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GLOBAL SMOOTH SOLUTION FOR THE
MODIFIED ANISOTROPIC 3D BOUSSINESQ
EQUATIONS WITH DAMPING*

Lin Lin"f, Hui Liu? and Cheng-Feng Sun®

Abstract This paper is mainly concerned with the modified anisotropic three-
dimensional Boussinesq equations with damping. We first prove the existence
and uniqueness of global solution of velocity anisotropic equations. Then we
establish the well-posedness of global solution of temperature anisotropic equa-
tions.
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1. Introduction

In this paper, we investigate the following modified velocity anisotropic three-
dimensional Boussinesq equations with damping;:

O — Apu+ (u-V)u+ |ul?~tu+ Vp = fes,

O — A0+ (u-V)0 =0,
(1.1)
V-u=0,

u(x,0) = uo(x), 6(x,0)=0y(z),
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and the temperature anisotropic three-dimensional Boussinesq equations with damp-
ing:

Ou — Au+ (u- V)u+ |ulf~tu+ Vp = e,
0,0 — Anh + (u- V)0 = 0,

V-u=0,

u(z,0) = uo(z), 0(x,0) = 0bo(x),

where e3 = (0,0,1)T, ¢t > 0, x € R?, u is the velocity fluid,  is the temperature, p is
the pressure, 8 > 1 is real parameter, Ay, := 07 + 05 and 9; is the partial derivative
in the direction x;.

The Boussinesq system can be derived from the Navier-Stokes equations by the
Boussinesq approximation. When the viscous and nonlinear terms are ignored, the
Navier Stokes equation can be simplified into the Boussinesq equation. They are
both important equations in fluid dynamics and have lately received significant at-
tention in mathematical fluid dynamics. Recently, the anisotropic Navier-Stokes
equations were investigated in [1,7,19-23,27]. In [7], Chemin and Zhang proved
the local-in-time well-posedness in the anisotropic Sobolev space H 0.3+ for some
€ > 0. Meanwhile, if the initial data was sufficiently small, global well-posedness was
obtained. In [22], Paicu and Zhang proved the well-posedness for the three dimen-
sional anisotropic Navier-Stokes equations in an appropriate anisotropic Sobolev
space.

By using the Friedrichs method, the existence and uniqueness of global-in-time
weak and strong solutions of the two-dimensional Boussinesq equations with hor-
izontal viscosity only appearing in one equation were studied in [8]. In [6], Cao
and Wu established the global-in-time existence of classical solutions to the 2D
anisotropic Boussinesq equations with only vertical dissipation. They proved that
the pressure was obtained by separating it into high frequency and low frequency
modes via Littlewood-Paley decomposition. The global well-posedness and regular-
ity of solutions of the two dimensional Boussinesq system with anisotropic viscosity
and without heat diffusion were established in [11]. Stability and exponential decay
for the two-dimensional Boussinesq equations with only horizontal dissipation and
horizontal thermal diffusion in the spatial domain T x R were investigated in [10].
Stability and optimal decay for a system of three dimensional Boussinesq modeling
anisotropic buoyancy-driven fluids were proved in [25]. By the virtue of damping
term, we will prove the well-posedness of system (1.1) and (1.2).

In [5], Cao and Wu proved the global regularity for two-dimensional incompress-
ible magnetohydrodynamic equations without dissipation and magnetic diffusion.
In [4], global regularity of classical solutions to the two dimensional incompressible
magnetohydrodynamic equations with horizontal dissipation and horizontal mag-
netic diffusion were studied. By means of anisotropic Littlewood-Paley analysis,
Yue and Zhong proved the global well-posedness of the three dimensional incom-
pressible anisotropic magnetohydrodynamics equations in the anisotropic Sobolev
spaces of type H**(R?) with sy > % in [26]. The global existence and regular-
ity for a system of the two-dimensional magnetohydrodynamic equations with only
directional hyper-resistivity were established in [9].

The Navier-Stokes equations and related models with damping were investi-
gated in [3,12,14-17,24]. In [2], Bessaih, Trabelsi and Zorgati first introduced the
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anisotropic Navier-Stokes equations with damping term and proved the existence
and uniqueness of global solutions for the modified anisotropic three-dimensional
Navier-Stokes equations. In [24], Titi and Trabelsi proved the global well-posedness
of solutions to a three-dimensional magnetohydrodynamical model in porous media
for 8 > 4. In [18], the global well-posedness of the three dimensional micropolar
equations with partial viscosity and damping was proved for g > 4.

In this paper, our main purpose is to establish the well-posedness for the modified
anisotropic 3D Boussinesq equations with damping. The main difficulty lies in
dealing with the anisotropy estimation. The outline of the paper is as follows. In
Section 2, we give some necessary notions and state the main results. We first
prove the existence and uniqueness of global solution of system (1.1) for § > 4
with ug € H%1(R?) and up € H*(R?) respectively in Section 3. Then we get the
existence and uniqueness of global solution of system (1.2) for 8 > 3 and prove the
unique global smooth solution of system (1.2) for s > 3 in Section 4.

2. Preliminaries

In this section, we introduce some useful notations and definitions. Denote =z =
(z1,29,23), where xp = (x1,22) is the horizontal variable and x, := x3 is the
vertical variable. Referring to the Chapter VI in [1,13], we define the anisotropic
Sobolev spaces as follows. For any s, s’ € R, assume that H 55" is the set of tempered
distributions ¢ € &'(R?) such that

[0 = [ 0+ 18R+ ) 1R < .

