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Abstract In this paper, we consider the inverse problem for identifying the
source term and initial value simultaneously in a space-fractional Allen-Cahn
equation. This problem is ill-posed, i.e., the solution of this problem does not
depend continuously on the data. The fractional Tikhonov method is used to
solve this problem. Under the a priori and the a posteriori regularization pa-
rameter choice rules, the error estimates between the regularization solutions
and the exact solutions are obtained, respectively. Different numerical exam-
ples are presented to illustrate the validity and effectiveness of our method.
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1. Introduction

In recent years, fractional Allen-Cahn equation (ACe) have attracted wide atten-
tions. The ACe was originally proposed by Allen and Cahn [1], which is a phase
model that simulates the anti-phase boundary motion of a crystalline solid. And
the ACe is widely used in various interface problems, for example, vesicle mem-
branes, the nucleation of solids and the motion by mean curvature and so on [2—4].
Recently, more and more people pay attention to the fractional differential equa-
tions [5-8]. In particular, the space fractional Allen-Cahn equation (SFACe) is a
class of the fractional differential equations, which can be seen as a fractional ana-
logue of the classic ACe. Currently, most research is focused on numerical solutions
to this equation. In [9], Zhang et al. proposed energy stability of high-order im-
plicit Runge-Kutta schemes for the SFACe. In [10], Hou et al. constructed a fully
discretized Crank-Nicolson scheme for fractional-in-space ACe. And then the non-
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linear iteration is required during the solution process. Moreover, He et al. [11]
proved that a spatial fourth-order maximum principle preserving operator splitting
scheme for the multi-dimensional fractional ACe. For more research on the SFACe,
we can refer to the literatures [12,13].

Compared to the above problems, the study on inverse problem of SFACe is
still limited. Especially, the problem of simultaneous inversion of the source term
and initial value in a SFACe involve only a few. By reading [16], we know most of
the inverse problems are ill-posed, we need to use regularization method to resolve
this problem. We can refer to some regularization methods for diffusion equation
to solve inverse problem of SFACe. In [14], Yang et al. made use of the Landweber
iterative method to identify a space-dependent source for the time-fractional diffu-
sion equation. In [17-19], Yang et al. identified the unknown source for fractional
diffusion equation in frequency domain by using different regularization methods.
In [15], Yang et al. applied Landweber regularization method to identify the un-
known source of the time-fractional inhomogeneous diffusion equation.

In this paper, we consider the following space-fractional Allen-Cahn equation:

8uf;,t) =2 Lou(z,t) + f(x), 2€Q, te(0,T),

u(z,0) = ¢(z), T €Q,

u(z,t) =0, x €, te(0,T], (1.1)
u(z, to) = g(z), xz €Q, ty € (0,T],

u(z, T) = h(z), x €,

where Q = (a,b)?, d = 1,2,0 < a < 1 is the order of a fractional derivative and the
parameter ¢ is a positive constant. And L, denotes the Riesz fractional derivative
operator. In one-dimension, it is given by

o~ 1
Lou:= 3|x|°‘u =-3 COS(%)(QDg‘u +z Dyu) := Co (o DSu +, Difu), (1.2)
here, Co, = —3cos(2F). The left and right-sided Riemann-Liouville fractional

derivatives ,Dgu and ,Dj‘u are defined by

a1 d [ u@
D i, g

and

o Lood "
D= ), @ e

respectively, where I'(-) is Gamma function. Similarly, in two-dimension, the frac-
tional derivative operator L, can be defined as
o o
Lou = u+ ——u,
T Ozl Oyl

where %u = CalaDyu +y Difu).
One will see the relationship between this operator and Laplace is as [21]

—(=A)2u = Co(oD%u +, Difu) = Lyu.
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If the initial value p(z) and source term f(z) are known, we can figure out u(z,t)
by solving the initial boundary value problem (1.1), this is the direct problem. But,
now @(z) and f(x) are unknown and need to be determined. The inverse problem
is: recover the initial value u(z,0) = p(x) and source term f(z) from a pair of
measurements (g, h). Because the measurements are error-prone, we remark the
measurements with error as g°(x) and ho(x) and satisfy

l9°(2) = 9(@)]| 20y <6, (1.3)

1R (z) = h(z)||2() < 6. (1.4)

In our paper, we use the fractional Tikhonov regularized to identify the source
term and initial value of problem (1.1). In [22], Klann firstly posed the fractional
Tikhonov method in 2008. In [23], Xue et al. used the fractional Tikhonov method
to identify the source of a time-fractional diffusion equation. Compared with the
standard Tikhonov method, its numerical fitting effect is more better.

The rest of this paper is organized as follows. Section 2 presents some important
lemmas used in this paper. The ill-posedness about the simultaneous inversion of the
source term and initial value problem is deduced in Section 3. Section 4 constructs
the fractional Tikhonov regularization method. In Section 5, error estimations
under two regularization parameter choice rules are obtained. Numerical examples
are given in Section 6. In the final Section, we give a brief conclusion.

