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ON HERMITE-HADAMARD-TYPE
CHARACTERIZATIONS OF HIGHER-ORDER

DIFFERENTIAL INEQUALITIES∗

Mohamed Jleli1 and Bessem Samet1,†

Abstract Let I be an open interval of R and f : I → R. It is
well-known that f is convex in I if and only if, for all x, y ∈ I with x < y, it
holds that

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
.

The above inequality is known in the literature as Hermite-Hadamard in-
equality. In the first part of this paper, we extend the above result to the
set of functions f ∈ C2n(I) satisfying the higher-order differential inequal-
ity (−1)nf (2n) ≤ 0 in I. In particular, when f satisfies the above inequality
with n = 2, and f is convex, we obtain an interesting refinement of Hermite-
Hadamard inequality. The second part of this paper is devoted to the study
of sub-biharmonic functions, i.e., the set of functions f ∈ C4(Ω), Ω is an open
subset of RN (N ≥ 2), satisfying ∆2f ≤ 0 in Ω. Namely, a characterization
of this set of functions is established. In particular, when f is subharmonic
(∆f ≥ 0 in Ω) and f is sub-biharmonic, an interesting refinement of Hermite-
Hadamard inequality in higher dimension is obtained.

Keywords Convexity, higher-order differential inequalities, subharmonic
functions, sub-biharmonic functions, Hermite-Hadamard inequality, charac-
terization.
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1. Introduction

The Hermite-Hadamard inequality can be stated as follows: Let f : [a, b]→ R be a
convex function, then

1

b− a

∫ b

a

f(z) dz ≤ f(a) + f(b)

2
. (1.1)

This inequality dates back to an 1883 observation of Hermite [15] with an inde-
pendent use by Hadamard [13] in 1893. The Hermite-Hadamard inequality has
been frequently used in the study of the properties of convex functions and their
applications in optimization and approximation theory (see e.g. [3, 12, 18]). Many
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generalizations and extensions of (1.1) can be found in the literature. For instance,
we refer to [1, 2, 10,11,20–22] (see also the references therein).

It is interesting to notice that (1.1) provides a characterization of convex func-
tions. Namely, if f is a continuous in an interval I, then the following statements
are equivalent:

(i) f is convex in I;

(ii) For all x, y ∈ I with x < y,

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
.

The proof of the above characterization can be found in [25]. On the other hand,
it is well-known that, if f is twice differentiable, then f is convex if and only if
f ′′ ≥ 0. So, if f is twice differentiable, then f ′′ ≥ 0 in I if and only if (ii) holds.
From this observation, it is natural to ask whether it is possible to extend this result
to more general differential inequalities. The first part of this paper is concerned
with the study of this question. Namely, we are concerned with the characterization
of higher-order differential inequalities of the form

(−1)nf (2n) ≤ 0 in I, (1.2)

where n is a positive natural number. A particular attention is devoted to the
study of fourth-order differential inequalities, i.e., the case n = 2. Here, by f (2n),
we mean the derivative of order 2n of f . Observe that in the special case n = 1,
(1.2) means that f is convex in I. To the best of our knowledge, except for the case
n = 1 (the convexity case), the study of characterization of higher-order differential
inequalities of the form (1.2) has never been considered in the literature.

In the higher-dimensional case, one can expect that for a given convex function
f : Ω→ R, where Ω ⊂ RN is convex, it holds that

1

|Ω|

∫
Ω

f(z) dz ≤ 1

|∂Ω|

∫
∂Ω

f(z) dSz. (1.3)

In [8], Dragomir proved (1.3) in the two-dimensional case, where Ω is a ball in R2.
The same author [9] proved that the same result holds true in the three-dimensional
case. Later, (1.3) has been extended to the N -dimensional case by de la Cal &
Carcamo [6]. On the other hand, it is well-known that any twice differentiable
convex function f is subharmonic, that is, f verifies the elliptic inequality ∆f ≥ 0,
where ∆ is the Laplacian operator. So, it is natural to ask whether it is possible to
obtain a Hermite-Hadamard inequality for subharmonic functions. This question
has been studied by many authors. For instance, Niculescu & Persson [21] proved
that, if f ∈ C2(Ω) ∩ C1(Ω) is subharmonic, then∫

Ω

f(z) dz ≤
∫
∂Ω

f(z)
∂ϕ

∂ν
(z) dSz,

where ϕ ≤ 0 solves the Dirichlet boundary value problem∆ϕ = 1 in Ω,

ϕ = 0 on ∂Ω.
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Here, by ∂
∂ν , we mean the normal derivative. Other results related to Hermite-

Hadamard inequalities for subharmonic functions can be found in [4, 16, 17, 19, 26]
(see also the references therein).

