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Abstract The paper is concerned with stability of traveling wave fronts for
nonlocal diffusive systems. We adopt L1–weighted, L1– and L2–energy esti-
mates for the perturbation systems, and show that all solutions of the Cauchy
problem for the considered systems converge exponentially to traveling wave
fronts provided that the initial perturbations around the traveling wave fronts
belong to a suitable weighted Sobolev space.
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1. Introduction

Incorporating spatial variation into models is clearly central to understanding many
biological and physical systems. Diffusion has been frequently used to model move-
ment in spatially deterministic models [31,38]. Diffusion is a local process in which
particles move infinitesimal distances in infinitesimal units of time. Thus, Lee et
al. [15] argued that, for processes where the spatial scale for movement is large in
comparison with its temporal scale, nonlocal models using integro-differential may
allow for better estimation of parameters from data and provide more insight into
the biological system. Usually, the classic nonlocal model can be described by the
following single equation

∂u(t, x)

∂t
= D

[∫
R
J(x− y)u(t, y)dy − u(t, x)

]
+ f(u(t, x)), (1.1)

where the kernel J(x) is a probability density. The nonlocal model (1.1) with
monostable nonlinearity has been widely investigated by authors (see [2,6,8–10,37]).

The purpose of this work is to investigate the exponential stability of the epi-
demic model with nonlocal dispersals{

ut(x, t) = d1[(J1 ∗ u)(x, t)− u(x, t)] + h(u(x, t), v(x, t− τ1)),

vt(x, t) = d2[(J2 ∗ v)(x, t)− v(x, t)] + g(u(x, t− τ2), v(x, t)),
x ∈ R, t > 0,

(1.2)
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where τ1 > 0 and τ2 > 0 represent the time delays, u(x, t) and v(x, t) represent
the spatial concentration of the bacteria and the infective population at a point
x ∈ R and time t ≥ 0, respectively. d1 ≥ 0 and d2 ≥ 0 are diffusion coefficients.
(J1∗u)(x, t) (J2∗v)(x, t) represent the total number of the bacteria and the infective
population arriving at x from all possible locations y at time t, respectively.

If the diffusion kernel
Ji(x) = δ(x) + δ′′(x)

with δ being the Dirac delta function (see [25]), h(u, v) = −α1u+h(v) and g(u, v) =
−α2v + g(u), then (1.2) reduces to the traditional reaction diffusion systems{

ut(x, t) = d1uxx(x, t)− α1u(x, t) + h(v(x, t)),

vt(x, t) = d2vxx(x, t)− α2v(x, t) + g(u(x, t)),
x ∈ R, t > 0. (1.3)

Hsu and Yang [12] investigated the existence, uniqueness and asymptotic behavior
of traveling waves for (1.3). See also [3, 5, 43, 49, 50] for some special cases. More
recently, Hsu et al. [13] extended (1.3) to more general systems and obtained the
existence and stability of traveling waves.

If d1 = d2 = 0, h(u, v) = −α1u+av and g(u, v) = −α2v+g(u) for some constant
a > 0, (1.2) reduces to the classic ODE epidemic model{

ut(x, t) = −α1u(x, t) + av(x, t),

vt(x, t) = −α2v(x, t) + g(u(x, t)),
x ∈ R, t > 0, (1.4)

which was proposed in [4] to model the cholera epidemic spread.
From the view of mathematics, letting u = v, d1 = d2, J1 = J2 and h(u, v) =

g(u, v) = −αu + h(u), (1.2) is equivalent to the following single equation with the
nonlocal dispersal

ut(x, t) = d[(J ∗ u)(x, t)− u(x, t)]− αu(x, t) + h(u(x, t)), (1.5)

which can usually be used to describe the growth and spatial spread of single species
population. Yu and Yuan [56] investigated the existence of traveling waves for (1.5).
Especially, when h(u) = pue−qu, Pan [32] showed the existence of traveling waves
of (1.5). We refer to some references about the more general nonlocal monostable
equation with delays or without delays, see [32–34,40,47,48,55,57] and some refer-
ences cited therein.

In this article, we are mainly concerned with the existence and exponential
stability of traveling wave solutions for (1.2). More precisely, following the ideas
from [12, 13], we can also construct a pair of suitable upper and lower solutions
relying on careful local analysis near the stationary solutions. By using the theory
in [33], the existence of traveling wave solutions connecting two equilibria is admit-
ted. On the other hand, the stability on traveling waves is an important and inter-
esting project. The stability problems of traveling waves for some specific reaction–
diffusion have been widely studied, by using the spectral analysis method [36, 42],
a squeezing technique via the upper and lower solutions comparison [7, 23, 39, 44]
and the weighted–energy method [13,14,19–21,24,27,35,45,49,50,52,54] and many
references cited therein. By using weighted–energy method, authors [21, 34] also
investigated the stability of traveling wave fronts for single equation with nonlocal
diffusion. Recently, there have been many studies on the stability of other types
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of equations, see [1, 11, 16, 22, 46, 51, 53, 58, 59] and many references cited therein.
However, the stability of traveling wave solutions for multi–component systems with
nonlocal dispersals is less reported, see [54]. Motivated by the work of [13, 26, 29],
we will use the weighted energy method to establish the L1–weighted, L1– and L2–
energy estimates for the perturbations between solutions of (1.2) and the traveling
wave solutions, and show that all solutions of the Cauchy problem for the con-
sidered systems converge exponentially to traveling wave fronts provided that the
initial perturbations around the traveling wave fronts belong to a suitable weighted
Sobolev spaces.

The rest of our paper is organized as follows. In Section 2, we introduce some
notations and main results. In Section 3, by using the the weighted energy method
and the comparison principle, we study the asymptotic stability of traveling wave
fronts of (1.2). In Section 4, we give an application.