2. Preliminaries

Throughout this paper, we use the following lemmas.
Lemma 2.1. For 0 <ty <T and a > 0, then

—e22% —e2\er
—eer e & Mo — e n
e TP < ( Tt P (2.1)
n

Proof. For 0 <ty < T, we have

e~ Anto _ =2 A0T B 6752,\3:50(1 _ 6752,\;%(T7t0))
g2\ N e2Ae
6_62)‘%t0 (T _ tO)Eg)\%e_EZ/\;:(T_tO)
- eZAe

= (T —to)e =T,

Thus we have
6752)\2150(1 _ 6752/\5(T7t0))

—e2X\oT
20 (T — to) ‘

e n

%

To the power of p on both sides of the above equation, we obtain

2y a 2y
—e“ At —e“ AT
efszAZTp < (6 "0 —e " \p
(T —tg)e2 A\

Then we complete the proof. O
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Lemma 2.2. For A\, > A1 >0, n=2,3,---,e6>0and 0 <ty <T, then
1— 6762)\zt0 1 1— efaQAﬁT 1
< ; <
g2\ T2y’ g2 e — 2Ny’
e—EQAth < 1’ 6—52)\gT < 1.
Proof. The proof is simple, we omit the proof. O

Lemma 2.3 (Lemma 3.1, [20]). If the constants > 0 and b > a > 0, we have the
inequality for the variable t > 0,

t® <b—a( a )
1+8t— b ‘b—a

—a

557 (2.2)

Lemma 2.4. For z > 0, we have
e ¥ <1l—e"<um. (2.3)

Proof. Let
filx)=1—e"" —ze™™.

Taking the derivative of function fi(x) yields
filx)y=e"—e " +ze®>0.

Similarly, we have
folx)=x—14+e".

Taking the derivative of function fa(z) yields

fol@)y=1—e"">0.

Thus
ze f<1l—e*<uz.

Then we complete the proof. O]
Lemma 2.5. For constants D >0, u > 0,0< 8 <1,e>0,T >0, s >0, we
have

) M(wt;pw)%hp

e*sT(B+1-p) , O<p<p+1,

Fls)= 4+~ <{ Dy EFnD P (2.4)
D +,u66 sT(B+1) " p

Proof. For0<p < B+1, let F'(s9) = 0, we obtain e 0T (5 +1) — (ﬁ"‘Li;P)D, thus

((B+1=p)D) S

"
F(s) < F(sg) = KP
( ) (O) D+ (ﬁ+1;p)D

For p > B+ 1, we have
F(s) <

SIE

Then we complete the proof. O
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3. Ill-posed analysis

In this section, we give some results which are very useful for our main conclusions.
Denote the eigenvalues of the operator A as )\, and the corresponding eigenfunctions
as X, satisfies (—A)X,, = A2 X,,. {\,}52; are the positive zeros and satisfy
D<M <h< A< - <A<+, lim A, =+o00. (3.1)
n—-+4oo
Thus (—A)% X, = \2X,,.
Using the separation of variables, we obtain the solution for (1.1) as follows:

X g et s
w(et) = D (—gya ot e on) Xa(a), (3.2)
n=1 n

where fo = (£(2), Xn()), ¢n = (9(2), Xn(2)). () and | - | is the inner product
and norm in L?(f2), respectively.
Let t =tp and ¢t = T in equation (3.2), we have

0 1— 6752)\7‘?0

D (et e ) Xa(@) = g(a), (3.3)

n=1

O 1 e ANT 2yar
Z(an +e ¢ M @n)Xn(x) = h(l‘) (3.4)

n=1
For given source term f(z) and initial function ¢(z), we can define a pair of
linear operators K7 and K3 to solve problem (1.1):

Kl : (fa SD) — u(i[,to),
Ko : (f,0) = u(z,T).

Similarly, we can define four linear operators respectively

K1 : f — U(JC,tO), Kz : f — ’LL(LE,T),
Ko : o= u(z,tg), Kao:p— u(z,T).

By using the solution expression (3.3) and (3.4), we can obtain operator equations:

> 6762)\zt0
(Kn(£)@) = 3 =5 (),
n=1 n
O 1 eAT
(Kia(F)() = D0 A5 fu X o), (35)

Then we have the follow expressions for the operator equations

u(@,to) = (K1(f))(2) + (K2 (p))(z) = g(), (3.7)
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u(z, T) = (Ki2(f)) (@) + (K22(#))(2) = h(z). (3-8)

By using equations (3.7) and (3.8), we obtain the solutions (f, @) of the system as
follows

{K11f+K2180_9» (3.9)

Kiof + Koo = h.

Applying operator Kas to the first equation in the system (3.9) and operator Ko
to the second one yield:

Koo K11 f + K22 K210 = Kaag, (3.10)
K21K12f+K21K22g0 = Kglh. (311)

By subtracting equations (3.10) and (3.11), we have
(Ko1K12 — Koo K1) f = Ko1h — Kaag.