The space H5* endowed with the norm I - ||s,s is a Hilbert space. For exponents
p,q € [1,00), LY (L%) denotes the space LP(R,, X R,,, LI(R,,)) which is endowed
with the norm

P 1
lullzpzsy = { / ( / u(n, 3)|des) s ey} b
R2 R

The space LI (L?) can be defined similarly. Let ||- | z» be the L(R?) norm for p > 1.
For s € R, let H® := W*2 be the usual Sobolev space endowed with the norm

Julfy = [ 1+ 1Ry late) P

Now we present two main results of this paper. One is to establish the well-
posedness of the velocity anisotropic equation by energy method in Theorem 2.1 and
a higher regularity about the equation with a more smooth initial value in Theorem
2.2. The other is to prove the global solution of the temperature anisotropic equation
with different smooth conditions of initial values based on some prior estimates and
delicious calculations in Theorem 2.3 and Theorem 2.4.

Theorem 2.1. Let 8 > 4, ug € H**(R3) and 6y € H'(R?) such that divug = 0.
The system (1.1) has a unique global solution (u(t),8(t)) satisfying
u(t) € Lis, (R HOH(R?)) 0 Ly (RY; HYH(RY)) 0 Ll (R L7 (R?)),

loc loc loc

0(t) € LS (RT: HY(R?) N L7 (RT; H*(R?)).

loc loc
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Theorem 2.2. Let B > 4, ug € HY(R3) and 6y € H*(R3) such that divug = 0.
The system (1.1) has a unique global solution (u(t),0(t)) satisfying

u(t) € Lis(RY; H'(R?) N LT (RY; LPHU(RY)),  Viu € L, (R HY(R?)),

loc
0(t) € Li;.(RY; HY(R®)) N L, (RY; H?(R?)),

Owu(t) € LEL . (RT; LA(R?)), 0,0(t) € L7 (RT; L*(R3)).

loc loc

Theorem 2.3. Let B > 3, ug € HY(R?) and 6y € H**(R?) such that divug = 0.
The system (1.2) has a unique global solution (u(t),0(t)) satisfying

u(t) € LS, (R HY(RY) 1 L7, (R H2(RY) 0 LEE (R LA (RY)),

loc loc loc
0(t) € L. (RT; HOY(R?)) N L, (R HYH(R?)).

Theorem 2.4. Let 8>3, s >3, ug € H*(R3) and 6y € H*(R3) such that divug =
0. The system (1.2) has a unique global smooth solution (u(t),0(t)) satisfying

u(t) € Lise(RT5 H*(R?)) N Li,o(RT; H*H(R?)),

loc loc

0(t) € LS (RT; H¥(R?)), Vi0(t) € L (RT; H*(R?)).

loc loc

3. Existence and uniqueness of global solution for
the velocity anisotropic system

This section concerns the existence and uniqueness of global solution of system
(1.1) for 8 > 4. We will prove Theorem 2.1 and Theorem 2.2 with different smooth
conditions of initial values.

3.1. Proof of Theorem 2.1

We first consider the case that the initial value ug € H%1(R?) and 6y € H*(R?). To
prove Theorem 2.1, we firstly need to give some priori estimates in the following.
Taking the L? inner product of the second equation of (1.1) with 6, we get

1d

5o 1012 + 1901122 = 0.

Integrating over [0,¢], it yields that

t
100025 + 2 / IV012.ds = 6ol 2.

Taking the L? inner product of the first equation of (1.1) with u, we have

1d +1
5l + 1l + L = [ Seauds < a2 6]
R3
<lullZz + 101172 < [lullZ2 + 160]|7--

Applying Gronwall inequality, we get

t
()] +/O (IVaullZe + llull 75 )ds < C(t, uo, bo)- (3.1)
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Taking the L? inner product of the second equation of (1.1) with —A#, it yields
that, for g > 4,

1d
f—||V0||%z + ||A9||%2 = / (u-VO)Aldx
2dt R3
< Mull e [V 2tp | AD| 2
B2 Btd
< Cllufl o [IVO] 2 |AG] 2"
1 2 2(/53—+21) 2
< 100 + Cllull 122 1901125
1
< SIA0lIZ: + C1 + [l 52 V67
Consequently

d
ﬁHWH%z +1A0]17. <+ [[ull 5 )IVOII7 -
By Gronwall inequality again, it is easy to get that
¢
1v0(0)]12 +/ 1A0Bds < (¢, uo, 0o). (3.2)
0

Taking the L? inner product of the first equation of (1.1) with —9%u and the inte-
gration by parts, it yields that

1d

B-1 48 -1 B-1
g 10l + V0wl + 5 Guul + T dlOalul 5
= / (u-V)udsudr — | Oezd3udx
R3 R3
= I() + Lo (). (3.3)

For I1(t), by integration by parts, we have for 5 > 3

3 3
Il(t) = — Z /]RS 83ui8iuj83ujdx — Z /]R3 uiaiaguj@gujdx

i,5=1 i,j=1
2 3 3
= — Z Z/ 83ui3iuj83ujdm — Z/ 63U363uj83u]'d$
i=1 j=1 /R j=1/R?
2 3 2 3
= — Z Z/ 5‘3ui0iuj33ujdx + Z Z/ 8iui83uj83ujdx
i—1 j—17R? i—1 j—17/R®
2 3 2 3
= Z Z/ Ujaguj‘aiaguidlf + Z Z/ ujaguiﬁiagujd:c
i=1 j=1"& i=1j=1"F
2 3
— QZZ/ uiagujai&gujdx
i=1 j—17R®

2 3 2 3
< ZZ/Rg \uj||63uj||8183ul\dx + ZZ/RS |u]||83u1||8183u]|dx

i=1 j=1 i=1 j=1
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+QZZ/ il D || BsDsu; | da

=1 j=1

2 B=3
< 4o | @ 77 || o || D50l 5| 2= [ Vidsul e

B—3

< Ol % dgull 77 Nosull 3™ Dl 2
< S IVudsuls + Sl Osuls + Closula. (34)
For I5(t), applying the Holder inequality and Young inequality, we have
Iy(t) < [|050]| 2 ]|05ullL2 < 18501172 + |05ullZz < [VOIZ2 + |05ullZz  (3.5)
Inserting the estimates of (3.4) and (3.5) into (3.3), we have

