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Abstract This paper emphasizes the exponential synchronization for a class
of stochastic semi-Markov jump systems with mixed delay via stochastic hybrid
impulsive control. The impulsive sequence includes synchronous and asyn-
chronous impulses with the impulsive gains being a sequence of stochastic
variables. Inspired by the idea of average, a concept of “average stochastic
impulsive gain” is used to qualify the impulse intensity. Our approach ex-
pands Dupire functional Itô’s formula to the stochastic semi-Markov jump
systems with mixed delay for the first time. Moreover, in view of the estab-
lished Lyapunov functional, graph theory, and stochastic analysis theory, some
exponential synchronization criteria for the systems are derived. The theoret-
ical results are applied to a class of Chua’s circuit systems with semi-Markov
jump and mixed delay. Some synchronization criteria for the circuit systems
are provided. The simulation results verify the effectiveness of the theoretical
results.
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1. Introduction

Complex network systems (CNSs), being able to describe various actual networks
such as neural networks [25], infectious disease spread networks [4], and circuit net-
works [18]. Numerous valuable approaches have been proposed to settle issues of
CNSs [2, 15, 24, 27, 36, 38]. Moreover, dozens of uncertainties and stochastic distur-
bances resulting from unanticipated environmental noise always affect the evolution
of CNSs, as a consequence, stochastic complex network systems (SCNSs) have been
a fascinating study area worldwide [20,23,43,48,49]. Most notably, many SCNSs are
unavoidably impacted by sudden stimulation like operational errors and fluctuation
at random and perform abrupt changes in structure and parameter, which are gener-
ally characterized by Markovian jump systems. However, it is insufficient to explain
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the parameter jump phenomenon in actual systems since the states’ transition rates
in the corresponding systems are constant. As a result of this, the semi-Markov
jump systems with time-varying state transition rates have evoked the enormous
interest of scholars, which has been extensively explored in recent years [6, 29, 30].
Additionally, time delay is inescapable in SCNSs on account of wide-ranging ex-
isting communication disturbances, signal interference, network packet failure, and
other issues. Hence, many scholars have in-depth investigated the stochastic semi-
Markov jump systems (SSMJSs) with time delay [12, 17, 22, 33, 45]. For instance,
in [12], the exponential synchronization criteria of SSMJSs with time-varying delay
were introduced via adaptive aperiodically intermittent control. However, different
from the single kind of time delay, the mixed delay can significantly enhance the
systems’ use of historical data which improves the adherence to the actual networks,
and few pieces of literature discuss the SSMJSs with mixed delay. For theoretical
and practical significance, it is meaningful and important to study SSMJSs with
mixed delay.

Through the recent decades, synchronization acting as one of the most sig-
nificant cooperative behaviors in both natural and synthetic networks has been
popularly applied in diverse fields like power transmission [7], multi-vehicle collab-
oration [10] and communication security [32]. There have been many investigations
on the synchronization of SCNSs. In [50], synchronization of hybrid switching dif-
fusion delayed networks was investigated and in [40], bipartite synchronization of
fractional-order multi-layer signed networks was investigated. In this paper, the the-
oretical significance and potential for practical applications of research on SSMJSs
synchronization are really what drives our study.

For the sake of achieving synchronization of CNSs, some control strategies have
been designed like intermittent control [3, 39], pinning control [13], event-triggered
control [19], sampled-data control [31, 47] and impulsive control [41, 42]. Among
them, the hybrid impulsive control containing synchronous and asynchronous im-
pulses has been adequately and extensively utilized to investigate the synchroniza-
tion of CNSs [14, 16, 34, 35, 46]. For example, in [35] Wang et al. proposed a
new definition of “average impulsive gain” to estimate the intensity of hybrid im-
pulses to discuss the synchronization of a kind of coupled neural networks. In the
above-mentioned literature, the fixed impulsive intensity and density in the control
scheme are taken into account. However, numerous actual systems are affected by
random fluctuations, and the systems could be not clearly defined, thus stochastic
hybrid impulsive controllers are designed to deal with the synchronization problem.
Based on the above discussion, we naturally wonder whether stochastic hybrid im-
pulsive control can be applied to resolve the exponential synchronization issue of
SMJSs with mixed delay. In addition, how to deal with semi-Markov jump with
time-varying state transition rate and stochastic hybrid impulsive control with the
impulsive gain being a sequence of stochastic variables is a key issue that needs to
be addressed.

On the other hand, as we all know, two famous methods have been established
to deal with the stabilization or synchronization of delayed systems including the
Razumikhin method and the Lyapunov functional method. However, it actually
lacks the true sense of functional Itô’s formula for the SCNSs with delay. In view
of that, Dupire extended the Itô’s formula to the case of stochastic functional dif-
ferential equations [9]. Based on it, many results have been derived. Nguyen et al.
studied almost sure stability, exponential stability of stochastic functional differen-
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tial equations and gave some novel conditions for stability in terms of Lyapunov
functionals by using Dupire’s functional Itô’s formula in [28]. And further, he es-
tablished a new stability theory for stochastic functional differential systems with
random switching in [8]. In our paper, we are aiming to investigate the exponential
synchronization of SSMJSs with the mixed delay with the aid of Dupire functional
Itô’s formula, which has not been touched. We attempt to construct a proper
Lyapunov-Krasovaskii functional to estimate the sign of operate LV by using the
defined Dupire horizontal and vertical partial derivatives. Then through Dupire
functional Itô’s formula and Lyapunov theory, some synchronization criteria can be
derived, avoiding using the Razumikhin method. Thus, how to construct a proper
functional is another both appealing and challenging question to be addressed.

Motivated by the above analysis, in this paper, we concentrate on the exponen-
tial synchronization of SSMJSs with mixed delay via stochastic hybrid impulsive
control. By applying Dupire functional Itô’s formula, we shall derive the new expo-
nential synchronization criteria of SSMJSs with mixed delay. Meanwhile, in order
to confirm the applicability of the established outcomes, Chua’s circuit systems are
provided, and the numerical simulation results demonstrate the validity of derived
theories. The chief contributions are presented below:

• Different from the single kind of time-varying delay, the mixed delay effectively
utilizes the past information of SSMJSs which pre-eminently enhances the
reliability of the results. Furthermore, the semi-Markov jump, which has a
time-varying transfer rate as opposed to the Markov jump’s constant transfer
rate, is better capable of capturing the phenomenon of parameter jump in
practical systems.

• Unlike the previous work [35], stochastic hybrid impulsive control includes
impulsive gains being a sequence of random variables at different impulsive
times and contains synchronous impulses and asynchronous impulses simul-
taneously, which is more adaptable in practical systems. Additionally, the
notion of “average stochastic impulsive gain” is proposed to determine the
magnitude of such stochastic hybrid impulsive intensity.

• Based on graph theory, a novel appropriate global Lyapunov functional is
constructed via vertex Lyapunov functional. According to horizontal and
vertical derivatives and with the help of Dupire functional Itô’s formula, some
sufficient conditions to achieve exponential synchronization of SSMJSs with
mixed delay are given as the extension of [28].

The rest arrangements of this paper are organized as follows. In Section 2, some
preliminaries and model description are displayed. Section 3 presents the main
theoretical results containing some synchronization criteria. And a kind of Chua’s
circuit systems is demonstrated as the application of SSMJSs with mixed delay in
Section 4. In Section 5, the numerical example is derived to illustrate our theoretical
results.