Similarly, we apply operator K75 to the first equation in the system (3.9) and K74
to the second one
KoK f + K12K210 = K29, (3.12)

K11K12f+K11K22g0 = Kllh. (313)
We obtain the result as follows

(K91 K19 — Koo K11)p = K129 — K11 h.

So system (3.9) is equivalent to the system

{Kf=K21h—K229’ (3.14)

K(p = Klgg — Kllh,

where K = K21K12 - K22K11.
Using the properties of singular values, the singular values of the operator Ki1,
Klg, K217 K22 are obtained as follows

2y« 2y«
) 1—e¢ Anto % 1—e¢ AT
11 = 12 =
2 ’ 2 ’
e2e e2Ng
koy = 6—52)\%1&07 koo = 6_52AffT.

Thus it is easy to obtain the singular values of operator K as follows

2y« 2ya
e~ ¢ Anto _ e~ ¢ AT
k= . 3.15
52)\% ( )

Now the problem (1.1) becomes the following operator equation
Kf(z) =n(z), (3.16)

where n(x) = Ko1h(z) — Koag(x). From the operator K, we obtain

F=K"n=>" —(,Xn) Xy
n=1

=
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So we can obtain

> g2\

flz) = Z o—2Aato _ g—2aaT (ko1hn — k22gn) Xn (), (3.17)
n=1
= g2\

QD(ZL') = Z:l 6*52/\%% — 6*52>\%T (/{129,” — kllhn)Xn(x)v (318)

where g, = (g9(x), Xn(2)), hn = (h(x), X, (z)). Since 1/k — oo as n — oo, the
problem is ill-posed, that is, the solution does not persistently depend on the given
data.

Next, we define the priori boundary of f(x) and p(z),

e 2\ 1

£ @) (p-zayr = O e TP|(f(z), Xu))? < E, p>0, (3.19)
n=1
> 2ya 1

@) (p(=zayr = O € 2 ™P|(p(x), Xa)P)? < E, p>0, (3.20)
n=1

where F > 0 is a constant.

4. The fractional Tikhonov regularization method

In this section, we use the fractional Tikhonov regularization method to solve the
problem (1.1) and give the fractional Tikhonov regularization solution.

Since the inverse problem is ill-posed, we use the fractional Tikhonov regular-
ization method to solve it. This kind of idea was proposed by Hochstenbach in [25].
It is a penalized least-squares problem of the following form

min {|Kf—n|? + a2 4.1
i (K7 =3l + %) (4.1)
where || - ||y is a weighted seminorm as ||z||y = ||[Y'2z]|, for any z. The problem

(4.1) has a unique solution f,, for all positive values of the regularization parameter

-
We propose to let
B—1

Y = (K*K)"= (4.2)
for a suitable value of 0 < 8 < 1, and if 5 < 1, we define Y with the aid of the
Moore-Penrose pseudo-inverse of K*K. The seminorm || - ||y allows the parameter
B to be chosen to improve the quality of the computed solution of problem (4.1).
We refer to problem (4.1) with Y given by equation (4.2) as the fractional Tikhonov
regularization. When 5 = 1, it is the standard Tikhonov regularization, then Y is
the identifying matrix.

The normal equation associate with the Tikhonov minimization problem (4.1)
with Y defined by equation (4.2) is given by

B+1) B=1)

(K"K) = +pul)fy = (K"K) = K™, (4.3)
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the solution of equation (4.3) is uniquely determined for any p > 0 and 8 > 0. By
the singular values of the linear operator K, we can obtain

oo (6—52)\%t076—52)\f‘1T)ﬁ
e niet n
fu@) =D ——— (ka1 hn — ka2gn) Xn(z), (4.4)
(e *n;;; AW,T)BH + 1
oo efzzxgto_eszA%T 8
(W)
oul®) = Y ey (k12gn — k1ihn) Xn(2),  (4.5)

ot (EW)B—H tu

where 0 < 8 < 1 is the order of the fractional Tikhonov regularization solution. For
the noisy data, we have the fractional Tikhonov regularized solution

oo (G—EQA%tO_e—E2)\?LT )/3
) 2An ) b
fu(x) = Z E_szgto_:_gz,\%T P (lehn - k22.gn)Xn('r)7 (46)
=1 (e )+
o (e—ezngg;e—s?AgT)ﬂ
5 e2X 5 5
QD#(I') = Z o—e2Aqtg _o—2AQT 511 (kl?gn - kllhn)Xn(x)' (47)
n=1 (W) Ht+u

5. Error estimation

5.1. The priori regularization parameter choice rule of the
source term

Theorem 5.1. Let f(z) be given by equation (3.17) and fg(x) be given by equation
(4.6). Suppose that f(x) satisfies a priori bound condition (3.19) and assumptions
(1.3), (1.4) hold. Choosing the reqularization parameter:

B
(Eﬁ%, 0<p<pf+1,

H=Y 6 s (5.1)
(5)7, p>p+1,

then we obtain the following error estimate:

S (c+c) EFT87T, 0<p<f+1,
1£2(2) - F@)] < o (5.2)
(c+c)EFRéo, p>f+1,
. 5 (<B+1—p><T—to)’3“)’3§ﬁ” .
Pp— Br1 — D Pp—
where ¢ := 2527771, 1 = Tty BRI Co = pgoyATT
P

Proof. By using the triangle inequality, we have

1£2(@) = f(@)| < 1£3(@) = fu(@)] + 1 fulz) = f(@)]-

Firstly, we give an estimate for the first term. From equations (4.4), (4.6) and
Lemma 2.2, we have

12 (@) = fu(2)]
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oo 6752’\%’50,@*62/\$T)B
Z—AQ

Z e A0 _e=ART gy ((Rarhy, = k22gp) — (kathn — kaagn))] X (2)]|

= (e )P
e ANty _ =22 T)ﬂ
Q—AQ

<sup| — feap (RO — .
n>1 (fizxnt:z—;ifiw)ﬁ+1+/i an:l n b)) X ()|

+||Zk22 Xn(2)])

<sup|A(n IIZ @) + IIZ Xn(@))

< sup|A(m)[25, (53)
n>1
(g
I
where A(n) = —TrErg Ain :
D Y D LA

Applying Lemma 2.3, we obtain

2,50
(6—5 IXFto _g—eANT )ﬁ

2>\a
A(n) = _e2)ay —_e2) o
(e Ansoz;\z AnT)B_A'_l tu
e~ Anto _—2AGT
L (e
= ey —e2xaT
H (en";g")ﬁ-u
52)\;: + 1
1 B 1 1
< BAFT (=) P, 5.4
P (5.4
Then we obtain )
£ (@) = ful@)] < C(M)T& (5.5)

where ¢ = 2%6%.
Then we estimate the second term by equations (4.4), (3.17).

[fu() = f(2)]

2 o
o (e —e )\nfoz e—¢ /\nT)ﬁ 2\ e
Py e“A
= M g~ e — e (e~ b X))
n= 62)\%
= 1
=) [—=er——=ur o e (R21hn — ka2 gn) | Xn (2) |
ot [(%)ﬂ—&-l +ﬂ](%)
—e2X%Tp
SSUp| —a%gtfe —EQAZT ‘E
P (SR
=SL;I;IB(R)IE, (5.6)
n_
7£2>\OiTp
where B(n) = efshgtﬁe;efa;/\nT

(W)ﬁ“‘ﬂi
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Applying Lemma 2.4, we can infer

Me—sz,\ng
—52xgt0(1_e—52,\%(T—t0))

=xs )B+1 +

B(n) =

€

,U,eiEQ)\sz

—e2x2¢ @ —e202(T—tq)
e T 02N\ (T—tg)e n 0
= 52)\?{ )6+1 + M
/1,652)‘$:T(B+1*p)

o (T — t0)B+1 + pes®aT(B+D)

Let A = s, we obtain
/J@EQST(ﬂJFl*p)
(T — t0)5+1 —+ ueEQST(ﬁ+1) ’

B(s) =

By Lemma 2.5, we deduce that

7T 0<p< 1,
B(s) < { p<p+ (5.7)
Cold, p Z 6 + ]-a

([1+1—P)(17;—t0)5+1)ﬁ2415p L

where ¢; = Tty BTy PFL Co = (pgoypT Then we have
FIE, 0<p<pB+1,
1 ful2) — F@) < { peit (58)
copk, p=>pB+1

Combining equation (5.5) with equation (5.8), we choose the regularized parameter
p by

0 1
H= NESY
(F, p2pr1
We have
(c+ec) EFT87T, 0<p<B+1,
Hfg(x)_f(z)” S 1 B+1
(c+e)EFmdse, p> B+ 1
The proof is completed. O

5.2. The posteriori regularization choice rule of the source
term

Now we consider a posteriori regularization parameter choice rule called the Mo-
rozov discrepancy principle. We can obtain a convergent rate for the fractional
Tikhonov regularization solution (4.4).

The Morozov discrepancy principle here is to find g such that

K f(x) — (Ka1h’ (z) — Kaag® (x))]| = 716, (5.9)

where 71 > 2 is a constant. According to the following lemma, we know there exists
a unique solution for equation (5.9) if || K21h°(2) — K929°(z)|| > 716.
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Lemma 5.1. pi(p) = ||Kf3(x) — (Ko h?(z) — Ka929%(2))||, the following results
hold

(a) p1(p) is a continuous function;

(b) }LIL% p1(p) = 0;

(©) I p1(1) = 1K1 h(a) — Koog? (2)]|;

(d) p1(p) is a strictly increasing function over p € (0,00).
Proof. By equation (5.9), we have

p1(p) =K f(z) — (Kb’ (x) — Kazg° ()|

2
875 knto e ¢ AzT)B_,’_l

e2Aq s § ] s
=l T T (ka1hy, — ka2gy) — (kaihy, — k2ag, )| Xn (2)]
Z 2) 02)\2 2 e T)ﬁ+1+ﬂ
k21h - k229 )
- a— 5.10
= Z T (@)l (5.10)
Obviously, the conclusions (a), (b), (¢), (d) hold. O

Lemma 5.2. Suppose equations (1.3), (1.4) and the priori bound condition (3.19)
hold, we obtain

cqy L s+r B s+

)5, 0<p <,

_ 2
pt < (Tlc5 )E » (5.11)
™ — 276 ’ p="F
— ptl
where ¢y = (725 )P 578 (B55) 77, €5 1= mmyogemneyes

Proof.