It is interesting to mention that inequality (1.3) characterizes subharmonic func-
tions. In the two-dimensional case, this result already appears in [5, 23], and was
also stated in an equivalent form in [24]. These two results can be stated as follows:
∆f ≥ 0 in Ω if and only if, for all x ∈ Ω and δ > 0 with B(x, δ) ⊂ Ω, it holds that

1

|B(x, δ)|

∫
Ω

f(z) dz ≤ 1

|∂B(x, δ)|

∫
∂B(x,δ)

f(z) dSz. (1.4)

Here, B(x, δ) is the open ball of center x and radius δ, and B(x, δ) is the closure of
B(x, δ). From this result, it is natural to ask whether it is possible to obtain a similar
characterization for sub-biharmonic functions f , i.e., f satisfies ∆2f ≤ 0 in Ω, where
∆2 is the biLaplacian operator. The second part of this paper is devoted to the
study of this question. Namely a Hermite-Hadamard-type characterization of sub-
biharmonic functions is obtained. To the best of our knowledge, the characterization
of sub-biharmonic functions has not been previously considered in the literature.

We fix below some notations that will be used throughout this paper.

• I: an open interval of R;

• Ck(I): the space of k-times continuously differentiable functions in I;

• f (k): the derivative of order k of f ;

• N : a natural number ≥ 2;

• Ω: an open subset of RN ;

• ‖ · ‖: the Euclidean norm in RN ;

• ∇: the gradient operator;

• ∆: the Laplacian operator;

• ∆2: the biLaplacian operator;

•
∂

∂ν
: the normal derivative.

Let x ∈ Ω and δ > 0.

• B(x, δ) =
{
z ∈ RN : ‖z − x‖ < δ

}
;

• B(x, δ) is the closure of B(x, δ);

• ∂B(x, δ) =
{
z ∈ RN : ‖z − x‖ = δ

}
;

• ν is the outward unit normal on ∂B(x, δ);

• VN (δ) = |B(x, δ)|;
• AN−1(δ) = |∂B(x, δ)|

Finally, we recall that (see e.g. [7])

VN (δ) =
π

N
2

N
2 Γ
(
N
2

)δN
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and

AN−1(δ) =
2π

N
2

Γ
(
N
2

)δN−1,

where Γ(·) is the Gamma function.
The rest of the paper is organized as follows.
In Section 2, we consider higher-order differential inequalities of the form (1.2),

where n is a positive natural number. A characterization of the set fo functions f ∈
C2n(I) satisfying (1.2) is established (see Theorem 2.1). Next, a special attention
is devoted to the special case n = 2 (fourth-order differential inequalities). In
particular, when f is a convex function satisfying f ′′′′ ≤ 0, we obtain an interesting
refinement of Hermite-Hadamard inequality (see Corollary 2.3).

Section 3 is devoted to the study of sub-biharmonic functions. Namely, we
establish a characterization of the set of functions f ∈ C4(Ω) satisfying ∆2f ≤ 0 in Ω
(see Theorem 3.1). In particular, when f is both subharmonic and sub-biharmonic,
we obtain an improvement of inequality (1.4) (see Corollary 3.1).

2. Differential inequalities of the form (−1)nf (2n) ≤ 0

In this section, we are concerned with the characterization of the set of functions
f ∈ C2n(I) satisfying the higher-order differential inequality

(−1)nf (2n)(z) ≤ 0, z ∈ I, (2.1)

where n is a positive natural number.
We first need the following lemma that can be easily proved by means of the

general Leibniz rule.

Lemma 2.1. Let x, y ∈ I with x < y. Let

gn(z) = − 1

(2n)!
(z − x)n(z − y)n, x ≤ z ≤ y.

Then gn is a solution to the boundary value problem g
(2n)
n (z) = −1, x < z < y,

g
(k)
n (x) = g

(k)
n (y) = 0, k = 0, 1, · · · , n− 1.