Notations. Let N = {1, 2, · · · , N}, S = {1, 2, · · · , S}, H = {1, 2, · · · , H, · · · }. And
R+ denotes the set of non-negative real numbers, Rk is k-dimensional Euclidean
space. For a ∈ Rk, write | · | for the Euclidean norm of the vector. The super-
script “T” stands for the transpose of a vector or a matrix. “tr” is the trace of
a square matrix. For a fixed positive real number α, C([−α, 0];Rk) refers to the
space consisting of continuous functions mapped from [−α, 0] to Rk. For the contin-
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uous function F (t), D+F (t) = limε→0+
F (t+ε)−F (t)

ε represents the right and upper
Dini’s derivative. Let (Ω,F ,F,P) be a complete probability space with a filtration
F = {Ft}t≥0 satisfying usual conditions. E is the mathematical expectation about
the probability P.

2. Preliminaries and model description

2.1. Preliminaries

Some related knowledge about Dupire functional Itô’s formula is presented as pre-
liminaries in the following.

Consider the following stochastic functional differential equation with semi-
Markov jump β(t)

dx(t) = F (t, xt, β(t))dt+ Λ(t, x(t), β(t))dB(t), t ≥ 0. (2.1)

For χ ∈ C([−α, 0];Rk), x ≥ 0, y ∈ Rk, its horizontal and vertical perturbations are
defined as

χx(σ) =

χ(x+ σ), σ ∈ [−α,−x],

χ(0), σ ∈ [−x, 0],
(2.2)

χy(σ) =

χ(σ), σ ∈ [−α, 0),

χ(0) + y, σ = 0.
(2.3)

Assume that V : C([−α, 0];Rk) × S 7→ R+. The horizontal and vertical partial
derivatives of V at (χ, s) are defined as

Vt(χ, s) = lim
x→0+

V(χx, s)− V(χ, s)

x
,

∂iV(χ, s) = lim
x→0+

V(χxui , s)− V(χ, s)

x
,

where ui is the standard unit vector in Rk, and its ith element is 1, but the other
elements are 0. V is continuous with respect to the first argument. Derivatives Vt,
Vl = (∂iV), Vll = (∂ijV) exist and are continuous. V, Vt, Vl is bounded on the
bounded set Br = {χ | ‖χ‖ ≤ r, r > 0}. Define

LV(χ, s) =Vt(χ, s) + Vl(χ, s)F (t, χ, s) +
1

2
tr
(
ΛT(t, l, s)Vll(χ, s)Λ(t, l, s)

)
+

S∑
ŝ=1

ζsŝ(ε(t)) (V(χ, ŝ)− V(χ, s)) .

Hence, one gets Dupire Itô’s formula

dV(χ, s) = LV(χ, s)dt+ Vl(χ, s)Λ(t, l, s)dB(t).
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2.2. Model description

Consider the driving system

dφm(t) =

[
Γ̃1
m (t, φm(t), β(t)) + Γ̃2

m (t, φm(t− α1(t))) +

∫ t

t−α2

Γ̃3
m (σ, φm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn (t, φm(t), φn(t), β(t))

]
dt

+ Λ̃m (t, φm(t), β(t)) dB(t), t ≥ 0, m, n ∈ N,
(2.4)

and the response system with impulsive control to synchronize with the driving
system is given as below:



dψm(t) =

[
Γ̃1
m (t, ψm(t), β(t)) + Γ̃2

m (t, ψm(t− α1(t))) +

∫ t

t−α2

Γ̃3
m (σ, ψm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn (t, ψm(t), ψn(t), β(t))

]
dt

+ Λ̃m (t, ψm(t), β(t)) dB(t), t ≥ 0, t 6= th,

ψm(th)−φm(th) = Imu(th)(ψ(t−h )− φ(t−h )), m, n ∈ N, h ∈ H,

(2.5)

where φm(t) ∈ Rk is the state vector of the mth vertex for driving system (2.4) at
time t, ψm(t) ∈ Rk is the state vector of the mth vertex for response system (2.5)
at time t, β(t) is the semi-Markov jump with the state space S = {1, 2, · · · , S} and
the state transfer probability P is described as

P(β(t+ ε(t)) = ŝ|β(t) = s) =

 ζsŝ(ε(t))ε(t) + o(ε(t)), s 6= ŝ,

1 + ζss(ε(t))ε(t) + o(ε(t)), s = ŝ,

in which limε(t)→0 o(ε(t)) = 0, ζsŝ(ε(t)) > 0 (s 6= ŝ) is the transfer rate from state s

to state ŝ, and ζsŝ(ε(t)) = −
∑S
ŝ=1,ŝ6=s ζsŝ(ε(t)), Γ̃1

m: R+ × Rk × S 7→ Rk, Γ̃2
m, Γ̃3

m:

R+ × Rk 7→ Rk are piecewise continuous functions, Θ̃mn: R+ × Rk × Rk × S 7→ Rk
is the coupling function between the mth node and the nth node, representing
the influence of the nth node on the mth node with the influence intensity being
Πmn(·) ≥ 0, Λ̃m: R+ × Rk × S 7→ Rk is a stochastic perturbation function, B(t) is
Brownian motion defined in the complete probability space (Ω,F ,F,P), α1(t) and
α2 are time-varying discrete delay and distributed delay of the system, respectively
such that 0 ≤ α1(t) ≤ α1, α̇1(t) ≤ α∗1 < 1, α1, α2 ≤ α. Besides, Γ̃1

m, Γ̃2
m, Γ̃3

m, Θ̃mn,
Λ̃m are all satisfied with the Lipschitz condition and the linear growth condition.
Imu(th): Rk → Rk is stochastic impulse intensity function, H̄ = {t1, t2, · · · , tH , · · · }
is stochastic impulse sequence, φm(t) and ψm(t) satisfy φm(t−h ) = limt→t−h

φm(t),

φm(t+h ) = limt→t+h
φm(t), ψm(t−h ) = limt→t−h

ψm(t), ψm(t+h ) = limt→t+h
ψm(t). They

are right continuous, that is, φm(th) = φm(t+h ), ψm(th) = ψm(t+h ). Suppose that
em(t) = ψm(t) − φm(t) is the error vector for the mth vertex at time t. Then the
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error system of driving system (2.4) and response system (2.5) can be depicted as

dem(t) =

[
Γ1
m (t, em(t), β(t)) + Γ2

m (t, em(t− α1(t))) +

∫ t

t−α2

Γ3
m (σ, em(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θmn (t, em(t), en(t), β(t))

]
dt

+ Λm (t, em(t), β(t)) dB(t), t ≥ 0, t 6= th,

em(th) =Imu(th)(em(t−h )), m, n ∈ N, h ∈ H.
(2.6)

Among them,

Γ1
m (t, em(t), β(t)) = Γ̃1

m (t, ψm(t), β(t))− Γ̃1
m (t, φm(t), β(t)) ,

Γ2
m (t, em(t− α1(t))) = Γ̃2

m (t, ψm(t− α1(t)))− Γ̃2
m (t, φm(t− α1(t))) ,

Γ3
m (t, em(t)) = Γ̃3

m (t, ψm(t))− Γ̃3
m (t, φm(t)) ,

Θmn (t, em(t), en(t), β(t))=Θ̃mn (t, ψm(t), ψn(t), β(t))− Θ̃mn (t, φm(t), φn(t), β(t)) ,

Λm (t, em(t), β(t)) = Λ̃m (t, ψm(t), β(t))− Λ̃m (t, φm(t), β(t)) .

In order to obtain the theoretical results, some assumptions, definitions, and a
lemma about the error system are presented in the following.