5 5
no =) S —pbbaln “Rnth) o)

e—E2AYtg _e—e2AQT

1 ()

ko (B8 — hn) — ko (g% — gn
<y Ml h) Z (o ol (o)

n=1 (ET)B“ +h

kh—k n
s ahn ~haagn) )

752>\0‘t0 e~ ¢ 2 o

n=1 z—m)ﬁ+1+u

e~ Anto _—e2AGT —e2ATp
//[/—52)\& e n
<26 4 sup |— = |E

2XGtg _o—e2AGT

n>1 (%)5+1 +
25 + sup |C(n)|E. (5.12)

n>1

Using Lemma 2.1, we obtain

) ,LL(e_E 2o t02/\§—s A% T)erl

p
T (e T

Cn) <(
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2y« 2y«
—e?ANtg _ o=l AnT

“ Gy (= !
T —t %(W)Bﬂ‘i‘l.

By Lemma 2.3 and 0 < p < 3, we have

C(n) < c;;ug*ﬂ

)

1 —p(p+1y\ 5L
where ¢4 = (72 )P 528 (FEL) 5.
For p > 3, we have

—e2A%tg _—eZANT +1
1 (< o ——)P
C(n) S (T —t )p 6—52,\%%_6—52,\%7"
0 (—)6+1 +pu

2o
2Ny

1 e~ Mnto _ o—€°ANT

SM(T—tO)

p—

=<

Thus we obtain

Cy g+1 B pt1

(
-1 7'1—2
pos c E
( > )ga pZﬁ

This proof is completed. O

7'1—2

Lemma 5.3. Let f,(x) be given by equation (4.4) and f;z(x) be given by equation
(4.6), then we have

c E
1£5(2) — ful@)l] < dﬁgz . (5.13)

Proof. Using Lemma 5.2 and equation (5.5), we have

1£5(@) — Fu@)] < ()5

I
C(TlciQ)pllEﬁéﬁv 0<p<p,
< Cs 1 1 B
e VPR EFHI§FH, p> [
’7'1—2

O

Theorem 5.2. Let f(z) be given by equation (3.17) and fg(a;) be given by equation
(4.6). Suppose that f(x) satisfies a priori bound condition (3.19) and assumptions
(1.3) and (1.4) hold. The regularization parameter p > 0 is chosen by the Morozov
discrepancy principle (5.9). Then

(c(=—5)7T + o) E7167T, 0 <p<p,
I1£3(x) = f(@)]| < ! (5.14)

(=) BT GE 4 g EFOTT,  p> b,

Cq

T172
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where cg := (Tito)ﬁ(S +2r2) 72,
Proof. By the triangle inequality, we have
172 () = F@) < 1F2 @) = fu@)l] + 1L fu () = f@)]l-

Firstly, we give an estimate for the second term.

() = f ()]

o
p(karhp — k22gn) 2
p— X
H Z —s%%oz)\i—a g T)ﬁ_,’_l +u](e—s2xg;02;§—s2>\g7") ”($>||
Z (kZIhn - k‘zzgn) )T}rl
— e~ ¢ Zae t(]?)\pfa AX T)ﬂ_,’_1 +M](8752>\%t02;\e—52A%T)
o (/5 e
—20%y _ —e2NOT _
< ( © (e Z Rngn) oy )2
52)\@ [(e e4ATto _e—e knT),g+1 +,U/]
n RN
o0
/.L(kglh —k‘ggg ) _2 1
S(Z(( e—e2ng,076—e2ng 711 67152)\%“)76_52)\%7‘ )p+1)P+1)p+1
D (e T s (e e T
s —2N%y _ —eXNOT _
(U Lyl ") gy
e2A (SR A a4 g
n=1 n T exe
2ya 2y
e—s )\nto _ 6—6 )‘nT b 752/\%1«:0 5
<sup(( ; Jrte i 2
n>1 € )\%
(O (bt Zhn) s o
—e2 o Sto —e2xaT
=1 () 4 4]
752)\ﬁt0 _ ,—¢ )\zT B 25«
<sup((———50 yite w2 E
n>1 ECAL
oo
p(karhp — k22gn) _p_
X(Z( 6_62)‘%“)7617/22)‘%7‘ nl )2 p+1
n—1 [(W)Wr +
—ezk‘;to _ —sZAzT _ _2)a
<sup((£ c )riie piqu)ng%

n>1 52)\04

oo

Z (1(ko1 (hy — h2) + kaa(gh — gn)) 12

—e“X —e“AQT
R ket
i (ka1 bl — kaogd) 2y 527
—e Ant —e2aaT
et 2—;)ﬁ+1 + 4]
2 —2— 2\ —2— 2p_
<sup(D(n))*E7 (8 + 277) 71 747,
n>1
- _ 752 e
where D(n) = (& 20—e== 2T A"tékz’g*”)ﬁe T
By Lemma 2.1, we have
—e°A0to _ o—€°ANT =7 ANt _ ,—&°ANT
D) = (¢ LS ) = ()
2N e2A%(T — tp) T —tg
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Thus