2. Main results

A traveling wave solution of (1.2) is a pair of solutions with the form u1(x, t) =
φ1(x + ct) and u2(x, t) = φ2(x + ct) for some functions φi(·) ∈ C2(R,R), i = 1, 2,
where c > 0 is a constant corresponding to the wave speed and ξ := x + ct is the
moving coordinate. Substituting (u1(x, t), u2(x, t)) = (φ1(ξ), φ2(ξ)) into the system
(1.2), we can derive the following wave profile equations{

cφ′1(ξ) = d1
( ∫

R J1(ξ − y)φ1(y)dy − φ1(ξ)
)

+ h(φ1(ξ), φ2(ξ − cτ1)),

cφ′2(ξ) = d2
( ∫

R J2(ξ − y)φ2(y)dy − φ2(ξ)
)

+ g(φ1(ξ − cτ2), φ2(ξ)).
(2.1)

Our goal is to prove the stability of monotone solutions of (2.1) satisfying the
following conditions:

lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = 0 and lim
ξ→+∞

(φ1(ξ), φ2(ξ)) = K. (2.2)

For convenience, let us denote the coefficients of the linear parts of h(u, v) and
g(u, v) at the equilibrium 0 = (0, 0) and K = (k1, k2), respectively, by

α1 = ∂uh(0, 0), α2 = ∂vg(0, 0), β1 = ∂vh(0, 0), β2 = ∂ug(0, 0),

ᾱ1 = ∂uh(k1, k2), ᾱ2 = ∂vg(k1, k2), β̄1 = ∂vh(k1, k2), β̄2 = ∂ug(k1, k2).

Two vectors (u1, · · · , un) ≤ (v1, · · · , vn) in Rn means ui ≤ vi for i = 1, 2, · · · , n.
An interval of Rn is defined according to this order. For convenience, denote by ∂i
the first differential operator with respect to the i-th variables, and ∂ij the second
differential operator with respect to the i-th and j-th variables.

In order to state our main results, throughout this article, we assume the non-
linearities h(·) and g(·) satisfy the following assumptions.

(J) Ji ∈ C(R), Ji(x) = Ji(−x) ≥ 0,
∫
R Ji(y)dy = 1, i = 1, 2, and∫

R |x|
jJi(x)e−λxdx <∞ for every λ > 0, j = 0, 1, 2, i = 1, 2.

(H1) Assume h2 := ∂2h ≥ 0, g1 := ∂1g ≥ 0 on the interval [(0, 0), (k1, k2)].

(H2) Assume αi < 0, ᾱi < 0,

α1α2 < β1β2 and ᾱ1ᾱ2 > β̄1β̄2.
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Since h(·), g(·) are C2, the assumption (H1) is equivalent to the following quasi-
monotonicity assumption:

there exist constants mi > 0, i = 1, 2 such that the functions ĥ(u, v) := m1u+
h(u, v) and ĝ(u, v) := m2v + g(u, v) satisfy

ĥ(φ1(ξ), φ2(ξ − cτ1)) ≥ ĥ(ψ1(ξ), ψ2(ξ − cτ1)), (2.3)

ĝ(φ1(ξ − cτ2), φ2(ξ)) ≥ ĝ(ψ1(ξ − cτ2), ψ2(ξ)), (2.4)

for any φ(ξ) := (φ1(ξ), φ2(ξ)), ψ(ξ) := (ψ1(ξ), ψ2(ξ)) ∈ C(R,R2) satisfying
0 ≤ ψi(ξ) ≤ φi(ξ) ≤ Ki for all ξ ∈ R and i = 1, 2.

The assumption (H2) can help us to investigate the characteristic roots of the
linearized equations for the profile equations (2.1) at the equilibria 0 and K, re-
spectively.

The c∗ is actually the threshold speed such that the linearized equation of (2.1)
at 0 has positive eigenvalues. Given a fixed c > 0, let λ1(c) be the smallest positive
eigenvalue of the linearized equation of (2.1) at 0, and λ2(c) be the largest negative
eigenvalue of the linearized equation of (2.1) at K.

Now we recall the known result on the existence of traveling wave fronts (see
[17,30]).

Theorem 2.1 (Existence). Assume (J) and (H1)–(H2) hold. There exists a positive
constant c∗ > 0 such that (1.2) admits a positive traveling wave front (φ1(x +
ct), φ2(x+ ct)) with the wave speed c ≥ c∗ and satisfying (2.2). For 0 < c < c∗, the
system (1.2) has no positive monotone traveling wave solution satisfying (1.2).

Next, we state the stability result of traveling wave fronts derived in Theorem
4.1. Before that, let us introduce the following notations.

◦ Let I be an interval, especially I = R, then we denote L2(I) by the space of
the square integrable functions on I.

◦ The space Hk(I) (k ≥ 0) means the Sobolev space of the L2–functions f(x)

defined on I whose derivatives di

dxi f(i = 1, · · · , k) also belong to L2(I).

◦ Let us write L2
ω(I) and W k,p

ω (I) by the weight L2–space and weight Sobolev
space with positive weighted function ω(x) : R → R, respectively. For any
f ∈ L2

ω(I) or W k,p
ω (I), its norm is given (resp.) by

‖f‖L2
w(I) =

( ∫
I

w(x)|f(x)|2dx
)1/2

or ‖f‖Wk,p
ω (I)

=
( k∑
i=0

∫
I

ω(x)| d
i

dxi
f(x)|pdx

)1/p
.

Furthermore, we set Hk
w(I) := W k,2

ω (I).

◦ Letting T > 0 and B be a Banach space, we denote by C0([0, T ];B) the space
of the B–valued continuous functions on [0, T ] and L2([0, T ];B) as the space of
the B–valued L2–function on [0, T ]. The corresponding spaces of the B–valued
functions on [0,∞) are defined similarly.
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Define the weight function ω(·) by

ω(ξ) =

{
ω1(ξ), for ξ ≤ ξ0,
1, for ξ > ξ0,

with ω1(ξ) := e−γ(ξ−ξ0), (2.5)

where γ and ξ0 is large enough, which will be determined later.
In order to obtain the stability, we assume the nonlinearities h(·) and g(·) satisfy

the following assumptions.