Ld o Lo, 4(B-1)
2 dt||a3uHL2 +5 ||Vha3u||L2 + 2|Hu| 63UHL2 + —— (ﬁ n 1)

<(C+D))0sullz> + VO 72

519 ul = |3

Then, we get

||33UI|L2 + 1Vl + llul = OsulFz + |9s[ul = |32
SC(||33UIIL2 +IVOI[72)-

By Gronwall inequality, we have

¢
51 81
105172 +/ (IVrOsullZz + lllul = OsullZ2 + [10s]ul = [[Z2)ds < C(t, uo, bo).
0
(3.6)
Next, we will prove the uniqueness of strong solutions of (1.1). Let (v(t),6:(t)) and
(w(t), 02(t)) be two solutions of system (1.1) with the same initial data. Setting
(u,p,0) = (v —w,p1 — p2, 01 — b2), we get the following form:
ou+ (v-V)u+ (u-Vw— Apu+ [v]P~ 1o — |w|P~Lw + Vp = fes,
00 — A0+ (v- V)0 + (u- V) =0, (3.7)
V-u=0.

Multiplying both sides of the first equation of (3.7) by u and the second equation
of (3.7) by 0, respectively, we have

1d _ _
5 g7 lllZe + 1011Z:) + 1Vl + (VO] 72 +/ ([0~ v — Jw|’ ™ w)udz
/ (u- V)wudz — / (u-V)020dx + feszudx
R? R3
Ji(t) + Ja(t) + J3(t). (3-8)

Inspired by [3,14-16], it yields that

/ (JolP~1v — [w]P~Lw)udz > 0. (3.9)
R3
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.1 .
By Sobolev embedding H? < L}, we get for all w € L2 N H}!
sty < © [ lellog | Voo
< Cllullrz[Viul 22
Bearing in mind that Osusz = —divpup, we get
[05us|[z2 < Cl|Vhul| 2.

For Ji(t), by Holder inequality and Gagliardo-Nirenberg inequality, J;(t) can be
estimated as follows

2 3 3
Jl(t) = — ZZ/RB uiaiwjujdac — Z/Ra u383wjujdx
j=1

i=1 j=1
2 3 3

<S5 [l oty sl cydzs + 3 [ sl o og sl dos
i=1j=1"R j=1"R

< C||Vhw||Lgo(L;i)||U||2Lg(L;§) + Cllus|| Lo (£2) 10wl L2 o) lull L2 (23)
< CIVawl 21V nsw] 2 full 2| V] 2
+ Clusl| 22 19susll £ 105 1V ndsew | Eallul 2 1Vl .
< OV awl 21V nsw] 2 lull 2| Vil 2
+ Cllull 2|Vl 2 93] 2 |V D] 2
< S IVuullZs + CUTnwlZs + 105wl + [Vadswldo)lul. (3.10)

On the other hand, by Hélder inequality and Gagliardo-Nirenberg inequality again,
together with Young inequality, J2(¢) can be estimated by

Jo(t) < [lull 2101 Lo ][ VO2l| Lo
1 1
< Olluf| 2 VO]l L2 [ V02| £2 | A2

1
< SIVOIlL: + ClIVO|l 2| Aba | 2l 72

IA

1
3 IVOIZ: + CIVO272 + [1A02]72) [ 7. (3.11)
For J5(t), by Holder inequality and Young inequality, we get
J5(t) < Nlullz2l|0]l 22 < [lull7z + [16]f72- (3.12)
Putting all the results (3.9)-(3.12) into (3.8), it yields that
d 2 0 2 2 0 2
2 ullze +1101Z) + [IVhullzs + VOl

<CA+|[IVawlZs + 05w]
+ [ Vadswl[iz + V02072 + | A0 Z2) (lull 22 + [16]172)-
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By Gronwall inequality, it is easy to get

[u(®)[l72 + 10(t)]]72
<C(Juolf%s + G022 )eds OHITRwIT 2 H1050 NIV 10532 HI V02 2+l 402113 2)ds,

Then, by (3.1), (3.2) and (3.6), the uniqueness of the solution is proved, and then
the proof of Theorem 2.1 is completed.
3.2. Proof of Theorem 2.2

In this subsection, we get a higher regularity about the solution of system (1.1)
with a more smooth initial value.

Step 1. Taking the L? inner product of the first equation of (1.1) with —Awu and
integration by parts, we obtain

4B-1), o, an

||VUHL2 +IVVaulZs + llul = Vul3s + —2 B+1)? S IVl = )17

2 dt
= / (u- V)uAudr — fes Audx
R3 R3
= I3(t) + L4(t).

For I5(t), integration by parts, we have

3
I3(t) = — Z /RS OkuVud,udx

ZZ/ Oru;0;uliudx

k=1 1i=1
3 3
= ZZ/ w0 u; 0 0;udx
k=1i=1"R°
2 3 2
= Z/ u@kuiakaiudm—i—Z/ u@ku;ﬁkagudw—l—/ udzuz0393udr
i=1 k=17 R —1 /R R3
= 131( )+132( )+I33(t). (313)

For I3(t), by Holder inequality and Young inequality, for S > 3, I31(t) can be
estimated by

Lt / ||Vl [V puldae

IN

2 8-3
el 72| 7T | o1 [ V] 5= HL% IVVhullp

| /\

f|||u\ > Vul2, + = ||vvhu\\§2+0||wniz. (3.14)

For I55(t), by Holder inequality, Gagliardo-Nirenberg inequality and Young inequal-
ity, for S > 3, Is2(t) can be estimated by

Lns(t / ][V ] VD]
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< / lu||Vu||VV pu|de
R3