1ful@) = F@)] < (

T -t

P 1 p

)P (8 4 272) B ERT 05T = ¢gEriisnit,  (5.15)

where ¢ = (T%to)# (8 + 272)%72 . Combining Lemma 5.3, we have

I1£5(2) = f(2)] <

O

5.3. The priori regularization parameter choice rule of the ini-
tial value

Theorem 5.3. Let p(x) be given by equation (3.18) and gpl‘i(m) be given by equation
(4.7). Suppose that p(z) satisfies a priori bounded condition (3.20) and assumptions
(1.3), (1.4) hold. Choosing the regularization parameter:

(%)5%, 0<p<f+1,
w= 0 B+1
(E)B+2a pZﬁ-f—l,

then we obtain the following error estimate:

5 (d +c)Eriigri, 0<p<fB+1,
ey (@) — ()] < o (5.16)
(¢ +e)EFRd52, p>f+1,

B

1 R

where ¢ 1= 22— BB - .
B+1/B 2y

Proof. By using the triangle inequality, we have

o () = (@) < (@) = (@)l + lpala) — (@)l

Firstly, we give an estimate for the first term. From equations (4.5), (4.7), we have

lof, () = ()]

—e22Qtg _ —e220T
= () [(k1agp, — k11h)) — (ki2gn — k11ha)]
=1 T (@)
n=1 (— e )+
5752>\?Lt076752xﬁT)ﬂ .
B Ca— 5
<sup — = o k12 — X, (x
n21‘(6752,\”:)2;3752>\WT)B+1 -|—u|(||n2::l (gn gn) n( )”

+ 1Y k(b = ha) X (@)])

<sup|A(n)]

——6 1
sup el (5.17)
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2y« 2y«
—e2NGtg _ —AQT

A (< e )
where A(n) = T
e )

By using equation (5.l4), we obtain

19 (2) — pu(@)] < c’%)ﬁ& (5.18)

1
2y

Then we estimate the second term by equations (4.5) and (3.18),

8
where ¢/ = Qﬁﬂﬂﬂ

leu(@) — o(2)]l
,52>\at0_ _.2ap
- (%)'B g2\
B Z(<A>ﬁ+ o et — gemr)(b12gn — k) Xa 7)1
= v
o0
u
:” Z _e2 ot —e2xaT _e2 ay _2haT (k12gn - kllhn)Xn(l’)”
n=1 [(en;‘#)ﬁﬂ + M](%)
<sup|B(n)|E. (5.19)
n>1

By equation (5.7), we deduce that

cluﬁE, 0O<p<pB+1,

(5.20)
copt B, p>pF+1

lpu(z) — p(@)]| < {

Combining equation (5.18) with equation (5.20), we choose the regularized param-
eter u by

0 1
(E)%7 0<p<ﬂ+17
r= 0 B+1
Then .
d 4+ )EFisiT, 0<p<fB+1,
o) — el < 4, T VET TN
(' +co)EFt25+2, p> [+ 1.
The proof is completed. O

5.4. The posteriori regularization choice rule of the initial
value

The Morozov discrepancy principle is used to find p as follows:
1K@} () — (K129 (x) — K11h® (2))]| = 724, (5.21)
where 75 > ﬁ is a constant. According to the following lemma, we know there

exists a unique solution for equation (5.21) if | K12¢°(z) — K11R°(2)| > 726.

Lemma 5.4. py(p) = [|K¢S(z) — (Ki29° () — K11h®(z))||, the following results
hold
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(a) p2(p) is a continuous function;
(b) lim pa(u) = 0;
(c) lim pa(p) = [[Ki29°(2) — K11l (@)];
—00
(d) p2(p) is a strictly increasing function over p € (0, 00).

Lemma 5.5. Suppose (1.3), (1.4) and the priori bound condition (3.20) hold, we

obtain 5
c B+1 B+1
)R (), 0<p<s,

(5.22)

Proof.

k k1RO
raa—nz G L R

2/\0%0 e—E2AQT

Y )BJrl + u

<|| Z H k12 gn ) kll(h —hn )]Xn(‘r)H

752Aat0 e—e2aqT

n=1 W)ﬁ'%l-i-ﬂ

w(k ki1h
+||Z an o), @)

752»’%0 e—€2AQT

DY )B+1+M

25« 2\
F £ >‘nt0_e € AnTe_E2/\:tpT
a0+ G E
su | . |
p azA”toie—azkgT

1 n>1 (SW)B—H + 1

2
2Aa5-%;gglCK n)|E. (5.23)

From the previous analysis of C(n), we obtain

This proof is completed. O

Lemma 5.6. Let ¢, (z) be given by equation (4.5) and @Z(m) be given by equation
(4.7), then we have

()BT, 0<p<f,
5 2 52)\01
T) — x| < L 5.24
||90;L( ) S"/A( )H = c/( cs )%E%(S%, »> B ( )
T2 — 2 o

Proof. Using Lemma 5.5 and equation (5.18), we have
1.1

°(z) — p,(x (=)
o) (@) — pu(@)ll < (u) 5
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C 1 1 p
d(—— )P BT, 0<p<f,
< T2_82)\f‘
= , Cs 1 1 B
c( 5 )+1E+16ﬂ+1, p >0
T2 EZA?