Assumption 2.1. There exist positive numbers γ1
m(s), γ2

m, γ3
m, m ∈ N, s ∈ S such

that

eT
mΓ1

m(t, em, s) ≤ γ1
m(s)|em|2,

|Γ2
m(t, em)| ≤ γ2

m|em|,
|Γ3
m(t, em)|2 ≤ γ3

m|em|2.

Assumption 2.2. There exist positive numbers θmn(s), λm(s), m ∈ N, s ∈ S, and
a sequence of stochastic variables IMPu(th), h ∈ H, satisfying that

|Θmn(t, em, en, s)| ≤ θmn(s)(|em|+ |en|),
|Λm(t, em, s)|2 ≤ λm(s)|em|2,∣∣∣Imu(th)(e

h
m)
∣∣∣2 ≤ IMPu(th)

∣∣ehm∣∣2 .
Definition 2.1. If there exist positive numbers ε and L such that for any initial
condition ξ = ξψ − ξφ ∈ C([−α, 0];RkN ),

E|e(t)|2 ≤ L‖ξ‖2exp{−εt}, t ≥ 0,

where e(t) = (eT
1 (t), eT

2 (t), · · · , eT
N (t))T ∈ RkN . Then driving system (2.4) and

response system (2.5) achieve mean-square exponential synchronization.

Definition 2.2. [26] Suppose that NUMH(t, 0) represents the number of impulse
occurrences of the impulse sequence H̄ in the time period (0, t). Then average
impulsive interval AI of the impulse sequence H̄ at time interval (0, t) is defined as

AI = lim
t→∞

t

NUMH(t, 0)
.
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Definition 2.3. The average stochastic impulsive gain AG of the impulse sequence
H̄ at time interval (0, t) is

AG = lim
t→∞

EIMPu(t1) + EIMPu(t2) + · · ·EIMPu(tNUMH (t,0))

NUMH(t, 0)
.

Remark 2.1. In most cases, the impulsive effects can be classified into two most
common categories, i.e., synchronous impulses and asynchronous impulses. In [26],
the definition of “average impulsive interval” has been introduced and some unified
synchronization criteria both suitable for synchronous and asynchronous impulses
were given. Besides, the definition of “average impulsive gain” was put forward
in [35] and some synchronization criteria for an array of coupled neural networks
were provided. Furthermore, it is worth noticing that the impulsive intensity is
presumed to be predetermined in the above references, which is seldom to describe
the stochastic factors universally appearing in the impulsive effect. Therefore, by
introducing and adopting the novel definition “average stochastic impulsive gain”,
we shall calculate the intensity of the stochastic hybrid impulse that is being in-
vestigated in this paper. As a consequence, some synchronization criteria firmly
linking to Definition 2.3 will be derived in the next section.

Lemma 2.1. Assume N ≥ 2, cm is the cofactor of the mth diagonal element of the
Laplacian matrix for matrix THE = (THEmn)N×N , it can be concluded that

N∑
m=1

N∑
n=1

cmTHEmnΘmn(t, em, en) =
∑
Q∈Q

W (Q)
∑

(v,v′ )∈E(CQ)

Θmn(t, ev′ , ev),

where Θmn is an arbitrary function, Q denotes the set consisting of spanning uni-
cyclic graphs of (G,THE), W (Q) is the weight of Q, CQ represents the directed
cycle of Q. In particular, if (G,THE) is strongly connected, then cm > 0, m ∈ N.

Based on the above discussions, the following so-called Lyapunov-type theorem
and Cofficient-type theorem will be presented for driving system (2.4) and response
system (2.5) to achieve exponential synchronization.

3. Main results

In this section, we will give some synchronization criteria which are included in the
last two theorems. And the first theorem illustrates a fact that ensures the validity
of the theoretical results in this paper as basics.

To illustrate a fact, we will prove that functional derivative calculating by the
defined horizontal movement and conventional method of calculating the derivative
of the integral is equal.

Theorem 3.1. Suppose Y (t) is a continuous function on [0,+∞), for a fixed t,

Yt ∈ C([−α, 0];Rk), Yt(σ) = Y (t+ σ), σ ∈ [−α, 0]. If V(Yt) =
∫ 0

−α
∫ t
t+σ

Y (µ)dµdσ,
then one obtains

Vt(Yt) = lim
x→0+

V ((Yt)x)− V(Yt)

x

= αY (t)−
∫ t

t−α
Y (µ)dµ
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=
d

dt

(∫ 0

−α

∫ t

t+σ

Y (µ)dµdσ

)
.

Proof. Based on (2.2), one gets

(Yt)x (σ) =

{
Yt(x+ σ), σ ∈ [−α,−x],

Yt(0), σ ∈ [−x, 0].

Then according to

V(Yt) =

∫ 0

−α

∫ t

t+σ

Y (µ)dµdσ,

one derives

V ((Yt)x) =

∫ −x
−α

∫ t

t+σ

Y (µ+ x)dµdσ +

∫ 0

−x

∫ t

t+σ

Y (0)dµdσ.

Moreover, one has

Vt(Yt) = lim
x→0+

1

x

(∫ −x
−α

∫ t

t+σ

Y (µ+ x)dµdσ +

∫ 0

−x

∫ t

t+σ

Y (0)dµdσ

−
∫ 0

−α

∫ t

t+σ

Y (µ)dµdσ

)
= lim
x→0+

−
∫ t

t−x
Y (µ+ x)dµ+

∫ −x
−α

∫ t

t+σ

Ẏ (µ+ x)dµdσ +

∫ t

t−x
Y (0)dµ

=

∫ 0

−α

∫ t

t+σ

Ẏ (µ)dµdσ

=

∫ 0

−α
(Y (t)− Y (t+ σ)) dσ

=αY (t)−
∫ t

t−α
Y (µ)dµ.

This completes the proof.

Remark 3.1. Since Dupire functional Itô’s formula was put forward in [9], nu-
merous theoretical results have been inspired [8, 28], in which some stability cri-
teria were derived for the stochastic functional differential equation and random
switching system. Different from them, we consider the stochastic complex net-
work with semi-Markov jump and distributed delay in this paper. Due to the
existence of distributed delay, we construct a different functional Vm(t, χm, s) =

V 1
m(lm, s) + V 2

m(t), V 1
m(lm, s) = w̄m(s)|lm|2, V 2

m(t) =
∫ t
t−α1(t)

∣∣Γ2
m(σ, em(σ))

∣∣2 dσ +∫ 0

−α2

∫ t
t+σ

∣∣Γ3
m(µ, em(µ))

∣∣2 dµdσ. When using Dupire functional Itô’s formula, Vt
should be calculated and Vt depends on the defined Dupire horizontal partial
derivative. In Theorem 3.1, we prove that the result is the same as the conven-
tional method of calculating the derivative of integral, which is an additional and
necessary result to ensure the validity of the theoretical results of this paper.

Theorem 3.2. For s ∈ S, suppose there exists a function Vm(χ, s) defined on
C([−α, 0];Rk) × S such that Vm(χ, s) = V 1

m(lm, s) + V 2
m(t) in which V 2

m(th) = 0.
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Vm(χ, s) is a continuous function that is twice differentiable with respect to the first
variable. If the following conditions hold:
WX1. There exist positive constants d1

m(s), d2
m(s) satisfying that

d1
m(s)|lm|2 ≤ V 1

m(lm, s) ≤ d2
m(s)|lm|2. (3.1)

WX2. When t 6= th, there exist positive constants ηm(s), THEmn ≥ 0 and function
Θmn satisfying

LVm((em)t, s) ≤ ηm(s)Vm((em)t, s) +

N∑
n=1

THEmnΘmn(t, em(t), en(t)). (3.2)

When t = th, one derives

Vm ((em)th , β(th)) ≤ IMPu(th)Vm
(

(em)t−h
, β(t−h )

)
. (3.3)

WX3. Digraph (G,THE) is strongly connected, THE = (THEmn)N×N , THEmn
= maxs∈S{Πmn(s)θmn(s)}. For each digraph (G,THE), we have∑

(m,n)∈E(CQ)

Θmn(t, em(t), en(t)) ≤ 0.