(H3) ∂ijh ≤ 0 and ∂ijg ≤ 0 for i, j = 1, 2 on the interval [(0, 0), (k1, k2)].

(H4) Assume ᾱ1 + β̄2 < 0, ᾱ2 + β̄1 < 0,

2ᾱ1 + β̄1 + β̄2 < 0 and 2ᾱ2 + β̄1 + β̄2 < 0.

Let (φ1(ξ), φ2(ξ)) be a traveling wave solution of (1.2) satisfying (2.2) with the
wave speed c > c∗. Motivated by the work of [13,26,29], we will adopt the weighted
energy method to establish the L1–weighted, L1– and L2–energy estimates (see
Section 4) for the perturbations between solutions of (1.2) and (φ1(ξ), φ2(ξ)).

Moreover, we recall the following lemmas from [12, 17], which will play an im-
portant role in establishing the L1–weighted, L1– and L2–energy estimates.

Lemma 2.1. (1) If c > c∗, ∆(c, λ) = 0 has two positive roots λ1(c) < λ2(c) in
(0, λcm). Moreover, fi(c, λ1(c) + ε) < 0 for i = 1, 2 and ∆(c, λ1(c) + ε) > 0 when
ε > 0 is small enough, where

fi(c, λ) = di

∫
R
Ji(y)e−λydy − cλ− di + αi, i = 1, 2.

(2) Let A = (aij) be a two by two matrix such that aii < 0, i = 1, 2 and aij > 0
for i 6= j. Then the system of the following equalities{

a11x1 + a12x2 < 0 (> 0, resp.),

a21x1 + a22x2 < 0 (> 0, resp.),
(2.6)

has a solution (x1, x2) with xi > 0, i = 1, 2, if and only if detA > 0 (< 0, resp.).

Then, by the comparison principle and Hölder inequality, we can obtain the
following stability result.

Theorem 2.2 (Asymptotic stability). Assume that (J) and (H1)–(H4) hold. Let
τ := max{τ1, τ2}. For a given traveling wave front (φ1(x+ ct), φ2(x+ ct)) of (1.2)
satisfying (2.2) with the wave speed c > c∗. If the Cauchy problem (1.2) with the
initial data (u0(x, s), v0(x, s)) satisfying the following conditions

u0(x, s)− φ1(x+ cs), v0(x, s)− φ2(x+ cs) ∈ C(L1
ω(R) ∩H1(R)),

0 ≤ (u0(x, s), v0(x, s)) ≤ K for (x, s) ∈ R× [−τ, 0],
(2.7)

then the solution of (1.2) with initial data (u0(x, s), v0(x, s)) uniquely exists and
satisfies

sup
x∈R
|u(x, t)− φ1(x+ ct)| ≤ Ce−µt, sup

x∈R
|v(x, t)− φ2(x+ ct)| ≤ Ce−µt, t ≥ 0

for some positive constants µ and C.
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3. Exponential stability of traveling wave fronts

This section is devoted to proving the exponential stability of noncritical traveling
wave fronts of (1.2) and (2.2) with an exponential convergence rate. Throughout
this section, it is assumed that (J) and (H1)–(H4) hold. We first give some aux-
iliary statements about the global solutions of the Cauchy problem (1.2) and the
comparison principle. Via the standard energy method and continuity extension
method (see, [27,28]), we have the following result.

Proposition 3.1. Assume that (J) and (H1)–(H4) hold. If the initial data
(u0(x, s), v0(x, s)) satisfies (2.7), then (1.2) admits a unique solution (u(x, t), v(x, t))
such that

u(·, t)− φ1(·+ ct), v(·, t)− φ2(·+ ct) ∈ C(L1
ω(R) ∩H1(R)) for t ∈ [0,∞) and

0 ≤ (u(x, t), v(x, t)) ≤ K for (x, t) ∈ R× [0,∞).

Similar to the proofs of Proposition 3 in [24], Lemma 3.2 in [41] and Lemma 3
in [18], we easily obtain the following comparison principle.

Proposition 3.2. Assume that (J) and (H1)–(H2) hold. Let (u−(x, t), v−(x, t)) and
(u+(x, t), v+(x, t)) be the solutions of (1.2) with the initial data (u−0 (x, s), v−0 (x, s))
and (u+0 (x, s), v+0 (x, s)), respectively. If

(u−0 (x, s), v−0 (x, s)) ≤ (u+0 (x, s), v+0 (x, s)) for (x, s) ∈ R× [−τ, 0].

Then
(u−(x, t), v−(x, t)) ≤ (u+(x, t), v+(x, t)) for (x, t) ∈ R× R+.

Assume the initial data (u0(x, s), v0(x, s)) satisfies the assumptions of Theorem
2.2. Let u−0 (x, s) , min{u0(x, s), φ1(x+ cs)}, v−0 (x, s) , min{v0(x, s), φ2(x+ cs)},
u+0 (x, s) , max{u0(x, s), φ1(x + cs)}, v+0 (x, s) , max{v0(x, s), φ2(x + cs)} and
(u±(x, t), v±(x, t)) be the nonnegative solutions of system (1.2) with the initial data
(u±0 (x, s), v±0 (x, s)). Then it follows from Proposition 3.2 (the comparison principle)
that

0 ≤ u−(x, t) ≤ u(x, t), φ1(x+ ct) ≤ u+(x, t) ≤ k1,
0 ≤ v−(x, t) ≤ v(x, t), φ2(x+ ct) ≤ v+(x, t) ≤ k2

for (x, t) ∈ R× R+.
Denote

U+(ξ, t) , u+(ξ − ct, t)− φ1(ξ), V +(ξ, t) , v+(ξ − ct, t)− φ2(ξ)

and
U−(ξ, t) , φ1(ξ)− u−(ξ − ct, t), V −(ξ, t) , φ2(ξ)− v−(ξ − ct, t),

where ξ = x+ ct. Furthermore, since

(U−0 (ξ, s), V −0 (ξ, s)) ≤ (U0(ξ, s), V0(ξ, s)) ≤ (U+
0 (ξ, s), V +

0 (ξ, s)), (ξ, s) ∈ R×[−τ, 0],

by the Comparison Theorem, we have

(U−(x, t), V −(x, t)) ≤ (U(x, t), V (x, t)) ≤ (U+(x, t), V +(x, t)), (x, t) ∈ R× [0,∞).
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Therefore, our goal is to show that there exist positive constants C and µ such that

sup
ξ∈R
|U±(ξ, t)|, sup

ξ∈R
|V ±(ξ, t)| ≤ Ce−µt, t ≥ 0. (3.1)