(2.2)

Moreover, for all k ∈ {n, n+ 1, · · · , 2n− 1}, we have

g(k)
n (x) =

(−1)k+1

(2n)!

k!n!

(k − n)!(2n− k)!
(y − x)2n−k (2.3)

and

g(k)
n (y) = − 1

(2n)!

k!n!

(k − n)!(2n− k)!
(y − x)2n−k. (2.4)

2.1. Main result

The main result of this section is the following theorem.

Theorem 2.1. Let f ∈ C2n(I). The following statements are equivalent:
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(i) The function f verifies (2.1);

(ii) For all x, y ∈ I with x < y, we have

1

y − x

∫ y

x

f(z) dz (2.5)

≤ n!

(2n)!

2n−1∑
k=n

k!(y − x)2n−k−1

(k − n)!(2n− k)!

(
f (2n−k−1)(x) + (−1)k+1f (2n−k−1)(y)

)
.

Proof. (i) =⇒ (ii): Assume that f verifies (2.1), and let x, y ∈ I with x < y. By
(2.2), one has ∫ y

x

f(z) dz = −
∫ y

x

g(2n)
n (z)f(z) dz.

Integrating by parts (2n-times), we obtain∫ y

x

f(z) dz =

2n−1∑
k=0

(−1)k
[
g(k)
n (z)f (2n−k−1)(z)

]y
z=x
−
∫ y

x

gn(z)f (2n)(z) dz.

Moreover, we have[
g(k)
n (z)f (2n−k−1)(z)

]y
z=x

= 0, k = 0, 1, · · · , n− 1.

Hence, it holds that∫ y

x

f(z) dz =

2n−1∑
k=n

(−1)k
[
g(k)
n (z)f (2n−k−1)(z)

]y
z=x
−
∫ y

x

gn(z)f (2n)(z) dz.

Then, making use of (2.3) and (2.4), we obtain∫ y

x

f(z) dz

=

2n−1∑
k=n

(−1)k
(
g(k)
n (y)f (2n−k−1)(y)− g(k)

n (x)f (2n−k−1)(x)
)
−
∫ y

x

gn(z)f (2n)(z) dz

=
n!

(2n)!

2n−1∑
k=n

k!(y − x)2n−k

(k − n)!(2n− k)!

(
f (2n−k−1)(x) + (−1)k+1f (2n−k−1)(y)

)
−
∫ y

x

gn(z)f (2n)(z) dz

=
n!

(2n)!

2n−1∑
k=n

k!(y − x)2n−k

(k − n)!(2n− k)!

(
f (2n−k−1)(x) + (−1)k+1f (2n−k−1)(y)

)
(2.6)

+
1

(2n)!

∫ y

x

(z − x)n(y − z)n
[
(−1)nf (2n)(z)

]
dz.

On the other hand, in view of (2.1), one has∫ y

x

(z − x)n(y − z)n
[
(−1)nf (2n)(z)

]
dz ≤ 0. (2.7)
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Thus, (2.5) follows from (2.6) and (2.7). This proves that (i) =⇒ (ii).

(ii) =⇒ (i): Assume that for all x, y ∈ I with x < y, (2.5) holds. Let x ∈ I be fixed,
and ε > 0 (small enough), so that [x− ε, x+ ε] ⊂ I. Then, it holds that∫ x+ε

x−ε
f(z) dz (2.8)

≤ n!

(2n)!

2n−1∑
k=n

k!(2ε)2n−k

(k − n)!(2n− k)!

(
f (2n−k−1)(x− ε) + (−1)k+1f (2n−k−1)(x+ ε)

)
.

Let

gn,ε(z) = − 1

(2n)!
(z − x+ ε)n(z − x− ε)n, x− ε ≤ z ≤ x+ ε.

Taking x− ε (resp. x+ ε) instead of x (resp. y) in Lemma 2.1, we can see that gn,ε
is a solution to the boundary value problem g

(2n)
n,ε (z) = −1, x− ε < z < x+ ε,

g
(k)
n,ε(x− ε) = g

(k)
n,ε(x+ ε) = 0, k = 0, 1, · · · , n− 1.

(2.9)

Moreover, for all k ∈ {n, n+ 1, · · · , 2n− 1}, we have

g(k)
n,ε(x− ε) =

(−1)k+1

(2n)!

k!n!

(k − n)!(2n− k)!
(2ε)2n−k (2.10)

and

g(k)
n,ε(x+ ε) =

−1

(2n)!

k!n!