WX4. If the average stochastic impulsive gain AG and the average stochastic
impulsive interval AI satisfy

lnAG

AI
= k < k1 < 0, k1 + η < 0, η = max

m∈N,s∈S
{ηm(s)}.

Then driving system (2.4) and response system (2.5) achieve mean-square exponen-
tial synchronization.

Proof. Suppose V(et, s) =
∑N
m=1 cmVm((em)t, s), here cm represents the cofactor

of the mth diagonal element of the Laplacian matrix for matrix THE. Assume that
(G,THE) is strongly connected, we can get cm > 0, m ∈ N. Impulse instants and
non-impulse instants are discussed separately below.

When t 6= th, based on (3.2), it can be obtained that

LV(et, s) =

N∑
m=1

cmLVm((em)t, s)

≤
N∑
m=1

cm

(
ηm(s)Vm((em)t, s) +

N∑
n=1

THEmnΘmn(t, em(t), en(t))

)

≤ηV(et, s) +

N∑
m=1

N∑
n=1

cmTHEmnΘmn(t, em(t), en(t)). (3.4)

By Lemma 2.1, W (Q) ≥ 0, it can be written as

N∑
m=1

N∑
n=1

cmTHEmnΘmn(t, em(t), en(t))

=
∑
Q∈Q

W (Q)
∑

(v,v′ )∈E(CQ)

Θmn(t, ev′(t), ev(t)) ≤ 0.
(3.5)
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Substituting (3.5) to (3.4), it can be concluded that

LV(et, s) ≤ ηV(et, s).

It’s given by Dupire Itô’s formula that

D+EV(et, s) ≤ ηEV(et, s). (3.6)

When t = th, according to (3.4), one gets

V (eth , β(th)) =

N∑
m=1

cmVm ((em)th , β(th))

≤
N∑
m=1

cmIMPu(th)Vm
(

(em)t−h
, β(t−h )

)
=IMPu(th)V

(
(em)t−h

, β(t−h )
)
, (3.7)

then

EV ((em)th , β(th)) ≤E
[
IMPu(th)V

(
(em)t−h

, β(t−h )
)]

=E
[
E
[
IMPu(th)V

(
(em)t−h

, β(t−h )
)
| Fh−1

]]
=E

[
V
(

(em)t−h
, β(t−h )

)]
E
[
IMPu(th) | Fh−1

]
=EV

(
(em)t−h

, β(t−h )
)
EIMPu(th).

Depending on the method of inductive, it holds that

EV (et, s) ≤ EVo
H∏
h=1

EIMPu(th) exp{ηt}, t ∈ [tH , tH+1), (3.8)

where
EVo = sup

t∈[−α,0]

EV (et, s) .

When t ∈ [−α, 0], one derives EV (et, s) ≤ EVo, and it obviously holds. When
t ∈ (0, t1), from (3.6), we can derive the following inequalities:

EV (et, s) ≤ EV (e0, s) exp{ηt} ≤ EVo exp{ηt}.

Thus, one concludes that

EV (et1 , β(t1)) ≤ EIMPu(t1)EV
(
et−1

, β(t−1 )
)
≤ EIMPu(t1)EVo exp{ηt1}.

When t ∈ [t1, t2),

EV (et, s) ≤ EV (et1 , β(t1)) exp{η(t− t1)} ≤ EIMPu(t1)EVo exp{ηt}.

Hence, when H = 1, (3.8) holds. If (3.8) is true for H, then for H + 1,

EV
(
etH+1

, β(tH+1)
)
≤ EIMPu(tH+1)EV

(
et−H+1

, u(t−H+1)
)

≤
H+1∏
h=1

EIMPu(th)EVo exp{ηtH+1}.
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When t ∈ [tH+1, tH+2),

EV (et, s) ≤ EV
(
etH+1

, β(tH+1)
)

exp{η(t− tH+1)} =

H∏
h=1

EIMPu(th)EVo exp{ηt}.

Therefore, (3.8) holds for H + 1, and based on the method of inductive, we can
conclude that (3.8) is valid for all H ≥ 1, so

EV (et, s) =

NUMH(t,0)∏
h=1

EIMPu(th)EVo exp{ηt}

≤EVoνNUMH(t,0) exp{ηt}
=EVo exp{NUMH(t, 0) ln ν} exp{ηt}

≤EVo exp

{
t ln ν

t/NUMH(t, 0)

}
exp{ηt}, (3.9)

in which

ν =
EIMPu(t1) + EIMPu(t2) + · · ·EIMPu(tNUMH (t,0))

NUMH(t, 0)
.

Since AG = limt→∞ ν and AI = limt→∞
t

NUMH(t,0) , it can be described as follows:∣∣∣∣ln ν/ t

NUMH(t, 0)
− lnAG

AI

∣∣∣∣ < k1 − k. (3.10)

Substituting (3.10) into (3.9), one derives

EV (et, s) ≤ EVo exp{(k1 + η)t}, t ≥ 0.

In view of et(0) = e(t), one gets

EV 1 (e(t), s) ≤ V 1
o exp{(k1 + η)t}, t ≥ 0,

where
V 1
o = sup

t∈[−α,0]

V 1 (e(t), s) .

According to condition WX1, it concludes

V 1
o =

N∑
m=1

cm(V 1
m)o(em(t), s)

≤ sup
t∈[−α,0]

N∑
m=1

cmd
2
m(s)|em(t)|2

≤ max
m∈N,s∈S

{cmd2
m(s)} sup

t∈[−α,0]

|e(t)|2 , d2‖ξ‖2,

EV 1
o (e(t), s) = E

N∑
m=1

cm(V 1
m)o(em(t), s)

≥ E
N∑
m=1

cmd
1
m(s)|em(t)|2

≥ min
m∈N,s∈S

{cmd1
m(s)}E|e(t)|2 = d1E|e(t)|2.
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Consequently, we have

E|e(t)|2 ≤ d2

d1
‖ξ‖2 exp{(k1 + η)t}, t ≥ 0.

On the basis of condition WX4, k1 + η < 0 can be obtained, then driving system
(2.4) and response system (2.5) can reach mean-square exponential synchronization.

Remark 3.2. There have been many investigations on the synchronization of cou-
pled systems by graph theory and the Lyapunov method [21,37,44]. In [44], global
Lyapunov function was constructed as V (e, t) =

∑n
i=1 ciVi(ei, t) through vertex

Lyapunov function. Referring to this method, we construct the global Lyapunov
functional as V(t, et, s) =

∑N
m=1 Vm(t, (em)t, s) through vertex Lyapunov func-

tional, in which cm is the cofactor of the mth diagonal element of the Laplacian
matrix for matrix THE. From this condition, we can also see that the synchroniza-
tion is related to the network’s topological structure.

In the following, Coefficient-type theorem attaching to the coefficients in driving
system (2.4) and response system (2.5) is derived to give some other synchronization
criteria.

Theorem 3.3. Suppose Assumption 2.1 and Assumption 2.2 hold and the following
conditions are satisfied:
HD1. Directed graph (G,THE) is strongly connected, THE = (THEmn)N×N ,
THEmn = maxs∈S{Πmn(s)θmn(s)}.
HD2. The average stochastic impulsive gain and the average stochastic impulsive
interval satisfy that

lnAG

AI
= k < k1 < 0, k1 + η < 0, η = max

m∈N,s∈S
{ηm(s)}.