2 B8-3
< Ml VulF= o= [[Vul =2 a-n [V Vil 2
< f|||u\ > V|2, + < ||vvhuuiz + O V3. (3.15)
For I33(t), since O3uz = —diviuy, we have for g > 3
2
J3 t) = — / u@iuif)gagudm
(1) ; g
2 2
= Z 83u81u733udx + Z/ uﬁguaﬁguidx
— Jrs =1 JRrs
< H53u||L2( 2(L4)

| ] 755 g H|Vu|ﬁ||L2g;31> aZze
< Ol IV duul oVl 105 -

+ Ol = VulET Va5 19 Va1
< Clogull 2|Vl IV ull s + SIVVauls + 711l 7 Tul2: + Clvul?:
< LIV Vhuls + 71l 7 Va2 + CIVulZ: + Closallte [Vl (3160

Putting (3.14)-(3.16) into (3.13), we get

—_

Is(t) < 5 IVViullZs + *|HUI 7 Vull}s + CVull3: + Cllsul a | Vul3.

[\]

By Holder inequality and Young inequality, I4(¢) can be estimated by
14(t) < |IVO| 2|Vl L2 < |[VO[[72 + [[Vull7.

Adding the estimates of I5(t) and I4(t), we arrive at

|IVUIIL2 + IV hulZe + [l = Vulds + [V]ul 7 |22
§C||V9|IL2 + C(1+ (| 0sul[ L) Vul|Zs-

By Gronwall inequality, noticing (3.2) and (3.6), we have
2 ! 2 a1 2 B-1 9
IVullz +/ (IVVaullze + lllul = Vullzz + [VIul = [[72)ds < C(, uo, bo).
0

Step 2. Taking the L? inner product of the first equation of (1.1) with d;u and the
integration by parts, we obtain

+1
L 1745

9eulZs + £Vl +

2 dt
=(0e3, Opu) — ((u - V)u, 0yu)

ﬁ+1dt
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_2 B=3
§||9||L2||8tUIIL2 Al Vul =l o= [[Vul =2 o [0l 2

||8tu||L2 +C(10122 + [l = Vul2a + |Vul|2.).
Then we have
2 d 2 d B+1
1eullze + — IVaulze + — llullpsn < C(18)122 + lI[ul = Vul2s + | Vu|22).

Integrating on [0, ], we get

V()22 + lu(t)| 75 + / pul|22ds

t
B-1 1
SC/O (161172 + el = VulFz + [VullZ2)ds + [ Vauol 2 + fuoll 75
SC(t,UO,GO).
Taking the L? inner product of the second equation of (1.1) with 9;6 and the
integration by parts, we have for § > 4
101013 + 3 S IV6I: = —((u- V)6, 0,0

< 108l z2lull Lo+ VO] 2cgen

< CII(‘MIILQ [[ul|Ls+1 IIWII&+1 A8 2 7
2(8—2)

<3 ||3t9||L2+CIIUIILﬁ+1HV9HL§“ IIMIIB“

\ /\

§||3t9||2m IIA9IIL2+CHUIILZ+5 Vol

IN

1
5190117 + §||A9||L2 + O+ [[ull 75DVl
Consequently
d
VOl + 100172 < A0]7: + C(1+ el 7550170 2
Integrating on [0,¢], by (3.1) and (3.2), we obtain
t
NI +/ 10:6]|72ds < C(t,uo,00),
0

which completes the proof of Theorem 2.2.

4. Well-posedness of global solution for the temper-
ature anisotropic system

In this section, we will prove that system (1.2) has a unique global solution with
different smooth conditions of initial values.
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4.1. Proof of Theorem 2.3

We first consider the case that the initial value ug € H'(R?) and 6y € H%(R3). We
will get the existence and uniqueness of global solution of system (1.2) for 5 > 3.

Taking the L? inner product of the second equation of (1.2) with € and the
integration by parts, we have

S0l + 194613 =0.

Integrating on [0, ¢], we obtain

t
10125 + 2 / IV4012ds = 602 (4.1)

Similarly, taking the L? inner product of the first equation of (1.2) with u, we have

1d .
5 gz + 1Vulze + lull 7t = (Bes,u) < (10l z2llullze < 160]172 + [lull3-.

By Gronwall inequality, we obtain
t
[u(t)]|72 +/ (IVull7= + [lull; 542)ds < C(t, uo, o). (4.2)
0

Taking the L? inner product of the first equation of (1.2) with —Awu and the inte-
gration by parts, for § > 3, we have

a1 48 —1) 85112
3 17l Dl + 1l Vs + T 7l
= / (u-VuAudx — [ OesAudz
R3 R3
= Ky (t) + Ka(1). (4.3)

For K;(t), by Holder inequality and Young inequality, for 5 > 3, we get
1 2 2 _4 2 _4
Ka(t) < g1Auls +C [ 1l Vul7T Va7 da
< *llAUHLa + *|||UJ\ = Vullz + C|Vul3.. (4.4)
For Ks(t), by Holder and Young’s inequalities, we have
1

Ks(t) < [[Aull2]|0]] 2 < leﬁulliz + 11612 (4.5)

Putting (4.4) and (4.5) into (4.3), we have
g41
||VU||L2 1A 2o +[ul = VullFa + [ V]ul (3 < CVull3s + Cl10]35.

By Gronwall inequality, we obtain

IVullZ: +/ (lAu|Za+{[ul = Vull3z + [ V]u] F[32)ds < C(tuo, 00).  (4.6)
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Taking the L? inner product of the second equation of (1.2) with —936 and the
integration by parts, we have

Ld

2 dt

—— | O3u-V09s0dx
R3

1050117 + [V 050172

2
= — Z 33u1810830dx - / 83U3830830dl’
i—1 R3 R3

<ll0ull 12 14y VROl e 12) 10501 12 (13) + 1050l e 12) 10500 T2 (13
<O105ull £ |V Dl 21V 611221V 10561 2 956 1211710561 £
+ 1|85l 2.1 0592, 96|12 |V D8] .2
<5980 + Ol 2| Al 2|90 29561 1.
+ C(IVul3 + | Aull32) 11803
< S IR0 + CIVulZa V613 + OVl + [l 32)]1256]3.