(k − n)!(2n− k)!
(2ε)2n−k. (2.11)

By (2.9), (2.10), (2.11), and using integrations by parts, we obtain∫ x+ε

x−ε
f(z) dz

=−
∫ x+ε

x−ε
f(z)g(2n)

n,ε (z) dz

=
n!

(2n)!

2n−1∑
k=n

k!(2ε)2n−k

(k − n)!(2n− k)!

(
f (2n−k−1)(x− ε) + (−1)k+1f (2n−k−1)(x+ ε)

)
+

1

(2n)!

∫ x+ε

x−ε
(z − x+ ε)n(x+ ε− z)n

[
(−1)nf (2n)(z)

]
dz,

which implies by (2.8) that∫ x+ε

x−ε
(z − x+ ε)n(x+ ε− z)n

[
(−1)nf (2n)(z)

]
dz ≤ 0.

Since
(z − x+ ε)n(x+ ε− z)n ≥ 0, x− ε ≤ z ≤ x+ ε,

then there exists
zε ∈ (x− ε, x+ ε)
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such that

(−1)nf (2n)(zε) ≤ 0. (2.12)

Since f (2n) is continuous in I, passing to the limit as ε→ 0+ in (2.12), we obtain

(−1)nf (2n)(x) ≤ 0.

This shows that (ii) =⇒ (i). The proof of Theorem 2.1 is then completed.

Remark 2.1. Taking n = 1 in Theorem 2.1, we obtain the following result: If
f ∈ C2(I), then f ′′ ≥ 0 in I if and only if, for all x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
.

2.2. Fourth-order differential inequalities

Taking n = 2 in Theorem 2.1, we obtain the following result.

Corollary 2.1. Let f ∈ C4(I). The following statements are equivalent:

(i) f ′′′′ ≤ 0 in I;

(ii) For all x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
− y − x

12
(f ′(y)− f ′(x)) . (2.13)

We now consider the the set of functions f ∈ C4(I) satisfying the fourth-order
differential inequality

f ′′′′(z) ≤ m, z ∈ I, (2.14)

where m ∈ R is a constant. From Corollary 2.1, we deduce the following result.

Corollary 2.2. Let f ∈ C4(I). The following statements are equivalent:

(i) The function f verifies (2.14);

(ii) For all x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
− y − x

12
(f ′(y)− f ′(x))+

m

720
(y−x)4. (2.15)

Proof. Observe that (2.14) is equivalent to

h′′′′(z) ≤ 0, z ∈ I,

where

h(z) = f(z)− m

24
z4, z ∈ I.

Hence, applying Corollary 2.1 with h instead of f , we obtain that f verifies (2.14)
if and only if, for all x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

h(z) dz ≤ h(x) + h(y)

2
− y − x

12
(h′(y)− h′(x)) ,
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that is,

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
− y − x

12
(f ′(y)− f ′(x)) +mP (x, y),

where

P (x, y) =
1

120

y5 − x5

y − x
− 1

48
(x4 + y4) +

1

72
(y − x)(y3 − x3).

Elementary calculations show that

P (x, y) =
1

720
(y − x)4.

This shows that f verifies (2.14) if and only if, for all x, y ∈ I with x < y, (2.15)
holds.

Remark 2.2. Observe that, if m < 0, then (2.15) improves (2.13).

We next consider the set of functions f ∈ C4(I) satisfying

f ′′′′(z) ≤ 0, f ′′(z) ≥ 0, z ∈ I. (2.16)

Clearly, if f ∈ C4(I) verifies (2.16), then f is convex in I. From Corollary 2.1, we
deduce the following interesting refinement of the Hermite-Hadamard inequality.

Corollary 2.3 (Refinement of the Hermite-Hadamard inequality). Let f ∈ C4(I)
verifies (2.16). Then, for all x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ f(x) + f(y)

2
− y − x

12
(f ′(y)− f ′(x)) ≤ f(x) + f(y)

2
. (2.17)

Proof. We have just to observe that, if f ∈ C4(I) verifies (2.16), then f ′ is
nondecreasing in I. So, for all x, y ∈ I with x < y, one has

f ′(y)− f ′(x) ≥ 0.

Hence, by Corollary 2.1, we obtain (2.17).
From Corollary 2.1, we also deduce the following result.