Then driving system (2.4) and response system (2.5) can reach mean-square expo-
nential synchronization.

Proof. Assume V 1
m(em, s) = w̄m(s)|em|2, V 2

m(t) =
∫ t
t−α1(t)

∣∣Γ2
m(σ, em(σ))

∣∣2 dσ +∫ 0

−α2

∫ t
t+σ

∣∣Γ3
m(µ, em(µ))

∣∣2 dµdσ, condition WX1 apparently holds. Based on As-

sumption 2.1, Assumption 2.2 and Lemma 2.1, computing LVm along system (2.6),
we can get the following conclusions. When t 6= th, it has

LVm((em)t, s)

=2w̄m(s)eT
m(t)

[
Γ1
m(t, em(t), s) + Γ2

m(t, em(t− α1(t))) (3.11)

+

∫ t

t−α2

Γ3
m(σ, em(σ))dσ +

N∑
n=1

Πmn(s)Θmn(t, em(t), en(t), s)

]
+ w̄m(s)tr

[
ΛT
m(t, em(t), s)Λm(t, em(t), s)

]
+
∑
ŝ∈S

ζsŝ(ε(t))w̄m(ŝ)|em(t)|2

+
∣∣Γ2
m(t, em(t))

∣∣2 − (1− α̇1(t))
∣∣Γ2
m(t, em(t− α1(t)))

∣∣2
+ α2

∣∣Γ3
m(t, em(t))

∣∣2 − ∫ t

t−α2

∣∣Γ3
m(σ, em(σ))

∣∣2 dσ
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≤2w̄m(s)γ1
m(s)|em(t)|2 + w̄m(s)γ2

m|em(t)|2 + α2w̄m(s)γ3
m|em(t)|2

+ 2w̄m(s)Πmn(s)θmn(s)|em(t)|2 + 2w̄m(s)Πmn(s)θmn(s)|em(t)||en(t)|

+ 2w̄m(s)eT
m(t)Γ2

m(t, em(t− α1(t)))− (1− α∗1)
∣∣Γ2
m(t, em(t− α1(t)))

∣∣2
+ 2w̄m(s)eT

m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ −

∫ t

t−α2

∣∣Γ3
m(σ, em(σ))

∣∣2 dσ

+ w̄m(s)λm(s)|em(t)|2 +
∑
ŝ∈S

ζsŝ(ε(t))
w̄m(ŝ)

w̄m(s)
w̄m(s)|em(t)|2. (3.12)

In view of the following inequalities

−
∫ t

t−α2

∣∣Γ3
m(σ, em(σ))

∣∣2 dσ + 2w̄m(s)eT
m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ

≤−
∣∣∣∣∫ t

t−α2

Γ3
m(σ, em(σ))2dσ

∣∣∣∣2 + 2w̄m(s)eT
m(t)

∫ t

t−α2

Γ3
m(σ, em(σ))dσ

=−
∣∣∣∣∫ t

t−α2

Γ3
m(σ, em(σ))dσ − w̄m(s)eT

m(t)

∣∣∣∣2 + w̄2
m(s)|em(t)|2

≤w̄2
m(s)|em(t)|2, (3.13)

− (1− α∗1)
∣∣Γ2
m(t, em(t− α1(t)))

∣∣2 + 2w̄m(s)eT
m(t)Γ2

m(t, em(t− α1(t)))

=−
∣∣∣(1− α∗1)

1
2 Γ2

m(t, em(t− α1(t)))− w̄m(s)(1− α∗1)−
1
2 eT
m(t)

∣∣∣2 +
w̄2
m(s)

1− α∗1
|em(t)|2

≤ w̄
2
m(s)

1− α∗1
|em(t)|2, (3.14)

and

2Πmn(s)θmn(s)|em(t)||en(t)| ≤ Πmn(s)θmn(s)|em(t)|2 + Πmn(s)θmn(s)|en(t)|2,
(3.15)

Πmn(s)θmn(s)|en(t)|2Πmn(s)θmn(s)|em(t)|2 + Πmn(s)θmn(s)(|en(t)|2 − |em(t)|2),
(3.16)

according to (3.13)-(3.16) and V 2
m(t) > 0, we obtain

LVm((em)t, s)

≤2w̄m(s)γ1
m(s)|em(t)|2 + w̄m(s)γ2

m|em(t)|2 + α2w̄m(s)γ3
m|em(t)|2

+ w̄m(s)λm(s)|em(t)|2 + 4w̄m(s)

N∑
n=1

THEmn|em(t)|2

+
w̄2
m(s)

1− α∗1
|em(t)|2 + w̄2

m(s)|em(t)|2 +
∑
ŝ∈S

ζsŝ(ε(t))
w̄m(ŝ)

w̄m(s)
w̄m(s)|em(t)|2

+ ηm(s)V 2
m(t) +

N∑
n=1

THEmnΘmn(t, em(t), en(t))
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≤

(
2γ1
m(s) + γ2

m + α2γ
3
m + λm(s) + 4

N∑
n=1

THEmn +
w̄2
m(s)

1− α∗1

+ w̄2
m(s) +

∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)

w̄m(s)

)
w̄m(s)|em(t)|2

+ ηm(s)V 2
m(t) +

N∑
n=1

THEmnΘmn(t, em(t), en(t))

≤ηm(s)
(
V 1
m(em(t), s) + V 2

m(t)
)

+

N∑
n=1

THEmnΘmn(t, em(t), en(t))

=ηm(s)Vm((em)t, s) +

N∑
n=1

THEmnΘmn(t, em(t), en(t)),

where

ηm(s) = 2γ1
m(s) + γ2

m + α2γ
3
m + λm(s) + 4

N∑
n=1

THEmn +
w̄2
m(s)

1− α∗1
+ w̄2

m(s)

+
∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)

w̄m(s)
,

Θmn(t, em(t), en(t)) = max
s∈S
{w̄m(s)}

(
|en(t)|2 − |em(t)|2

)
.

When t = th, it follows that

Vm ((em)th , β(th)) =V 1
m (em(th), β(th))

=w̄m(s)|em(th)|2

=w̄m(s)
∣∣∣Imu(th)(em(t−h ))

∣∣∣2
≤w̄m(s)IMPu(th)

∣∣em(t−h )
∣∣2

=IMPu(th)V
1
m

(
em(t−h ), β(t−h )

)
=IMPu(th)

(
V 1
m

(
em(t−h ), β(t−h )

)
+ V2(t−h )

)
=IMPu(th)Vm

(
em(t−h ), β(t−h )

)
.

Therefore, condition WX2 holds. In addition, HD1 and HD2 conclude that con-
ditions WX3 and WX4 hold, respectively. Consequently, driving system (2.4) and
response system (2.5) can achieve mean-square exponential synchronization.

Remark 3.3. Note that digraph (G,THE) in Theorem 3.3 is strongly connected
implying there are directed paths between any two different nodes in the maximum
graph (G,THE). According to THEmn = maxs∈S{Πmn(s)θmn(s)}, it is not a
requisite for each sub-network to be strongly connected. Besides, lnAG/AI < 0
represents the average impulsive gain is less than 1, which means the impulse plays
a synchronous effect on the whole. And k1 + η < 0 indicates the impulse indeed
synchronizes the response system to the driving system.
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4. Application to stochastic semi-Markov jump
Chua’s circuit system with mixed delay

Chua’s circuit systems are widely used in various fields and have received widespread
attention in recent years. In this part, we will apply the theoretical results to
a kind of semi-Markov jump Chua’s circuit systems with mixed delay. To make
the driving Chua’s circuit system and the corresponding response Chua’s circuit
system achieve synchronization, we apply stochastic hybrid impulsive control to the
response system. Additionally, some synchronization criteria for the circuit systems
are given.