Consequently

d
21950172 + [1Vr0s01 72 < ClIVullZ2[Vabl72 + C(IVullZ + [|Aul72)[1950]1 72

By Gronwall inequality, we obtain

t
[1036]|% 2 +/ |V 1030||22ds < C(t,ug,0). (4.7)
0
Now, we will prove the uniqueness of solutions of system (1.2). Let (@,p,6) and
(@, p,0) be two solution of (1.2) with the same initial data. Assume that u = 4 — 4,
p=p—p, 0 =0—0, it is easy to get the following form:
Ou— Au+ (4 Vyu+ (u-V)a+ |al?~tu — |a]f~1a + Vp = fes,
010 — Apb+ (- V)0 + (u-V)d =0, (4.8)

V-u=0.

Taking first the L? inner product of the first equation of (4.8) with « and the second
equation with 6, respectively, the integration by parts, and then taking all results
into account, we have

1d
2dt

= —/ (u- V)tudz +/ fesudr — / (u-V)00dzx
R3 R3 R3

5
=Y Ki(t). (4.9)
=3

(lullZ2 + 1011Z2) + IVullZe + [IVAOlI72 + /RS(WIB’lﬂ — |al’~ dyude



Global solution for the anisotropic 3D Boussinesq equations 2183

Inspired by [3,14-16], it is easy to prove that
/ (Ja|®~Ya — |a|?~ta)udz > 0. (4.10)
R3

For K35(t), by Holder inequality, Gagliardo-Nirenberg inequality and Young inequal-
ity, we have

Ks(t) < |lull (Va2
1 3 -
< Cllu|| L Vull =l Val 2

1 -
< 7IVuliz + ClIVal g ullz:. (4.11)
For K,4(t), by Holder inequality and Young inequality, we have
Ka(t) < |0l z2llullze < 10172 + [lul?e- (4.12)

For K5(t), we get

Kx(t) = —22:/ uiﬁiéﬂdz—/ u30500dx
=1 R3 R3
< Nl pz oy IVabll Lo 22y 10112 23y + lullzoe 22y 9501 L2 (2410 12 ()
< Ollull 201V null £ V10022 V20501122 101122 V161 2
+ Cllul . 118sul 22 105011 2: 1740501 2. 1011 2: 17461 2
< JIulZa + SI94813 + Clull 1Vl 22l 90058 2211012
+ Cllul 2105012 1V 1350 121101 .2
< 1IVull3: + S1VA01%
+ CUIVAOIZ: + 105012 + [V ndsb]%2) (|22 + 6]132). (4.13)

Putting (4.10)-(4.13) into (4.9), we have

%(IIUH%z +[1011Z2) + [ VulZz + V58]
<SC+ ||Vl z + Vabl 7z + [1036]72 + [ Vads0l22) (|ullF2 + [16]72)-
By virtue of Gronwall inequality, we obtain
t
[u@®)lIZ: + 16(2)]1Z2 +/O (IVulzz + [ Vabll72)ds
<(luoll22 + (160122 )edo AHIVEN L2 HIVAIT2H18501 52+ VadsOI72)ds.

The uniqueness of the solution of system (1.2) is proved. This completes the proof
of Theorem 2.3.
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4.2. Proof of Theorem 2.4

In this subsection we suppose higher regularities on the initial values, i.e. ug €
H*(R3) and 6, € H*(R?®). In this case the existence and uniqueness of global
smooth solution of system (1.2) can be obtained. To begin with, we deduce some
priori estimates.

Step 1. Taking the L? inner product of the second equation of (1.2) with —A@ and
the integration by parts, we have

AT | w9050
< ||VU||L3°(L§)||V9||2Lg(Lg)
< C|[Vul £ | Vsul 121V6] 2 [V V46 .2
< OVl £ | Aul V0] = [V V46] 2
< SIVVAbIE: + CUITuls + | Aula) V6.
Consequently
L1013 + 19Va013 < CUIVulEa + 1Al V63

By Gronwall inequality and (4.6), we have
t
VO = + [ IVVablads < Ot o, b0) (414)
0

Step 2. Taking the L? inner product of the first equation of (1.2) with d;u and the
integration by parts, for 8 > 3, we have

Apul|2, + Vul2. 43
ol + 5 IVl + g el
:—/ (u - V)udyudz + fe30rudx
R3 R3
2 8=3
< H|u|\VU|5*1 [Ls-1[|[Vul7=T || 2= [[Opul| L2 + 0] 22| el 2

\ /\

”atuHL? +CI01132 + [[ul = Vul2s + | Vul22).
Moreover,
B-1
10eullZ2 + — (HVUHLz +llull755) < CU0IZ2 + l[lul = Vulzz + || Vul2).
Integrating on [O,t], we get
IVu(®)lZz + llu(@)ll75 +/ |10sul|2ds < C(t,uo,6o)- (4.15)

Taking the L? inner product of the second equation of (1.2) with 9;6 and the
integration by parts, we have

1001172 + 5 = 1 Va7

2dt|
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= 7/ (u-V)00,0dx
R3

< ulles VROl Lo 1001 L2 + [lull Lo (23110501 L2 (13)

010 1
< Cllull2: 1V ull 22 [V V10 2 11.6] .2
Ol gy | 050ll 3 1) 19501 V50112 1040 1
< 110813 + Ol + IVull3) VY012
o+ Cllull s gy 105213 1) | VO 5 I V900 £ 1046 2
< 11061, + Cluli3s + [Vul3)I V1613
+ Cllull 21 Vul 2| Aul 2 [V 22 [V 716 10,6 2
< S10013: + CQlullZ: + [VullZ: + VIV6]3
+ Cllull 2 [Vl [ Aul 2 V13
< 10813 + C(lulls + [VullZ: + DIV 63
+ Cl|Aul2 + Cllul2: [ Vulla VO L.
Consequently
10013 + 1948132 <COlull3s + IVl + DIVR61. + Cllaul?,
+ Cllul3: | Vullts VO .