For convenience, we denote the column vectors

X(ξ, t) :=
(
U(ξ, t), V (ξ − cτ1, t− τ1)

)T
, Y (ξ, t) :=

(
U(ξ − cτ2, t− τ2), V (ξ, t)

)T
,

Φ(ξ) := (φ1(ξ), φ2(ξ − cτ1))T , Ψ(ξ) := (φ1(ξ − cτ2), φ2(ξ))T .

For the sake of convenience, let us simply denote U+(ξ, t), V +(ξ, t) by
U(ξ, t), V (ξ, t). Hence, U(ξ, t) and V (ξ, t) satisfy

∂tU(ξ, t) + c∂ξU(ξ, t)− d1[(J1 ∗ U)(ξ, t)− U(ξ, t)]

= h(U(ξ, t) + φ1(ξ), V (ξ − cτ1, t− τ1) + φ2(ξ − cτ1))− h(φ1(ξ), φ2(ξ − cτ1)),

∂tV (ξ, t) + c∂ξV (ξ, t)− d2[(J2 ∗ V )(ξ, t)− V (ξ, t)]

= g(U(ξ − cτ2, t− τ2) + φ1(ξ − cτ2), V (ξ, t) + φ2(ξ))− g(φ1(ξ − cτ2), φ2(ξ)),

(3.2)

with the initial data {
U0(ξ, s) , u+0 (ξ, s)− φ1(ξ + cs),

V0(ξ, s) , u+0 (ξ, s)− φ2(ξ + cs),

where (ξ, s) ∈ R × [−τ, 0]. Obviously, U0(x, s), V0(x, s) ∈ Xω and Proposition 3.1
implies that the solution U(ξ, t), V (ξ, t) ∈ Nω1

for each t ∈ [0,+∞).
According to (H3), it is easy to see that (3.2) is equivalent to the following

system:
∂tU(ξ, t) + c∂ξU(ξ, t)− d1[(J1 ∗ U)(ξ, t)− U(ξ, t)]−∇h(Φ(ξ))X(ξ, t)

= 1
2X(ξ, t)TA

(
Φ̄(ξ)

)
X(ξ, t) ≤ 0,

∂tV (ξ, t) + c∂ξV (ξ, t)− d2[(J2 ∗ V )(ξ, t)− V (ξ, t)]−∇g(Ψ(ξ))Y (ξ, t)

= 1
2Y (ξ, t)TB

(
Ψ̄(ξ)

)
Y (ξ, t) ≤ 0,

(3.3)

where Φ(ξ) ≤ Φ̄(ξ) ≤ Φ(ξ) +X(ξ, t) and Ψ(ξ) ≤ Ψ̄(ξ) ≤ Ψ(ξ) + Y (ξ, t). To obtain
the estimations of (3.1), we first establish the L1

w1
-energy, L1-energy and L2-energy

estimates for (U(ξ, t), V (ξ, t)) in the following subsections.

3.1. L1
ω1
–energy and L1–energy estimates

Then we have the following results.

Lemma 3.1. Assume that (J) and (H1)–(H4) hold. For any c > c∗ and γ =
λ1(c) + ε ( ε > 0 small enough), there exist positive constants µ and C such that

eµt(‖U(·, t)‖L1
ω1

(R) + ‖V (·, t)‖L1
ω1

(R))

+

∫ t

0

eµs(‖U(s)‖L1
ω1

(R) + ‖V (s)‖L1
ω1

(R))ds ≤ C

for each t ≥ 0, where ω1(ξ) = e−γ(ξ−ξ0).
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Proof. Multiplying the equation (3.3) by eµtω1(ξ) for some µ > 0, respectively,
and integrating it over R× [0, t], we can obtain

0 ≥
∫ t

0

∫ ∞
−∞

eµsω1∂sU(ξ, s) + eµsω1

(
c∂ξU(ξ, s)− d1(J1 ∗ U)(ξ, s) + d1U(ξ, s)

− a1U(ξ, s)− β1V (ξ − cτ1, s− τ1)
)
dξds

=

∫ t

0

∫ ∞
−∞

(eµsω1U(ξ, s))s − µeµsω1U(ξ, s) + (ceµsω1U(ξ, s))ξ + cγeµsω1U(ξ, s)

− ω1

(
d1(J1 ∗ U)(ξ, s)− (d1 − α1)U(ξ, s) + β1V (ξ − cτ1, s− τ1)

)
dξds

= eµt‖U(·, t)‖L1
ω1

(R) − ‖U0(0)‖L1
ω1

(R) −
∫ t

0

∫ ∞
−∞

eµsω1β1V (ξ − cτ1, s− τ1)dξds

+

∫ t

0

∫ ∞
−∞

eµsω1U(ξ, s)
(
− µ+ cγ − d1

∫
R
J1(y)e−γydy + (d1 − α1)

)
dξds

≥ eµt‖U(·, t)‖L1
ω1

(R) − ‖U0(0)‖L1
ω1

(R)

+

∫ t

0

∫ ∞
−∞

eµsω1U(ξ, s)
(
− µ+ cγ − d1

∫
R
J1(y)e−γydy + (d1 − α1)

)
dξds

−
∫ t

0

∫ ∞
−∞

β1e
µ(s+τ1)e−γcτ1ω1V (ξ, s)dξds

−
∫ 0

−τ1

∫ ∞
−∞

β1e
µ(s+τ1)e−γcτ1ω1V (ξ, s)dξds.

