | Solution | AE by the
by CcCCM by CCCM by CcCCM
CcCCM CCCM CcCcCcM
1 2.990248 | 5.39x 1071 | 3.544440 | 1.01x10~'7 | 3.608211 | 4.17x10~ '8
3 3.041016 | 1.34x10™ | 3.599747 | 2.50x1010 | 3.664018 | 4.06x10~7
5 3.091598 | 1.79x10™ | 3.654870 | 8.77x10710 | 3.719639 | 1.13x10716
7 3.142003 | 1.89x10°™ | 3.709813 | 1.86x1071% | 3.775081 | 2.22x10~16
9 3.192235 | 1.65x10™™ | 3.764582 | 3.19x10° | 3.830348 | 3.67x 106
59 4.403746 | 9.18x10°™ | 5.088424 | 1.20x10713 | 5.166543 | 1.23x10~
61 4.450784 | 9.76x10™ | 5.139900 | 1.27x10"*® | 5.218508 | 1.30x 10~
63 4.497732 | 1.03x10*2 | 5.191282 | 1.33x10*® | 5.270378 | 1.36x 10~
65 4.544592 | 1.09x102 | 5.242572 | 1.39x10~2 | 5.322156 | 1.42x10~
67 4.591367 | 1.15x102 | 5.293772 | 1.46x10~'2 | 5.373842 | 1.49x 10~
69 4.638056 | 1.20x107'2 | 5.344883 | 1.52x10713 | 5.425440 | 1.55x10~
119 5.781627 | 9.03x107'3 | 6.597568 | 1.02x10~'3 | 6.690140 | 1.03x10~ 4
121 5.826547 | 7.40x10°'3 | 6.646799 | 8.33x107'* | 6.739846 | 8.42x10~1°
123 5.871412 | 5.56x10713 | 6.695971 | 6.25x10714 | 6.789493 | 6.32x 10715
125 5.916223 | 3.51x10°'3 | 6.745085 | 3.94x1071* | 6.839081 | 3.98x10715
127 | 5.960979 | 1.23x107'3 | 6.794140 | 1.37x107'* | 6.888610 | 1.39x10'®

Author’s contribution

Both authors have accepted responsibility for the entire content of this manuscript
and approved its submission.



2058 A. N. Nirmala & S. Kumbinarasaiah

Table 11. Numerical comparison of absolute errors (AE) at ¢ = 0.1,0.01,0.001 and N = 6, for
Example 5.2.
x/128| Solution | AE by the | Solution | AE by the | Solution | AE by the
by CcCCM by CCCM by CCCM
CCCM CcCCM CCCM
1 2.990248 | 7.69%x107'° | 3.544440 | 2.60x107'7 | 3.608211 | 4.29x10~'8
3 3.041016 | 1.97x10715 | 3.599747 | 2.21x10716 | 3.664018 | 4.25x10~17
5 3.091598 | 2.75x10~* | 3.654870 | 8.53x1010 | 3.719639 | 6.14x10~'°
7 3.142003 | 3.12x107** | 3.709813 | 1.85x10~*° | 3.775081 | 2.31x10~17
9 3.192235 | 3.10x10~™* | 3.764582 | 3.20x10'® | 3.830348 | 3.78x 106
59 4.403746 | 7.18x10713 | 5.088424 | 9.70x10"** | 5.166543 | 9.94x10~'°
61 4.450784 | 7.54x10713 | 5139900 | 1.00x107'3 | 5.218508 | 1.03x 10~
63 4.497732 | 7.89x10713 | 5191282 | 1.04x107!3 | 5.270378 | 1.06x 10~
65 4.544592 | 8.23x10713 | 5.242572 | 1.07x10713 | 5.322156 | 1.10x10~
67 4.591367 | 8.54x10713 | 5293772 | 1.11x10713 | 5.373842 | 1.13x 10~
69 4.638056 | 8.84x10713 | 5.344883 | 1.14x10713 | 5.425440 | 1.16x10~
119 5.781627 | 3.76x10~3 | 6.597568 | 4.55x10~ | 6.690140 | 4.62x10~1°
121 5.826547 | 2.98x10713 | 6.646799 | 3.60x10~ | 6.739846 | 3.66x10~1°
123 5.871412 | 2.15x1071 | 6.695971 | 2.61x10~ | 6.789493 | 2.66x10~1°
125 5.916223 | 1.31x10~ | 6.745085 | 1.59x10~ | 6.839081 | 1.62x1071°
127 | 5.960979 | 4.41x10~™ | 6.794140 | 5.38x10~1° | 6.888610 | 5.47x10~16

Table 12. Error Analysis of example 2 at ¢ = 0.1, 0.01,0.001(N = 4).

Error CcCCM Error | CCCM Error | CCCM
Method Method Method

Lo 2.9421x1071% | Lo 3.6835x 10713 | Ly 3.7549x 10714

RMS 7.3552x10713 | RMS | 9.2087x10°'* | RMS | 9.3873x101®

Lo 1.2065x107* | Lo 1.5203x107* | Ly 1.5503x 1074

6

$(x.t) AK >
2

Figure 10. Graphical representation of the Exact, CCCM solution obtained at N = 4,¢t = 0.1,z €

[0,1], Az = 0.1 for Example 5.2.
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Figure 11. Graphical representation of the Exact, and CCCM solution at z = 0.1,0.2,0.3,0.4,0.5.(N =

4) for Example 5.2.
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Figure 12. Graphical representation of the Exact, CCCM solution at ¢ = 0.1,0.2,0.3,0.4,0.5. for

Example 5.2 (N = 4).
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Figure 13. Graphical representation of absolute errors for Example 5.2 at =z € [0,1],t =
0.1,0.01,0.001, N = 4.
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Figure 14. Graphical representation of comparison of absolute errors of CCCM, Fibonacci wavelet
method(FWM), Haar wavelet method(HWM)), B-spline method(BSM) at t = 0.1, N = 2,z € [0, 1] for

Example 5.2.
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