Integrating on [0, ], we get
t
IVab(O= + [ 10:8]ads < Ot 0, b0). (4.16)
0

Step 3. Applying the operator 9, to the first equation of (1.2), and then taking
the L? inner product to the result with d;u and the integration by parts, we obtain

510l + 190l + [ 0u(lul* " w)oruds
= - /}R3 (Oru - V)udyudzx + - Ot (Be3)Orudx

< [Vl 2 |Oeull3s + 110:6] 12| Oeul] 2

< OVl 2 |95ul| 2, Vrul 2, + 10:01] 2 Ol 2

1
< SIVowliz + CA+[IVullz) [0l Zz + CllOW0IIZ:.

Moveover,

d
Z10uliz +1Voulfz < C(L+ | Vull:) [ OrullZe + ClOW0] 7z



2186 L. Lin, H. Liu & C.-F. Sun

Noticing (4.6) and (4.16), by Gronwall inequality we have

t
0pu(t)|2. +/ [VOu||22ds < C(t, ug, 0). (4.17)
0

Applying the operator d; to the second equation of (1.2), and then taking the L?
inner product to the result with 9,6 and the integration by parts, we obtain

1013 + 19,0013

= — 8tuV98t9da:
R3

< Cll0vullpee £2) VROl L2 (13 )HatGHL%(L‘}L) + 10vull oo (£2) 11050l L2 (L3 ) 10:0] 2 (14
< C)\0vull 22 1050eull £ V101 22 |V V161122 19401 22 |V 10461 2
+ Cl9rull 22 959yl 22 105011 221V 0501 22 1001 2. 190,01 22
< Cll0vull2: [V 0vull2: V101 22 |V V401 2:110:6]1 2117 1,0,0] 2
+ Cll0ull 2. | VOrul 32 1950] 2 [V 101 22 19,011 22 |V 0401 .
< SIVAD813. + 90l 3: + VY0122 + Cllowul3a V613 10,613
+ C0pull32 196]12: 19,6112
< SIVD1%: + Vol + VY013
+ (19rullds + V40142 + 1956114210612

Consequently

d
%Hat@\\%z +[Vrdibl12 < C(IVOulZ2 + [VV18]Z:)
+C(|0cul g2 + [Vabllzz + 1050]|72)110.0]17 -
4.7), (4.14), (4.16), (4.17) and Gronwall inequality, it yields that
y (4.7), (4.14), (4.16), (4.17) Y, ity

t
0:01/% 2 +/ V10,03 2ds < C(t, ug, ). (4.18)
0

Step 4. Taking the L? inner product of the first equation of (1.2) with —Awu and
the integration by parts, we have

461 41
Au 2+ ||| Vu 2t \Y 2
1Au|Z: + [l = Vaul} CESIE IV ]ul =115
= 5‘tuAud:E+/ (u~V)uAudx7/ fes Audx
<C(|0eull7> + IVullz2 + [16]72) + *IHUl T Vs + 5 HAUH%Z-

Moreover,

a4
1Aul|2 + [[[ul = Tull2s + [ V]ul T 1122 < CI0wul2e + [ Vul2s + 10]22)-
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By (4.1), (4.6), (4.17), we have
|AulZs + [l 7 Valds + [V]ul ™ |32 < C(t o, 60). (4.19)

Taking the L? inner product of the second equation of (1.2) with —A6 and the
integration by parts, we have

||Ah0||2L? :/ 8t0Ah€d:c+/ (UV)GAth.T
R3 R3

10:0]| 2 ([ AnO] 2 + [lull o= [[ VO] 2]| Anb]| 2

IN

IN

1
12ROl + CllOWIIT: + Cllullz=[VOIIZ:

IN

1
12ROl + C(10:0N72 + [lul 2o + IV 72)-
Consequently

1AROII72 < CUIODNZ2 + Ilullzoe + [ VOII72)-
By (4.2), (4.6), (4.19), we have

[ullzee < NlullZllull 72 < C(E uo, o). (4.20)

Also, by (4.14), (4.18), (4.20), we have
1AROIIZ> < C(t,u0, b0)-

Step 5. Applying the operator 9; to the first equation of (1.2)£-we can get
D10 + 0y (u - Vu) — Adyu + 0y (|ul’~ u) + Vp = 0y (fes).

Taking the L? inner product of the above equation with —Ad;u and the integration
by parts, we have

1d
5%||V8tu||%z + [|Adu|3 2 < ‘/RS Ot(u - Vu) - Adyudz| + |/]Ra O(Jul?~tu) Adyudz|
+ \/ Ot (Be3) Adyudz|
R3
For Kg(t), by Holder inequality, we have

Kg(t) < |/ OuVulAdyudz| +|/ uVOoruAdpudz|
R3 R3

IN

[Ad¢ul| 2 ([0l o [[Vull s + [[ull Lo |V Opul| L2 ]| Adrul| L2

1
< 1140w Zz + ClIVullis[VOulTe + Cllullfe VOl

1
< 7180w Zz + Cllulzz + | AullZe + [ulz) | VOul 7. (4.22)
For K7(t), it is obvious that