Hence, we have

eµt‖U(·, t)‖L1
ω1

(R)

+

∫ t

0

∫ ∞
−∞

eµsω1U(ξ, s)
(
− µ+ cγ − d1

∫
R
J1(y)e−γydy + (d1 − α1)

)
dξds

−
∫ t

0

∫ ∞
−∞

β1e
µ(s+τ1)e−γcτ1ω1V (ξ, s)dξds ≤ C1 (3.4)

for some constant C1 > 0. Similarly, it follows from the second equation of (3.3)
that

0 ≥
∫ t

0

∫ ∞
−∞

eµsω1∂sV (ξ, s) + eµsω1

(
c∂ξV (ξ, s)− d2(J2 ∗ V )(ξ, s) + d2V (ξ, s)

− α2V (ξ, s)− β2U(ξ − cτ2, s− τ2)
)
dξds

=

∫ t

0

∫ ∞
−∞

(eµsω1V (ξ, s))s − µeµsω1V (ξ, s) + (ceµsω1V (ξ, s))ξ + cγeµsω1V (ξ, s)

− ω1

(
d2(J2 ∗ V )(ξ, s)− (d2 − α2)V (ξ, s) + β2U(ξ − cτ2, s− τ2)

)
dξds

= eµt‖V (·, t)‖L1
ω1

(R) − ‖V0(0)‖L1
ω1

(R) −
∫ t

0

∫ ∞
−∞

eµsω1β1U(ξ − cτ2, s− τ2)dξds

+

∫ t

0

∫ ∞
−∞

eµsω1V (ξ, s)
(
− µ+ cγ − d2

∫
R
J2(y)e−γydy + (d2 − α2)

)
dξds
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≥ eµt‖V (·, t)‖L1
ω1

(R) − ‖V0(0)‖L1
ω1

(R)

+

∫ t

0

∫ ∞
−∞

eµsω1V (ξ, s)
(
− µ+ cγ − d2

∫
R
J2(y)e−γydy + (d2 − α2)

)
dξds

−
∫ t

0

∫ ∞
−∞

β2e
µ(s+τ2)e−γcτ2ω1U(ξ, s)dξds

−
∫ 0

−τ2

∫ ∞
−∞

β2e
µ(s+τ2)e−γcτ2ω1U(ξ, s)dξds.

Thus, it holds

eµt‖V (·, t)‖L1
ω1

(R)

+

∫ t

0

∫ ∞
−∞

eµsω1V (ξ, s)
(
− µ+ cγ − d2

∫
R
J2(y)e−γydy + (d2 − α2)

)
dξds

−
∫ t

0

∫ ∞
−∞

β2e
µ(s+τ2)e−γcτ2ω1U(ξ, s)dξds ≤ C2 (3.5)

for some constant C2 > 0. Let γ = λ1 + ε, where ε > 0 is small enough such that
fi(λ1 + ε) < 0 for i = 1, 2. By Lemma 2.1, there are two positive constants p and q
such that

pf1(γ) + qβ2e
−γcτ2 = p

(
− cγ + d1

∫
R
J1(y)e−γydy − (d1 − α1)

)
+ qβ2e

−γcτ2 < 0

and

pβ1e
−γcτ1 + qf2(γ)+ = pβ1e

−γcτ1 + q
(
− cγ + d2

∫
R
J2(y)e−γydy − (d2 − α2)

)
< 0.

Multiplying (3.4)–(3.5) by p and q, respectively, and adding them, we can obtain

eµt
(
p‖U(·, t)‖L1

ω1
(R) + q‖V (·, t)‖L1

ω1
(R)

)
−
(
pµ+ pf1(γ) + qβ2e

−γcτ2
)∫ t

0

‖U(·, s)‖L1
ω1

(R)ds

−
(
qµ+ qf2(γ) + pβ1e

−γcτ1
)∫ t

0

‖V (·, s)‖L1
ω1

(R)ds

≤pC1 + qC2, (3.6)

where fi(γ) = −cγ + di
∫
R Ji(y)e−γydy − (di − αi), i = 1, 2. By taking µ > 0 small

enough, it follows that

−
(
pµ+ pf1(γ) + qβ2e

−γcτ2
)
> 0 and −

(
qµ+ qf2(γ) + pβ1e

−γcτ1
)
> 0.

Then we establish the key energy estimate

‖U(·, t)‖L1
ω1

(R) + ‖V (·, t)‖L1
ω1

(R)

+

∫ t

0

eµ(s−t)
(
‖U(s)‖L1

ω1
(R) + ‖V (s)‖L1

ω1
(R)

)
ds ≤ Ce−µt.

This completes the proof.
Using the L1

ω1
–estimate of Lemma 3.1, we further have the following L1–estimate.
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Lemma 3.2. Assume that (J) and (A1)–(A2) hold, in addition, (A3) holds. For
any c > c∗, there exist positive constants µ, ξ0 and C such that

eµt(‖U(·, t)‖L1(R) + ‖V (·, t)‖L1(R)) ≤ C for all t ≥ 0.

Proof. Multiplying the inequalities (3.3) by eµt and integrating it over R× [0, t],
we can obtain

0 ≥
∫ t

0

∫ ∞
−∞

eµs∂sU(ξ, s) + ceµs∂ξU(ξ, s) + eµs
(
− d1(J1 ∗ U)(ξ, s) + d1U(ξ, s)

)
− eµs

(
h1(Φ(ξ))U(ξ, s) + h2(Φ(ξ))V (ξ − cτ1, s− τ1)

)
dξds

=

∫ t

0

∫ ∞
−∞

(eµsU(ξ, s))s − µeµsU(ξ, s) + (ceµsU(ξ, s))ξ + eµs
(
− d1(J1 ∗ U)(ξ, s)

+ d1U(ξ, s)− h1(Φ(ξ))U(ξ, s)− h2(Φ(ξ))V (ξ − cτ1, s− τ1)
)
dξds

= eµt‖U(·, t)‖L1(R) − ‖U(0)‖L1(R) +

∫ t

0

∫ ∞
−∞

eµs
(
− µ− h1(Φ(ξ))