A single uncoupled Chua’s circuit system is known to be described as follows.
C1dU1(t) =

[
1

I
(−U1(t) + U2(t))− Γ̃(U1(t))

]
dt,

C2dU2(t) =

[
1

I
(U1(t)− U2(t)) + U3(t)

]
dt,

MdU3(t) =− (U2(t) + I0U3(t)) dt,

(4.1)

where U1(t) and U2(t) are the voltages of capacitors C1 and C2, respectively, U3

is the current through inductor M , I and I0 represent linear resistors. Γ̃(U1(t)) =
ν2U1(t)+ 1

2 (ν1−ν2)(|U1(t)+1|−|U2(t)−1|), where ν1 and ν2 represent the slopes of
the inner region and the outer region, respectively. Next, we consider the following
coupled stochastic semi-Markov jump Chua’s circuit system with mixed delay as
the driving system.

dΦm1(t)

dΦm2(t)

dΦm3(t)

 =



−τm1(β(t)) τm1(β(t)) 0

τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))




Φm1(t)

Φm2(t)

Φm3(t)



+


−ξm1Γ̃m (t,Φm1(t− α1(t)))

0

0

+

∫ t

t−α2

Γ̃3
m(σ,Φm(σ))dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn(t,Φm(t),Φn(t), β(t))

]
dt (4.2)

+ Λ̃m(t,Φm(t), β(t))dB(t), t ≥ 0, m, n ∈ N,

in which Φm(t) = (Φm1(t),Φm2(t),Φm3(t))T ∈ R3 is the state vector of the mth
circuit system at time t. τm1(β(t)) = 1

Im(β(t))Cm1
, τm2(β(t)) = 1

Im(β(t))Cm2(β(t)) ,

τm3(β(t)) = 1
Cm2(β(t)) , τm4(β(t)) = 1

Mm(β(t)) , τm5(β(t)) = Im0(β(t))
Mm(β(t)) , ξm1 = 1

Cm1
.

Γ̃m and Γ̃3
m are continuous function. Θ̃mn is the coupling function between the

mth circuit and the nth circuit, and represents the influence of the nth circuit on
the mth circuit with the influence intensity being Πmn(β(t)). Λ̃m is the stochastic
perturbation function, and B(t) is a one-dimensional Brownian motion. In the
following, the response system with stochastic impulsive control that makes the
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response system synchronize with driving system (4.2) is given as follows.


dΨm1(t)

dΨm2(t)

dΨm3(t)

 =



−τm1(β(t)) τm1(β(t)) 0

τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))




Ψm1(t)

Ψm2(t)

Ψm3(t)



+


−ξm1Γ̃m (t,Ψm1(t− α1(t)))

0

0


+

∫ t

t−α2

Γ̃3
m(σ,Ψm(σ))dσ

+

N∑
n=1

Πmn(β(t))Θ̃mn(t,Ψm(t),Ψn(t), β(t))

]
dt

+ Λ̃m(t,Ψm(t), β(t))dB(t), t ≥ 0, t 6= th,

Ψm(th)− Φm(th) = Imu(th)(Ψm(t−h )− Φm(t−h )),m, n ∈ N, h ∈ H,

(4.3)

where Ψm(t) = (Ψm1(t),Ψm2(t),Ψm3(t))T ∈ R3 is the state vector of the mth
response circuit system at time t. Suppose that ēm1(t) = Ψm1(t)−Φm1(t), ēm2(t) =
Ψm2(t)−Φm2(t), ēm3(t) = Ψm3(t)−Φm3(t), thus the error system of driving system
(4.2) and response system (4.3) can be described as


dēm1(t)

dēm2(t)

dēm3(t)

 =



−τm1(β(t)) τm1(β(t)) 0

τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))



ēm1(t)

ēm2(t)

ēm3(t)



+


−ξm1Γm (t, ēm1(t− α1(t)))

0

0

+

∫ t

t−α2

Γ3
m(σ, ēm(σ))dσ

+

N∑
n=1

Πmn(β1(t))Θmn(t, ēm(t), ēn(t), β(t))

]
dt

+ Λm(t, ēm(t), β(t))dB(t), t ≥ 0,

ēm(th) = Imu(th)(em(t−h )),m, n ∈ N, h ∈ H,

(4.4)

where ēm(t) = (ēm1(t), ēm2(t), ēm3(t))T, Γm (t, ēm1(t− α1(t))), Γ3
m(t, ēm(t)),

Θmn(t, ēm(t), ēn(t), β(t)), Λm(t, ēm(t), β(t)) can be denoted as

Γm (t, ēm1(t− α1(t))) = Γ̃m (t,Ψm1(t− α1(t)))− Γ̃m (t,Φm1(t− α1(t))) ,

Γ3
m(t, ēm(t)) = Γ̃3

m(t,Ψm(t))− Γ̃3
m(t,Φm(t)),

Θmn(t, ēm(t), ēn(t), β(t)) = Θ̃mn(t,Ψm(t),Ψn(t), β(t))− Θ̃mn(t,Φm(t),Φn(t), β(t)),

Λm(t, ēm(t), β(t)) = Λ̃m(t,Ψm(t), β(t))− Λ̃m(t,Φm(t), β(t)).
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Define

Mm(β(t)) =


−τm1(β(t)) τm1(β(t)) 0

τm2(β(t)) −τm2(β(t)) τm3(β(t))

0 τm4(β(t)) −τm5(β(t))

 ,

Γ̂m (t, ēm1(t− α1(t))) =


−ξm1Γm (t, ēm1(t− α1(t)))

0

0

 ,

then system (4.4) can be written as

dēm(t) =
[
Mm(β(t))ēm(t) + Γ̂m (t, ēm(t− α1(t))) +

∫ t

t−α2

Γ3
m (σ, ēm(σ)) dσ

+

N∑
n=1

Πmn(β(t))Θmn (t, ēm(t), ēn(t), β(t))
]
dt

+ Λm (t, ēm(t), β(t)) dB(t), t ≥ 0, t 6= th,

ēm(th) =Imu(th)(ēm(t−h )), m, n ∈ N, h ∈ H.
(4.5)

Some sufficient conditions for system (4.2) and system (4.3) reach synchroniza-
tion are derived below.

Theorem 4.1. If the following conditions are satisfied:
ZN1. There are positive numbers γ3

m, θmn(s), λm(s), m,n ∈ N, s ∈ S and a
sequence of stochastic variables IMPu(th), h ∈ H such that

|Γ3
m (t, ēm) |2 ≤ γ3

m|ēm|2,
|Θmn (t, ēm, ēn, s) | ≤ θmn(s)(|ēm|+ |ēm|),
|Λm (t, ēm, s) |2 ≤ λm(s)|ēm|2,∣∣∣Imu(th)

(
ēm
(
thm
))∣∣∣2 ≤ IMPu(th)

∣∣ēhm∣∣2 .
ZN2. The directed graph (G,THE) is strongly connected, THE = (THEmn)N×N ,
THEmn = maxs∈S{Πmn(s)θmn(s)}.
ZN3. The average stochastic impulsive gain and the average stochastic interval
satisfy

lnAG

AI
= k < k1 < 0, k1 + η < 0,

in which η = maxm∈N,s∈S

{
2γ1
m(s)+γ2

m+α2γ
3
m+λm(s)+4

∑N
n=1 THEmn+

w̄2
m(s)

1−α∗1
+

w̄2
m(s) +

∑
ŝ∈S ζsŝ,s′

w̄m(ŝ)
w̄m(s)

}
. Then driving system (4.2) and response system (4.3)

can reach mean-square exponential synchronization.