_ 1 -
Kr(t) < O)| Adpu 2 |ul 1066 22 < gl AGullzz + Clul 77 |9rul2. (4.23)
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For Kg(t), by Holder inequality and Young inequality, we have
1
Ks(t) < 11001 2| Adull 2 < 2 [[Adsullze + C0:6] 7z (4.24)
Putting (4.22)-(4.24) into (4.21), we obtain
d _
2 IVoeulliz + 1A0ul7z <Cl0:6]52 + Clul 1277 0pul
+ Clullzs + 1AullZe + [[ull L) | VOrulZ--

By virtue of Gronwall inequality, we can get from (4.2), (4.17), (4.18), (4.19) and
(4.20) that

t
| VOru||32 +/ | Adyu||2 2ds < C(t, u, 0)- (4.25)
0

Applying the operator Vs to the second equation of (1.2), and then taking the L2
inner product to the result with Vds6 and the integration by parts, we obtain

1d

§£||V339||%2 + [V VL0507 (4.26)
= _ . Vos(u - VO)VOs0dx
= . V(05uV0 + uVd50)VIs0dx
= — - Vo;3uVOVos0dr — - 03uVVOVOs0dr — - VuV 930V 050dz
= Ko(t) + Kio(t) + K11(t). (4.27)

For Ky(t), by Sobolev inequality and Young inequality, it yields that
Ko(t) < [VOsull2[|VO|| oo (£4) VO30l L2 (1.3

< C'||V53UHL2||V9||E;1L |V839”zi VO30l 12 (14)

w2 !

< CIIVOsull 12196 12 1) 90601 12 s V0501 2 1

< O A 12 [[V0]1 . [V V0112 | VOs0]1 . | V9,050

< JIVVA0s613 + CIVTbI3 + CllAuls + V6N IVos6]3.  (428)
For K1g(t), by Sobolev inequality and Young inequality, we get

Kio(t) < [|0sul

£2(LH[IVVO| Lo (22 VO30

12107 s ||V839||ig([/i)||83u|

Le(L?)
< Ol|0sull 22 |V 10sul £ V10112, IV V105012, | V0:0] 2. V'V 1050 2

+ Ol 050]| 12 | V71350 2 | s 2. | s s 22
< SIVLa13. + CITVAIE

+ OVl + [Vults + [ AulZs + [Aul42)[VOs0]3. (4.20)
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Similarly, for K11(t), it turns out that
Ku(t) < ||V339||ig(L;1L)||VUHL;>,°(L§L)
< CIIV0s811 12|V 1256 2|Vl 2 |V 50
< %vahas@”%? +C(|VullZe + | AulZ2) (V30|72 (4.30)

Putting (4.28)-(4.30) into (4.26), we have

d
V050l + [ VVa0s0lI72 < CIVVAOT2 + C(IVullZe + [VOI7: + [Vul 2
+ | Aulfz + || Aullz2) VO] 72

By virtue of Gronwall inequality, we can get from (4.2), (4.6), (4.14) and (4.19) that
t

V03032 +/ VV1,050||22ds < C(t,ug, 0p). (4.31)
0

Applying the operator d; to the second equation of (1.2), we have
Taking the L? inner product of (4.32) with —9329,0 and the integration by parts,
we obtain
1d
2dt
= [ 0i(u-V0)030,0dax
R3

R3

1830,0)|22 + ||V 1,030,022

= — - 030;uNV0030,0dx — - 0yuNV 030030,0dx — - O3uNV 9,0030,0dx
= Kia(t) + Ki3(t) + Kia(?). (4.33)
For K12(t), by Holder inequality and Young inequality, it yields that
Kio(t) < [030vull oo (£2) 11030601 2 (1) VOl L2 (14)
< C)|00;ul 3. 1950500l £ 050,61 121V 1050401 £ | VO 2.1V 7161 .
< CIIVayul 1. A%l 1. 11050:6] 2. |V 120:6] . | V11 2. [V 916 2.
< SIVAs00]3: + C(1 A0l + [V T40132)
+ CIVyul[fs + [VOI|%2)110:0,613- (4.34)

Similarly, for Ki3(t), it turns out that

V50| L2 (L1)

850,0)|
< C|9pull 72 1030¢ull 2V 050 12 [[VV 050 72 1030:0]| 21|V R O3 040 7 -

Ki3(t) < 10wl poe (12) L2 (L)
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1
< gllvhagﬁtﬁlliz +C(IVOs0)1Z2 + IVVRO50]22)
+ C([0pullz2 + I VOpull72) (1050, 17 2. (4.35)

Using a similar method, for Ki4(t), we get

Kua(t) < ||5'33t9|\2Lg(L;§)||33U| reor2) T 10300 12 (24) VRO Loo (£2) 1030l L2 (14
< C|050,01| 12 | V105048 2 |Vl 22 | A 2
+ 10048112, |V 051122 |V D500 121V 2. | A 2
< 1IV2sD013: + CUITulRs + 1 Aull2:)1050.613
+ CIVAdOI3: + CUIVults + [AulLa) 050,613 (4.36)

Putting (4.34)-(4.36) into (4.33), we obtain

L 0s0u012: + V1050013

< C(|A%wullZ: + IVVROIL2 + IVOs0][72 + [VVAsOIIZ> + [ VrD:O]Z2)
+C(IVoullze + IVOl 2 + 10eullz2 + [VulZ + [|Aull7
IVl + [|Aull2)]050:0]|7.