)
U(ξ, s)dξds

−
∫ t

0

∫ ∞
−∞

eµsh2(Φ(ξ))V (ξ − cτ1, s− τ1)dξds

≥ eµt‖U(·, t)‖L1(R) − ‖U(0)‖L1(R) +

∫ t

0

∫ ∞
−∞

eµs
(
− µ− h1(Φ(ξ))

)
U(ξ, s)dξds

−
∫ t

0

∫ ∞
−∞

eµ(s+τ1)h2(Φ(ξ + cτ1))V (ξ, s)dξds

−
∫ 0

−τ1

∫ ∞
−∞

eµ(s+τ1)h2(Φ(ξ + cτ1))V (ξ, s)dξds

= eµt‖U(·, t)‖L1(R) − ‖U(0)‖L1(R) −
∫ 0

−τ1

∫ ∞
−∞

eµ(s+τ1)h2(Φ(ξ + cτ1))V (ξ, s)dξds

+

∫ t

0

(∫ ξ0

−∞
+

∫ ∞
ξ0

)
eµs
(
Q1(ξ)U(ξ, s) +Q2(ξ)V (ξ, s)

)
dξds, (3.7)

where Q1(ξ) := −µ− h1(Φ(ξ)) and Q2(ξ) := −eµτ1h2(Φ(ξ + cτ1)).
Since ω1(ξ) ≥ 1 for ξ ≤ ξ0, by Lemma 3.1, we have∣∣∣ ∫ t

0

∫ ξ0

−∞
eµs
(
Q1(ξ)U(ξ, s) +Q2(ξ)V (ξ, s)

)
dξds

∣∣∣
≤C4

∫ t

0

eµs
(
‖U(·, s)‖L1

ω1
(−∞,ξ0] + ‖V (·, s)‖L1

ω1
(−∞,ξ0]

)
ds

≤C5 (3.8)

for some positive constants C4 and C5. Then it follows from (3.7) and (3.8), we
have

eµt‖U(·, t)‖L1(R) +

∫ t

0

∫ ∞
ξ0

eµs
(
Q1(ξ)U(ξ, s) +Q2(ξ)V (ξ, s)

)
dξds ≤ C6 (3.9)

for some positive constant C6. Similarly, there exists a constant C7 > 0 such that

eµt‖V (·, t)‖L1(R) +

∫ t

0

∫ ∞
ξ0

eµs
(
U1(ξ)U(ξ, s) + U2(ξ)V (ξ, s)

)
dξds ≤ C7, (3.10)
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where U1(ξ) := −eµτ2g1(Ψ(ξ + cτ2)) and U2(ξ) := −µ− g2(Ψ(ξ)).
Summing (3.9) and (3.10), there exists a constant C > 0 such that

eµt(‖U(·, t)‖L1(R) + ‖V (·, t)‖L1(R))

+

∫ t

0

∫ +∞

ξ0

eµs
([
Q1(ξ) + U1(ξ)

]
U(ξ, s) +

[
Q2(ξ) + U2(ξ)

]
V (ξ, s)

)
dξds ≤ C.

(3.11)

Taking µ = 0, according to the assumption (H4), we see that

lim
ξ→+∞

(Q1(ξ) + U1(ξ)) = −h1(k1, k2)− g1(k1, k2) = −ᾱ1 − β̄2 > 0

and

lim
ξ→+∞

(Q2(ξ) + U2(ξ)) = −h2(k1, k2)− g2(k1, k2) = −ᾱ2 − β̄1 > 0.

Then choosing ξ0 > 0 large enough and µ > 0 small enough, for ξ > ξ0, we have

eµt
(
‖U(·, t)‖L1(R) + ‖V (·, t)‖L1(R)

)
≤ C for all t ≥ 0.

This completes the proof.

3.2. L2 –energy estimate

Now we begin to establish the following L2–energy estimate.

Lemma 3.3. Assume that (J) and (H1)–(H4) hold. For any c > c∗, there exist
positive constants ξ0 and C such that for t ≥ 0, we have

‖U(·, t)‖2L2(R) + ‖V (·, t)‖2L2(R) ≤ C.

Proof. Multiplying the inequalities (3.3) by U(ξ, t) and V (ξ, s), respectively, and
integrating them over R× [0, t], we can obtain

0 ≥
∫ t

0

∫ +∞

−∞

{
(U2(ξ, s))s + c(U2(ξ, s))ξ − 2d1

∫
R
J1(y)U(ξ − y, s)U(ξ, s)dy

+ 2d1U
2(ξ, s)− 2U(ξ, s)

(
h1(Φ(ξ))U(ξ, s) + h2(Φ(ξ))V (ξ − cτ1, s− τ1)

)}
dξds

≥
∫ t

0

∫ +∞

−∞

{
(U2(ξ, s))s + c(U2(ξ, s))ξ +

∫
R
−d1J1(y)U2(ξ − y, s)dy

− d1
∫
R
J1(y)U2(ξ, s)dy + 2d1U

2(ξ, s)− 2h1(Φ(ξ))U2(ξ, s)

− h2(Φ(ξ))U2(ξ, s)− h2(Φ(ξ))V 2(ξ − cτ1, s− τ1)
}
dξds

≥ ‖U(·, t)‖2L2(R) − ‖U(0)‖2L2(R) −
∫ 0

−τ1

∫ +∞

−∞
h2(Φ(ξ + cτ1))V 2(ξ, s)dξds

+

∫ t

0

∫ +∞

−∞

(
(−2h1(Φ(ξ))− h2(Φ(ξ)))U2(ξ, s)

+ (−h2(Φ(ξ + cτ1)))V 2(ξ, s)
)
dξds
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= ‖U(·, t)‖2L2(R) − ‖U(0)‖2L2(R) −
∫ 0

−τ1

∫ +∞

−∞
h2(Φ(ξ + cτ1))V 2(ξ, s)dξds

+

∫ t

0

(∫ ξ0

−∞
+

∫ +∞

ξ0

)(
F1(ξ)U2(ξ, s) + F2(ξ)V 2(ξ, s)

)
dξds, (3.12)

where F1(ξ) := −2h1(Φ(ξ))− h2(Φ(ξ)) and F2(ξ) := −h2(Φ(ξ + cτ1)).
Since ω1(ξ) ≥ 1 for ξ ≤ ξ0 and 0 ≤ U(ξ, t) ≤ k1, Lemma 3.1 can guarantee that∫ ξ0

−∞
U2(ξ, t)dξ ≤ k1

∫ ξ0

−∞
ω1U(ξ, t)dξ ≤ k1‖U(·, t)‖L1

ω1
(R) ≤ Ce−µt for t > 0.