Corollary 2.4. Let f ∈ C4(I) verifies f ′′′′ ≤ 0 in I. Let k ≥ 2 be a natural number
and {xi}ki=1 ⊂ I with x1 < x2 < · · · < xk. Then, it holds that∫ xk

x1

f(z) dz ≤
k−1∑
i=1

(xi+1 − xi)
(
f(xi) + f(xi+1)

2
− xi+1 − xi

12
(f ′(xi+1)− f ′(xi))

)
.

(2.18)

Proof. We have ∫ xk

x1

f(z) dz =

k−1∑
i=1

∫ xi+1

xi

f(z) dz. (2.19)

On the other hand, by Corollary 2.1, for all i ∈ {1, 2, · · · , k − 1}, we have

1

xi+1 − xi

∫ xi+1

xi

f(z) dz ≤ f(xi) + f(xi+1)

2
−xi+1 − xi

12
(f ′(xi+1)− f ′(xi)) . (2.20)

Combining (2.19) with (2.20), we obtain (2.18).
From Corollary 2.4, we deduce the following result.
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Corollary 2.5. Let f ∈ C4(I) verifies f ′′′′ ≤ 0 in I. Then, for all x, y ∈ I with
x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ 1

2

(
f(x) + f(y)

2
+ f

(
x+ y

2

))
− y − x

48
(f ′(y)− f ′(x)) .

(2.21)

Proof. Applying Corollary 2.4 with

k = 3, x1 = x, x2 =
x+ y

2
, x3 = y,

we immediately obtain (2.21).
In particular, if f ∈ C4(I) verifies (2.16), we deduce from Corollary 2.5 the

following result.

Corollary 2.6. Let f ∈ C4(I) verifies (2.16). Then, for all x, y ∈ I with x < y, it
holds that

1

y − x

∫ y

x

f(z) dz ≤ 1

2

(
f(x) + f(y)

2
+ f

(
x+ y

2

))
− y − x

48
(f ′(y)− f ′(x))

≤ 1

2

(
f(x) + f(y)

2
+ f

(
x+ y

2

))
. (2.22)

Remark 2.3. In [21], it was shown that, if f is a convex function in I, then for all
x, y ∈ I with x < y, it holds that

1

y − x

∫ y

x

f(z) dz ≤ 1

2

(
f(x) + f(y)

2
+ f

(
x+ y

2

))
. (2.23)

Therefore, if f ∈ C4(I) verifies (2.16), then (2.22) improves (2.23).

3. Sub-biharmonic functions

In this section, we are concerned with the characterization of the set of functions
f ∈ C4(Ω) satisfying

∆2f(z) ≤ 0, z ∈ Ω. (3.1)

A function f satisfying the above property is said to be sub-biharmonic in Ω (see
e.g. [14]).

Our main result in this section is stated below.

Theorem 3.1 (A characterization of sub-biharmonic functions). Let f ∈ C4(Ω).
The following statements are equivalent:

(i) The function f verifies (3.1);

(ii) For all x ∈ Ω and δ > 0 with B(x, δ) ⊂ Ω, we have

1

VN (δ)

∫
B(x,δ)

f(z) dz ≤ 1

AN−1(δ)

∫
∂B(x,δ)

(
f(z)− δ

N + 2

∂f

∂ν
(z)

)
dSz.

(3.2)
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Proof. (i) =⇒ (ii): Assume that f verifies (3.1). Let x ∈ Ω and δ > 0 with
B(x, δ) ⊂ Ω. Let us introduce the function

H(z) = − 1

8N(N + 2)

(
‖z − x‖2 − δ2

)2
, z ∈ B(x, δ). (3.3)

Elementary calculations show that H is a solution to the boundary value problem
∆2H(z) = −1, z ∈ B(x, δ),

H(z) =
∂H

∂ν
(z) = 0, z ∈ ∂B(x, δ).

(3.4)

By (3.4), one has ∫
B(x,δ)

f(z) dz = −
∫
B(x,δ)

f(z)∆2H(z) dz.

Applying Green’s identity to the right side of the last equality, we obtain∫
B(x,δ)

f(z) dz = −
∫
∂B(x,δ)

f(z)
∂∆H

∂ν
(z) dSz +

∫
∂B(x,δ)

∂f

∂ν
(z)∆H(z) dSz

−
∫
∂B(x,δ)

∆f(z)
∂H

∂ν
(z) dSz +

∫
∂B(x,δ)

H(z)
∂∆f

∂ν
(z) dSz

−
∫
B(x,δ)

H(z)∆2f(z) dz.