Theorem 5.4. Let p(z) be given by equation (3.18) and cpft(x) be given by equation
(4.7). Suppose that @(x) satisfies a priori bound condition (3.20) and assumptions
(1.3) and (1.4) hold. The regularization parameter p > 0 is chosen by the Morozov
discrepancy principle (5.21). Then

(Cl( Cy )pll +c7)Ep+15p;¢—1 0<p<ﬁ7
@ — @l <, et . (5.25)
. ¢ (— =2 )FREFT§F 4 ;E718751, p>
T2 7 2w

_p_ .
where ¢ 1= (Tito)r“rl ((52/5\5?)2 +273)7 T2,
Proof. By using the triangle inequality, we have

lo () = (@) < () = (@)l + llpalz) — (@)l

Firstly, we give an estimate for the second term.

(@) — p(a)|?
oo
p(ki2gn — k11h
:HZ e—a%gtoie—s%éT nl ;iz?,\gtofe—s%\gq" X”(x)HQ
n=1 [(52—>\5)B+ +HKW
o
/~L(/€129 —ki1h ) 1
:HZ( efazkﬁto_efzsz)\%T ﬂ:l eﬁEQA%to_e—EZA%T )P+1
n=1 [(W) +M](52—>\%)
2y 2ya
e Anto — gm AT = p(ki2gn — k11hn) X 2
x ( 22\ )7 ([(9752A%t0—p752>\%7‘)ﬂ+1+ ])p n(@)|l
n - 52)\% K
oo
M(klzg —kiih ) 2 1
SO (g )Pk
o (TR e T o (R e AT
oo —e2 0% —e2aoT
I e w(k12gn — k11hn) 2p  ptl. _p
X (Z(( “2a )p+1([(6_52/\%t07€7j52’\%’r)ﬁ11+ ] p+1) P )p 1
n=1 n B> Y E— H
2ya 2ya
e~ ¢ Anto _ e~ ¢ AT _p  —e2xoTp ) 5
<su pHie” pFL FE o+t
nzli(( i ) )
oo
(S (—pitbrzgn ~Hail) iy e
O Ayl
o
k — ki1h
< sup(D(n)? 7 (3 (—pbnzon - Ful) o)y
n>1 e~ ARt0 _e— e ART B+1
2 n—1 [(W) + ]

2o k12 (gn — 95) + Kaa (B, — ha,
(D)) E7T - (23 ( ( 127(52A%t0_6252k%;1( )))2

a1 —_ [(ew)ﬂﬂ + 4
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k129n - k‘uhé)
,52>\at0 e~ ¢ A T)B""l —{—/1,}

2N

+2Z

n=1

<sup(D(n 2Eﬁ —
<o) (o

where D(n) =
Thus

where ¢7 = (ﬁ)#(ﬁ +2r2) 7,

>+ 272) %0 +2 Ere1 571,

)Ep+1 5p+1

(5.26)

0<p<p,

T 4 BRI, p> B,

6. Numerical implementation

In this section, we are going to use numerical examples and software to verify the
efficiency of our method. We solve the following direct problem to obtain g(x) and

h(x).

t
auf;t’ ) _ 2Lou(z,t) + f(z), x€Q, te(0,T],
U(J?,O) = @(33), S Q7
u(z,t) =0, z €, te (0,7 (6.1)
u(z,to) = g(x), x €, ty € (0,7,
u(z, T) = h(z), x € .
We define
z;=1Az (i=0,1,--- ,M+1),t; =jAt (j=0,1,--- ,N),
where Ax = M1+1 is the step size of space and At is the step size of time.

Let g(xz) =0, A =0 in [24], we can obtain

(=A)3U = CoBU,
U, =u(x;),i=1,2,--- | M,
U= (Uy,Us,-,Un)",
B:(h )7p 1y

¢ = (p(a1), p(x2), -, p(xan))T,
F = (f(x1), f(z2),--  flea))T,
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where C, = %@5?, and B is a strictly diagonally dominant symmetric positive-

definite matrix.
B £ (hip)M_,, where

1
7<Zl(zvp+1)+22(zvp))ia 1 SPSZ*Z
h—« !
— — Z5(i,1— 1), p=1—1,
B A 2—«
P T h—oz
_2_a_Z3(’L7Z+2)7 p:Z+17
1

and h; ; satisfies:

h  Zy(i, M +1)