Similarly, it yields ∫ ξ0

−∞
V 2(ξ, t)dξ ≤ Ce−µt for t > 0.

Then,

|
∫ t

0

∫ ξ0

−∞

(
F1(ξ)U2(ξ, s) + F2(ξ)V 2(ξ, s)

)
dξds |

≤C8

∫ t

0

∫ ξ0

−∞

(
U2(ξ, s) + V 2(ξ, s)

)
dξds

≤C9,

where C8 and C9 are positive constants. Thus, it holds

‖U(·, t)‖2L2(R) +

∫ t

0

∫ +∞

ξ0

(
F1(ξ)U2(ξ, s) + F2(ξ)V 2(ξ, s)

)
dξds ≤ C10 (3.13)

for some positive constant C10.
Similarly, there exists a constant C11 > 0 such that

‖V (·, t)‖2L2(R) +

∫ t

0

∫ +∞

ξ0

(
R1(ξ)U2(ξ, s) +R2(ξ)V 2(ξ, s)

)
dξds ≤ C11, (3.14)

where R1(ξ) := −g1(Ψ(ξ + cτ2)) and R2(ξ) := −g1(Ψ(ξ))− 2g2(Ψ(ξ)).
Summing (3.13) and (3.14), it follows

‖U(·, t)‖2L2(R) + ‖V (·, t)‖2L2(R)

+

∫ t

0

∫ +∞

ξ0

{(
F1(ξ) +R1(ξ)

)
U2(ξ, s) +

(
F2(ξ) +R2(ξ)

)
V 2(ξ, s)

}
dξds ≤ C.

(3.15)

According to (H4), it yields

lim
ξ→+∞

(
F1(ξ)+R1(ξ)

)
= −2h1(k1, k2)−h2(k1, k2)−g1(k1, k2) = −2ᾱ1−β̄1−β̄2 > 0

and

lim
ξ→+∞

(
F2(ξ)+R2(ξ)

)
= −h2(k1, k2)−g1(k1, k2)−2g2(k1, k2) = −2ᾱ2−β̄1−β̄2 > 0.
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Thus for ξ0 > 0 large enough and ξ ≥ ξ0, it holds

F1(ξ) +R1(ξ) > 0 and F2(ξ) +R2(ξ) > 0.

By (3.15), it holds

‖U(·, t)‖2L2(R) + ‖V (·, t)‖2L2(R) ≤ C.

Then the assertion of this lemma follows. This completes the proof.
In order to derive a L2–energy estimate for (Uξ(ξ, t), Vξ(ξ, t)), we differentiate

the system (3.2) with respect to ξ, we can obtain

∂tξU(ξ, t) + c∂ξξU(ξ, t)− d1
(

(J1 ∗ Uξ)(ξ, t)− Uξ(ξ, t)
)

−∇h(X(ξ, t) + Φ(ξ))Xξ(ξ, t)

=
(
∇h(X(ξ, t) + Φ(ξ))−∇h(Φ(ξ))

)
Φ′(ξ) := Hh(ξ, t) ≤ 0,

∂tξV (ξ, t) + c∂ξξV (ξ, t)− d2
(

(J2 ∗ Vξ)(ξ, t)− Vξ(ξ, t)
)

−∇g(Y (ξ, t) + Ψ(ξ))Yξ(ξ, t)

=
(
∇g(Y (ξ, t) + Ψ(ξ))−∇g(Ψ(ξ))

)
Ψ′(ξ) := Hg(ξ, t) ≤ 0.

(3.16)

Similar to the process of Lemmas 3.1–3.3, we can obtain the following result.

Lemma 3.4. Assume that (J) and (H1)–(H4) hold. For any c > c∗, there exist
positive constants ξ0 and C such that for t ≥ 0, it holds

‖Uξ(·, t)‖2L2(R) + ‖Vξ(·, t)‖2L2(R) ≤ C.

3.3. Proof of Theorem 2.2

Lemma 3.5. Assume that (J) and (H1)–(H4) hold. For any c > c∗, it holds

‖U(·, t)‖L∞(R) ≤M1e
− 1

3µ1t,

‖V (·, t)‖L∞(R) ≤M2e
− 1

3µ2t

for some positive constants µ1, µ2, M1, M2 and t > 0.

Proof. It is easily checked that

‖U(·, t)‖2L2(R) =

∫
R
U2(·, t)dξ

≤ sup
ξ∈R
|U(ξ, t)|

∫
R
|U(·, t)|dξ

= ‖U(·, t)‖L∞(R) · ‖U(·, t)‖L1(R) (3.17)

for any t ≥ 0. Since U(·, t) ∈ H2(R) ↪→ C1(R), by Hölder inequality, we have

U2(·, t) = 2

∫ ξ

−∞
Uξ(·, t)U(·, t)dξ

≤ 2
(∫ ξ

−∞
|Uξ(·, t)|2dξ

) 1
2
(∫ ξ

−∞
|U(·, t)|2dξ

) 1
2
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≤ 2‖U(·, t)‖L2(−∞,ξ) · ‖Uξ(·, t)‖L2(−∞,ξ)

for any ξ ∈ R and t > 0. Then it follows that

‖U(·, t)‖2L∞(R) ≤ 2‖U(·, t)‖L2(R) · ‖Uξ(·, t)‖L2(R), ∀t > 0. (3.18)

Combining (3.17) and (3.18), we have

‖U(·, t)‖L∞(R) ≤ 2
2
3 ‖U(·, t)‖

1
3

L1(R) · ‖Uξ(·, t)‖
2
3

L2(R), ∀t > 0.