Due to the boundary conditions in (3.4), we get∫
B(x,δ)

f(z) dz = −
∫
∂B(x,δ)

f(z)
∂∆H

∂ν
(z) dSz +

∫
∂B(x,δ)

∂f

∂ν
(z)∆H(z) dSz

−
∫
B(x,δ)

H(z)∆2f(z) dz. (3.5)

Since H ≤ 0 and ∆2f ≤ 0, it holds that∫
B(x,δ)

f(z) dz ≤ −
∫
∂B(x,δ)

f(z)
∂∆H

∂ν
(z) dSz +

∫
∂B(x,δ)

∂f

∂ν
(z)∆H(z) dSz. (3.6)

On the other hand, by (3.3), we obtain

∆H(z) =
δ2 − ‖z − x‖2

2(N + 2)
− ‖z − x‖

2

N(N + 2)
, z ∈ B(x, δ)

and

∇∆H(z) = − z − x
N + 2

− 2(z − x)

N(N + 2)
, z ∈ B(x, δ).

Thus, we get

∆H(z) = − δ2

N(N + 2)
, z ∈ ∂B(x, δ) (3.7)
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and

∂∆H

∂ν
(z) = ∇∆H(z) · ν(z)

= ∇∆H(z) · z − x
‖z − x‖

= − δ

N + 2
− 2δ

N(N + 2)

= − δ

N
, z ∈ ∂B(x, δ). (3.8)

Hence, in view of (3.6), (3.7) and (3.8), we obtain∫
B(x,δ)

f(z) dz ≤ δ

N

∫
∂B(x,δ)

(
f(z)− δ

N + 2

∂f

∂ν
(z)

)
dSz.

Multiplying the above inequality by 1
VN (δ) , (3.2) follows. This shows that (i) =⇒ (ii).

(ii) =⇒ (i): Assume now that for all x ∈ Ω and δ > 0 with B(x, δ) ⊂ Ω, (3.2) holds.
Let x ∈ Ω be fixed, and δ > 0 (small enough) so that B(x, δ) ⊂ Ω. Then, by (3.2)
and the first part of the proof, (3.5) and (3.6) hold. Consequently, we get∫

B(x,δ)

H(z)∆2f(z) dz ≥ 0.

Since H ≤ 0, we deduce that there exists zδ ∈ B(x, δ) such that

∆2f(zδ) ≤ 0.

Since f ∈ C4(Ω) (so ∆2f ∈ C(Ω)), passing to the limit as δ → 0+ in the above
inequality, we obtain

∆2f(x) ≤ 0.

This shows that (ii) =⇒ (i). The proof of Theorem 3.1 is then completed.
We now consider the set of functions f ∈ C4(Ω) such that f is subharmonic and

f is sub-biharmonic, that is,

∆f(z) ≥ 0, ∆2f(z) ≤ 0, z ∈ Ω. (3.9)

In this case, from Theorem 3.1, we deduce the following refinement of (1.4).

Corollary 3.1. Let f ∈ C4(Ω) verifies (3.9). Then, for all x ∈ Ω and δ > 0 with
B(x, δ) ⊂ Ω, it holds that

1

VN (δ)

∫
B(x,δ)

f(z) dz ≤ 1

AN−1(δ)

∫
∂B(x,δ)

(
f(z)− δ

N + 2

∂f

∂ν
(z)

)
dSz

≤ 1

AN−1(δ)

∫
∂B(x,δ)

f(z) dSz. (3.10)
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Proof. Let f ∈ C4(Ω) verifies (3.9). Applying Green’s identity, we obtain∫
B(x,δ)

∆f(z) dz =

∫
B(x,δ)

1 ∆f(z) dz

= −
∫
B(x,δ)

∇1 · ∇f(z) dz +

∫
∂B(x,δ)

∂f

∂ν
(z) dSz

=

∫
∂B(x,δ)

∂f

∂ν
(z) dSz.

Since ∆f ≥ 0, it holds that ∫
∂B(x,δ)

∂f

∂ν
(z) dSz ≥ 0.

Thus, by Theorem 3.1, we obtain (3.10).
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