Proof. Consider

ēT
m(t)M(s)ēm(t)
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= (ēm1(t), ēm2(t), ēm3(t))


−τm1(s) τm1(s) 0

τm2(s) −τm2(s) τm3(s)

0 τm4(s) −τm5(s)



ēm1(t)

ēm2(t)

ēm3(t)


≤+

(
1

2
τm1(s) +

1

2
τm3(s) +

1

2
τ4(s)− τm2(s)

)
|ēm2(t)|2

+

(
1

2
τm3(s) +

1

2
τm4(s)− τm5(s)

)
|ēm3(t)|2 − 1

2
τm1(s)|ēm1(t)|2

≤max

{
−1

2
τm1(s),

1

2
τm1(s) +

1

2
τm3(s) +

1

2
τ4(s)− τm2(s),

1

2
τm3(s) +

1

2
τm4(s)− τm5(s)

}
|ēm(t)|2

≤γ1
m(s)|ēm(t)|2,

and

|Γ̂m (t, ēm(t− α1(t))) | = ξm1|Γm (t, ēm1(t− α1(t))) |

=ξm1

∣∣∣∣ν2ēm1(t− α1(t)) +
1

2
(ν2 − ν1) (|ēm1(t− α1(t)) + 1| − |ēm1(t− α1(t))− 1|)

∣∣∣∣
≤ξm1 |ν2ēm1(t− α1(t))|+ ξm1 |(ν2 − ν1)ēm1(t− α1(t))|
=ξm1(2ν2 − ν1) |ēm1(t− α1(t))|
≤γ2

m |ēm1(t− α1(t))| ,

combining with ZN1, it can be seen that Assumption 2.1 and Assumption 2.2 are
both valid. From ZN2 and ZN3, we can conclude that all the conditions in Theorem
3.3 are valid. Therefore, driving system (4.2) and response system (4.3) achieve
mean-square exponential synchronization.

Remark 4.1. Circuit systems have become a relatively popular topic in recent
years due to their wide range of practical applications [1, 5, 11]. Different from
them, we consider semi-Markov jump and mixed delay in this paper. Besides,
we give the synchronization criteria for the driving system and the response circuit
system, which extends the theoretical results and practical applications of the circuit
systems.

5. Numerical example

This section utilizes a numerical example to verify the theoretical results in Section
4.

Firstly, we consider driving system (4.2) and response system (4.3) on digraph
G with N = 18, S = 2, and the topological structures are presented in Figure 1
considering s = 1 and s = 2. Moreover, the non-zero elements of the adjacency
matrices Π1 = (Πmn(1))18×18 and Π2 = (Πmn(2))18×18 corresponding to the two
states of the semi-Markov jump are chosen in Table 1, and the other elements are
installed as zero, meaning there is no arc between the two nodes. In addition, the
coupling functions are chosen as

Θ̃mn(t,Φm(t),Φn(t), 1) = sin(Φm(t))− sin(Φn(t)),
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Θ̃mn(t,Φm(t),Φn(t), 2) = 1.2(sin(Φm(t))− sin(Φn(t))),

Θ̃mn(t,Ψm(t),Ψn(t), 1) = sin(Ψm(t))− sin(Ψn(t)),

Θ̃mn(t,Ψm(t),Ψn(t), 2) = 1.2(sin(Ψm(t))− sin(Ψn(t))),

and

Θmn(t, ēm(t), ēn(t), 1) = sin(Ψm(t))− sin(Ψn(t))− sin(Φm(t)) + sin(Φn(t)),

Θmn(t, ēm(t), ēn(t), 2) = 1.2(sin(Ψm(t))− sin(Ψn(t))− sin(Φm(t)) + sin(Φn(t))).

From ZN1, we get θmn(1) = 1, θmn(2) = 1.2. Let THEmn =
maxs∈S {Πmn(s)θmn(s)}, then (G,THE) is strongly connected, and the sketch map
is depicted in Figure 2.
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Figure 1. Digraph (G,Π1) (left) and (G,Π2) (right).

Table 1. The non-zero elements of adjacency matrices Π1 and Π2.

Π5,6(1) Π6,7(1) Π7,8(1) Π8,9(1) Π9,10(1) Π10,11(1) Π11,12(1) Π12,5(1) Π13,14(1)

0.001 0.001 0.002 0.001 0.002 0.004 0.005 0.006 0.006

Π14,15(1) Π15,16(1) Π16,13(1) Π14,18(1) Π18,13(1) Π16,17(1) Π17,15(1) Π1,2(2) Π2,3(2)

0.002 0.001 0.002 0.001 0.003 0.004 0.002 0.002 0.002

Π3,4(2) Π4,1(2) Π1,6(2) Π6,16(2) Π16,5(2) Π5,1(2) Π2,8(2) Π8,15(2) Π15,7(2)

0.002 0.003 0.003 0.003 0.003 0.001 0.004 0.001 0.001

Π3,10(2) Π10,14(2) Π14,9(2) Π4,12(2) Π12,13(2) Π13,11(2) Π11,4(2) Π17,18(2) Π18,17(2)

0.002 0.001 0.002 0.001 0.004 0.005 0.006 0.008 0.009

Next, we choose ν1 = −0.45, ν2 = −0.21, and the settings of τm1(s), τm2(s),
τm3(s), τm4(s), τm5(s) at s = 1 and s = 2 are introduced in Table 2 and Ta-
ble 3 respectively, as well as the values of ξm1 are chosen in Table 4. Then
we get γ1 = maxm∈N,s∈{1,2}{γ1

m(s)} = maxm∈N,s∈{1,2}{τm2(s), τm1(s) + τm3(s)
− τm4(s), τm3(s) + τm4(s) − τm5(s)} = 0.0455, γ2 = maxm∈N{γ2

m} = maxm∈N{ξm1

(2ν2 − ν1)} = 0.0830. We suppose that α1(t) = 0.01 cos2 t, α2 = 0.01, and we
have α1 = α∗1 = 0.01. The initial conditions are picked as Φm1(t) = −0.02,
Φm2(t) = 0.02, Φm3(t) = −0.04, Ψm1(t) = −0.07, Ψm2(t) = 0.04, Ψm3(t) = −0.08.



Dupire Itô’s formula for the exponential synchronization 2101

9

8

6

11

5

10

12 7

4

1

2

3

16

1513

14

18

17

Figure 2. Digraph (G, THE).

Table 2. Settings of some parameters of system (4.5) at s = 1.