According to Lemmas 3.2 and 3.4, there exist positive constants µ1 and M1 such
that

‖U(·, t)‖L∞(R) ≤M1e
− 1

3µ1t, ∀t > 0.

Similarly, there exist µ2 > 0 and M2 > 0 such that

‖V (·, t)‖L∞(R) ≤M2e
− 1

3µ2t, ∀t > 0.

This completes the proof.

Proof of Theorem 2.2. By Lemma 3.5, it is easily see that

sup
x∈R
|u+i (x, t)− φi(x+ ct)| ≤ Ce−µt (i = 1, 2), ∀ t ≥ 0.

Similarly, we can verify that for any c > c∗, it holds

sup
x∈R
|u−i (x, t)− φi(x+ ct)| ≤ Ce−µt (i = 1, 2), ∀ t ≥ 0.

Since

0 ≤ u−i (x, t) ≤ ui(x, t), φi(x+ ct) ≤ u+i (x, t) ≤ ki (i = 1, 2),

the squeezing argument implies that

sup
x∈R
|ui(x, t)− φi(x+ ct)| ≤ Ce−µt (i = 1, 2), ∀ t ≥ 0.

This completes the proof of Theorem 2.2.

4. An application

In this section, we give an application as follow. If h(u, v) = −α1u + h(v) and
g(u, v) = −α2v + g(u), then (1.2) reduces to the traditional reaction diffusion sys-
tems for x ∈ R, t > 0:{

ut(x, t) = d1[(J1 ∗ u)(x, t)− u(x, t)]− α1u(x, t) + h(v(x, t− τ1)),

vt(x, t) = d2[(J2 ∗ v)(x, t)− v(x, t)]− α2v(x, t) + g(u(x, t− τ2)),
(4.1)

where u(x, t) and v(x, t) represent the spatial concentration of the bacteria and the
infective population at a point x ∈ R and time t ≥ 0, respectively. d1 ≥ 0 and
d2 ≥ 0 are diffusion coefficients. (J1 ∗ u)(x, t) and (J2 ∗ v)(x, t) represent the total
number of the bacteria and the infective population arriving at x from all possible
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locations y at time t, respectively. −α1u is the natural death rate of the bacterial
population and the nonlinearity h(v) is the contribution of the infective humans to
the growth rate of the bacterial. −α2v is the natural diminishing rate of the infective
population due to the finite mean duration of the infectious population and g(u)
is the infection rate of the human population under the assumption that the total
susceptible human population is constant during the evolution of the epidemic.

Before applying the results of stability, we give the following assumptions.

(J) Ji ∈ C(R), Ji(x) = Ji(−x) ≥ 0,
∫
R Ji(y)dy = 1, i = 1, 2, and∫

R |x|
jJi(x)e−λxdx <∞ for every λ > 0, j = 0, 1, 2, i = 1, 2. Furthermore, J1

and J2 are compactly supported.

(A1) h(u) and g(u) are nondecreasing on (0,+∞) and h′′(u) < 0 and g′′(u) < 0 for
all u ∈ (0,+∞).

(A2) h, g ∈ C2(R+,R+), h(0) = g(0) = 0, k2 = g(k1)/α2, h(g(k1)/α2) = α1k1 and
h(g(u)/α2) > α1u for u ∈ (0, k1), where k1 is a positive constant.

(A3) min{α1, α2} > max{β̄1, β̄2}.

The existence result can be found in [17] without delays, the existence of system
4.1 can be obtained similarly, here we just review the result of existence.

Theorem 4.1 (Existence). Assume (J) and (A1)–(A2) hold. There exists a positive
constant c∗ > 0 such that (4.1) admits a positive traveling wave front (φ1(x +
ct), φ2(x+ ct)) with the wave speed c ≥ c∗ and satisfying

lim
ξ→−∞

(φ1(ξ), φ2(ξ)) = 0 and lim
ξ→+∞

(φ1(ξ), φ2(ξ)) = K. (4.2)

For 0 < c < c∗, the system (4.1) has no positive monotone traveling wave solution
satisfying (4.2).

In order to apply the stability result, we first give a description of the hypothet-
ical conditions.

It is obvious that the assumption (A1) is equivalent to the assumptions (H1)
and (H3). From (A2), it is easy to know that β1β2 > α1α2 holds. And assumption
(A3) implies that −α1 + β̄2 < 0, −α2 + β̄1 < 0, −2α1 + β̄1 + β̄2 < 0 and −2α2 +
β̄1 + β̄2 < 0 hold, in other words, the assumptions (A2) and (A3) are equivalent to
the assumptions (H2) and (H4).

Similar to the process of Lemmas 3.1–3.3, we can also obtain the following
results.

Lemma 4.1. Assume that (J) and (A1)–(A3) hold. For any c > c∗, there exist
positive constants ξ0 and C such that for t ≥ 0, it holds

‖U(·, t)‖2L2(R) + ‖V (·, t)‖2L2(R) ≤ C

and

‖Uξ(·, t)‖2L2(R) + ‖Vξ(·, t)‖2L2(R) ≤ C.

Then, by applying the techniques of weighted energy method, comparison prin-
ciple and the squeezing argument, we can get

sup
x∈R
|u(x, t)− φ1(x+ ct)| ≤ Ce−µt and



2078 S. Zhang, Z. Yu & Y. Meng

sup
x∈R
|v(x, t)− φ2(x+ ct)| ≤ Ce−µt, ∀ t ≥ 0.

This means that all solutions of the Cauchy problem for the considered systems
4.1 converge exponentially to traveling wave solutions provided that the initial per-
turbations around the traveling wave fronts belong to a suitable weighted Sobolev
space. This completes the explain of application.
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