By virtue of Gronwall inequality, we can get from (4.14), (4.15), (4.17), (4.18),
(4.19), (4.25) and (4.31) that

t
10504012 + / 1V 005040 2ads < C(t, 0, 0.
0

Step 6. Applying the operator A to the first equation of (1.2), and then taking
the L? inner product to the result with Au and the integration by parts, we obtain

1d
2dt
=— /| A((u-V)u)Audr — A(ulP~w) Audz + A(fe3)Audx
R3 R3 R3
= Ki5(t) + Kie(t) + Kir(t). (4.37)

1Au]Z + IV AulZ:

By virtue of Holder inequality and Young inequality, K15(t), K16(t), K17(t) can be
estimated by

Kis(t) < |[Vull 34| VAul 2 + |[ull < | A2 [V Au| 2

< CIVall Al IV Al 2 + [l o< | Aul 22|V A

< JIVAulE: + OOVl + |Aulfs + Julf)lAuls, (439
Eio(t) < Cl|Vul 2 lull 2 [V Au| 12

< SIVAuEs + Ol |Vl (4.39)
Eir(t) < V0] 2]V Au 2
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1
< §||VAu|\%2 +C|| V3. (4.40)
Putting (4.38)-(4.40) into (4.37), we have
d
@IIAulliz + [[VAu|F2 < C([Vullis + |AullF2 + [|ullZ) [ Aull7
2(8—1
+ Ol 37V Vulf2e + C VO

By virtue of Gronwall inequality, we can get from (4.6), (4.14), (4.19) and (4.20)
that

t
| Au(t)]2 + / IV AulZads < Ot uo, b)- (4.41)

Applying the operator A to the second equation of (1.2), and then taking the L?
inner product to the result with Af and the integration by parts, we obtain

ld
2 dt
=— | A((u-V)0)Aldz
R3
< ClAul[ra[[ VO s | AB] 2 + C|[Vul

1A0]Z: + IAVO]I7»

LgC(L,ZL)HAeH%%(Lﬁ)
1 1 1 1
< CllAu|| L [|AVY] . [ AG)|7 2 + O Vul 72 [ VOsul 72| A0 2| AV 46| 2
1 2
< §|IAVh9||%z +C(|Aulf2 + |[AVull72 + Va2 [ Aull £2) | AG][7 -

IA

1
IAVAOIIT: + CO+ [[VullZe + [AulZz + [[AVU] ) [AGI[Z:.
Then we have
d
180172 + [AVA0]72 < COL+ [[VulZz + |AullZ: + [AVul[Z2)[|A0] 7.
By virtue of Gronwall inequality, we can get from (4.6), (4.19) and (4.41) that
¢
|AG()|22 +/ |AV,0]12.ds < C(t,uo, 0o)- (4.42)
0
Lemma 4.1. Assume that s > 3 and (uo,0p) € H®. Then we have u €

L>=([0,T], H*) N L*([0, T, H**'), 0 € L>([0,T],H®), Vi0 € L*([0,T],H®), and
there exists a positive C(t,ug,0y) such that

T
lullZrs + 1017 +/0 (lullZrs s + 1Va0lF)ds < C(t, uo, 0o).

Proof. First from (4.1), (4.2), (4.41) and (4.42), we know

uw € L°°([0,T], H*) N L*([0,T), H?),
6 € L>([0,T],H?), V0 < L*([0,T], H*).
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For s > 3, assume that we have gotten
u € L=([0,T), H*~1) n L*([0, T, H®), (4.43)
0 € L>=([0,T),H*" "), V,0€ L*([0,T], H*™ ). (4.44)
Based on above assumption, we prove

u € L=([0,T], H®) N L*([0, T], H**1),
0 € L>([0,T], H®), V0 <€ L*([0,T], H*).

Applying the operator A® to the first equation of (1.2), and then taking the L? inner
product to the result with A°u and the integration by parts, we obtain

1d
5%HASUHQB + |ASVul|2, = 7/ AS((u~V)u)Asud:r—/ A (|l u) ASuda
R3 R3
+/ A (fes) A udx
R3
= K15(t) + Klﬁ(t) + K17(t). (445)

For Ki7(t), by Holder inequality and Young inequality, we can deduce that
Kz (t) < [A*10]| 22 [ AVl 2 < éHASVUHQH + O A0 (4.46)
For K15(t) and K1(t), by a similar method, it turns out that
Kis(O] = | [ A7 - Tu)A*
< SIAVuls + ClA (- V)

1 s s s—
< 1A VullZe + C(lullz A wl[Ze + [ VulZs A" ullZe)

< SIAVul + Cllullim + Vel + Al IA%ulF: (447
and
Kg(t) < |4 (jul®~ u)l| 2 || A° Va2
< FIAVulZs + Ol VAl (4.48)

Putting (4.46)-(4.48) into (4.45), we have
d S S S
SN ullZe + [A'Vaulza < C(lullz= + [ VullZ + [Aulz2)[[A%u][Z:
5— 2B=1) [ x 5—
+ CIAT 00 + Cllul 72 A Ml s

By virtue of Gronwall inequality, we can get from (4.6), (4.19), (4.20) and (4.43)-
(4.44) that

t
| ASul|2, +/ |A*Vul|32ds < C(t,uo, 0o). (4.49)
0
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Applying the operator A® to the second equation of (1.2), and then taking the L?
inner product to the result with A®f and the integration by parts, we obtain

1d

2dt

=— | AN((u-V)I)A0dx
R3

- / (A*((u- V)0) — (u- V)A*0)A*0dx
RS

[A*0]Z2 + 1AV 10172

< C A Lo [ VO] Lo [A*0] L2 + Cl[Vu]| oo |A6]] -
< CIAVu L2 [V s [A%0] L2 + C[ V[ Lo | A*0]|72
<A VullZz + CIONT2 + 1A 0L + [|Vull ) [|A*6]| 7.

Consequently

d S S
T 1A0IIZ: + [1A° V0] 72
<CIAVulZ> + CI0IIZ> + AT 0l72 + [ Vul o) [A%0]1Z-

By virtue of Gronwall inequality, we can get from (4.1), (4.20), (4.44) and (4.49)
that

t
1A%0]12 + / IA*V402ads < C(t, uo, bo).
0

This completes the proof of Lemma 4.1. O
By standard method, this completes the proof of Theorem 2.4.
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