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

τm1(1) 0.6666 0.7943 0.9660 1.0233 0.6922 0.9108 0.7617 0.7544 0.7717

τm2(1) 1.1694 1.4361 1.2232 1.3408 1.4569 1.3636 1.3558 1.5123 1.3847

τm3(1) 0.6465 0.4910 0.7563 0.7340 0.6590 0.5006 0.4574 0.4469 0.5323

τm4(1) 0.5403 0.6446 0.7160 0.5408 0.8139 0.6243 0.5961 0.6408 0.5822

τm5(1) 0.9353 0.7483 0.7332 0.8288 0.7822 0.7714 0.7850 0.7671 0.7547

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18

τm1(1) 0.9005 0.8279 1.1219 0.8034 0.5747 0.9848 0.5780 1.1202 1.0388

τm2(1) 1.6119 1.4065 1.4166 1.4252 1.3521 1.5358 1.4707 1.3767 1.4685

τm3(1) 0.4547 0.6118 0.4555 0.6788 0.6337 0.4934 0.6906 0.6920 0.5825

τm4(1) 0.5229 0.7765 0.7333 0.5594 0.5376 0.6151 0.7057 0.5541 0.4557

τm5(1) 0.7714 0.6692 0.8859 0.5736 0.6042 0.6790 0.8034 0.7819 0.8517

Besides, we set that

Γ̃m (t,Φm1(t− α1(t))) = Φm1(t− α1(t)), Γ̃m (t,Ψm1(t− α1(t))) = Ψm1(t− α1(t)),

and

Γm (t, ēm1(t− α1(t))) = Ψm1(t− α1(t))− Φm1(t− α1(t)) = ēm1(t− α1(t)).

In the following, we select

Γ̃3
m(t,Φm(t)) = sin(Φm(t)), Γ̃3

m(t,Ψm(t)) = sin(Ψm(t)),

and
Γ3
m(t, ēm(t)) = sin(Ψm(t))− sin(Φm(t)).
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Table 3. Settings of some parameters of system (4.5) at s = 2.

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

τm1(2) 1.0061 1.0311 1.4162 1.5171 1.2910 1.2600 1.2155 0.9690 1.1897

τm2(2) 1.7388 1.9025 1.8591 1.8568 1.6898 1.7398 1.8819 1.7484 1.8078

τm3(2) 0.7400 0.8363 1.0356 0.7781 0.8733 0.9952 1.0159 0.8134 0.9331

τm4(2) 0.8097 0.8524 1.0521 0.7899 0.9827 0.8602 0.9626 0.8611 0.8264

τm5(2) 1.3353 1.1483 1.1332 1.2288 1.1822 1.1714 1.1850 1.1671 1.1547

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18

τm1(2) 1.4147 1.1934 1.1356 1.2580 1.4495 1.2459 1.1230 1.0485 1.3224

τm2(2) 1.9365 1.9054 1.9178 1.7826 1.8516 1.8068 1.7420 1.8056 1.8713

τm3(2) 1.0500 0.9452 0.7234 0.9132 0.7308 0.7342 0.7951 0.8567 0.9544

τm4(2) 0.8078 0.8108 0.8756 0.8923 0.8192 0.7281 1.1214 0.9101 0.9050

τm5(2) 1.1714 1.0692 1.2859 0.9736 1.0042 1.0790 1.2034 1.1819 1.2517

Table 4. Settings of ξm1 of system (4.5).

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

ξm1 1.9714 1.3768 2.4213 1.0542 1.5858 1.3177 2.7668 2.2056 2.0735

m=10 m=11 m=12 m=13 m=14 m=15 m=16 m=17 m=18

ξm1 1.5608 1.1651 1.4751 2.2815 2.6628 2.7065 1.4289 2.2735 2.5872

From ZN1, we have γ3
m = 1. The stochastic perturbation functions are picked as

Λ̃(t,Φm(t), 1) = 0.2Φm(t), Λ̃(t,Φm(t), 2) = 0.4Φm(t),

Λ̃(t,Ψm(t), 1) = 0.2Ψm(t), Λ̃(t,Ψm(t), 2) = 0.4Ψm(t),

and
Λm(t, ēm(t), 1) = 0.2(Ψm(t)− Φm(t)) = 0.2ēm(t),

Λm(t, ēm(t), 2) = 0.4(Ψm(t)− Φm(t)) = 0.4ēm(t).

According to ZN1, we derive λm(1) = 0.1, λm(2) = 0.2. Furthermore, we let
the state transition rate of the semi-Markov jump is 0.1 ≤ ζ12(∆(t)) ≤ 0.25 and
0.25 ≤ ζ21(∆(t)) ≤ 0.4. We have ζ12,1 = 0.1, ζ12,2 = 0.25, ζ21,1 = 0.25, ζ21,2 = 0.4.
And we choose w̄(1) = 0.1, w̄(2) = 0.12, then we can get

η = max
m∈N,s∈S

{ηm(s)}

= max
m∈N,s∈S

{
2γ1
m(s) + γ2

m + α2γ
3
m + λm(s) + 4

N∑
n=1

THEmn +
w̄2
m(s)

1− α∗1
+ w̄2

m(s)

+
∑
ŝ∈S

ζsŝ,s′
w̄m(ŝ)

w̄m(s)

}
=0.7496.

We attempt to add the stochastic hybrid impulsive control on response system
(4.3) to make it synchronize with driving system (4.2). The impulse gains are a
sequence of stochastic variables valued from [0.2,1.2] and obey uniform distribution.
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The impulsive intervals are valued from [0.3,0.5]. Then average impulsive gain can
be calculated as AG = 0.7 < 1, AI = 0.4. It is obvious that lnAG

AI = k < k1 =
−0.8917 < 0, k1 + η = −0.1421 < 0. Thus, conditions in Theorem 4.1 are all
satisfied and response system (4.3) can synchronize with driving system (4.2) in
theory. Three-dimensional state trajectories of system (4.2) and system (4.3) are
presented in Figure 3, Figure 5, Figure 7. Indeed, they reach synchronization and
it can be seen from Figure 4, Figure 6, Figure 8, which performs the tending-to-0
state trajectories of error system (4.4). Besides, it also can be seen that the mean
square state trajectories of error system (4.4) tend to 0. The above results illustrate
the effectiveness and validity of the theoretical results.
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Figure 3. State trajectories Φm1(t) of drive system (4.2) (left) and Ψm1(t) of response system (4.3)
(right).

0 5 10 15

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10 12

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4. State trajectories ēm1(t) (left) and mean square trajectories E|ēm1(t)|2 (right) of error system
(4.4).
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Figure 5. State trajectories Φm2(t) of drive system (4.2) (left) and Ψm2(t) of response system (4.3)
(right).
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Figure 6. State trajectories ēm2(t) (left) and mean square trajectories E|ēm2(t)|2 (right) of error system
(4.4).
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Figure 7. State trajectories Φm3(t) of drive system (4.2) (left) and Ψm3(t) of response system (4.3)
(right).
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Figure 8. State trajectories ēm3(t) (left) and mean square trajectories E|ēm3(t)|2 (right) of error system
(4.4).

6. Conclusion

This paper investigated the exponential synchronization of stochastic semi-Markov
jump systems with mixed delay via stochastic hybrid impulsive control. And Dupire
functional Itô’s formula has been firstly used in the synchronization of the mixed de-
layed systems under impulsive control. A definition of average stochastic impulsive
gain has been put forward to estimate the strength of the stochastic mixed impulses.
Based on that, some synchronization criteria for the systems have been provided,
related to the topological structure, semi-Markov jump, stochastic disturbance in-
tensity and impulsive control. The theoretical results have also been applied into a
class of circuit systems and the related synchronization criteria have been derived.
This study provides a new thought on the synchronization of mixed delayed sys-
tems and gives a further exploration on the impulsive control systems. And nodes
of the complex systems may be connected in a variety of ways, which emerges the
investigations on multi-links complex systems. In addition, the time-varying dis-
tributed delay is widely presented in communication networks and control systems.
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It has some limitations when applying the theoretical results of this paper to the
multi-links stochastic functional systems with time-varying distributed delay. In the
future, we will explore the new method to investigate the synchronization problem
of multi-links stochastic semi-Markov jump systems with time-varying distributed
delay.
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