=1
o 2—a  M+1-—i’ T
o dzay  zm .
hi i+ hip,—Y1(1)—Ya(i) = . : ) 2<i< M -1,
: p_%;# p=Y1(1)=Y2 (i) PR Ve <i<
, o g1
LG i= M.
2—« 1

By a simple calculation, for a € (0,2), we have

h™® - 2—a - 2—«
(a—l)(2—a)[2|z_p‘ _(|Z_p‘_1)

—(Ji —p| +1)>7], a1,
[—2i — p[In(|i — p|)

+(|i = pl+ DIn(li —p[+ 1)

S

(i =pl = Dn(ji —p = 1)},  a=1,

h™® 2—« o
Za(iyi— 1) = Zy(iyi +2) = GonE_atTem T e#l
5 [2m2 - 1], a=1,
#[ﬂ*&7(7;*1)2*0‘7(270[)1-170(]’ a£1,
Zy(i,1) = (1a— ) —a)i
E[(l_i)ln(m)—kl], a=1,
%[(M +1—4)27% — (M —i)> @

Zy(i,M+1)=¢—-(2—-a)(M+1—-1i)'"°], a#1,

1., M+1—1
E[(z—M)ln(i

1 —1
=t “=5h
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Yl(l) _ (mi)_a7 YQ(Z) — w_

[0} «

According to the numerical differentiation formula, we have

8u(xi, tj) ~ 1
ot At

—(u —ulh).

Thus we can obtain

1
N
Up=¢p

Ul —-U"YY4+C,BU=F, 1<j<N,

The following iterative format can be obtained.
(I +AtC,B)U? =UI™ + AtF, 1<j<N. (6.2)

Using the Tikhonov regularization method, we obtain the regularized solutions
of measurement data g°(x) and h°(x) with error:

2 a
e—s 2AGt _g—e /\nT)B

m
2)\0(
E ,Ezkato T g (ka1hd — k22g5) X (2),
n=1 (e )P

2
G —e Anto e~ ¢ A%T)ﬁ

m
2/\a
Z _Ezmo :_5 T (k129 — k11hd) X, ().
=t (e )

m is the truncation parameter and m = 10.
We generate the noise-contaminated data by adding a random perturbation, i.e.,

9°(x) = g() + & - g(x)rand(size(g)), (6.3)

R’ (x) = h(z) + € - h(z)rand(size(h)), (6.4)

here, size(g) represents the size of g in space, size(h) represents the size of h in
space, the function rand(-) generates arrays of random numbers whose elements are
normally distributed with mean 0, variance 02 = 1, and the noise level is:

1 M+1
5 =g’ — gl = o> (- gd), (6.5)
=1
1 M+1
=R = hll = L poy2
0y = [0 = hll = \| 5757 ;(h h))?. (6.6)

In general, the priori bound F is difficult to obtain, thus we choose the posteriori
parameter rule which is independent of E and let takes 71 = 2.1,72 = 1.1. To

verify the stability of numerical results, the following Root-mean-square deviation
is defined:

(= £
VX

er, =

(6.7)
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Figure 1. The exact solution f(z) and regularization solution f;f (z) for (a)ae = 0.3, (b)ae = 0.7.
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Figure 2. The exact solution ¢(z) and regularization solution Lpi (z) for (a)a = 0.3, (b)ae = 0.7.

€ry, =

d(p—¥h)?
N

(6.8)

For convenience, we let M = 100, N =30, e =1,d =1, Q = (0,1), T, = 0.5

and T = 1.

Xn(z) and A are the characteristic functions and eigenvalues of

operator (—A)?%. By calculation, the characteristic function X,,(z) = v/2sin(nmz)
and eigenvalues A\, = nm can be obtained, where n =1,2,--- .

Example 6.1. We consider the following equations:

fa) = 2\/2 sin(z), ()

Table 1. Numerical results of Example 1 for different e

\/Z sin(z), € [0,1].

€ 0.05 0.01 0.001
f(z) a=03 e 0.0040 0.0039 0.0039
a=0.7 €1 00037 0.0035 0.0035

p(r) a=03 e2 00054 0.0033 0.0029
a=0.7 e» 00029 0.0015 0.0012
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The exact solution f(x) and its approximations
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—— =001
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The exact solution ¢(x) and its approximations

(a) X (®) x

Figure 4. The exact solution ¢(z) and regularization solution wi(z) for (a)ae = 0.3, (b)ax = 0.55.

In Table 1, we can see when o = 0.3 and « = 0.7, the larger the noisy level, the
larger the relative error level for the exact solutions and the regularization solutions,
respectively. It can say that when the space-fractional order « is fixed a constant,
as the noise level increases, the numerical effect becomes worse and worse.

Figure 1 shows the exact f(x) and its Tikhonov regularization solution flf (2)
for the relative error levels € = 0.05,0.01,0.001 with various values a = 0.3,0.7.
Figure 2 shows the exact ¢(x) and its Tikhonov regularization solution @i(m) for
the relative error levels € = 0.05,0.01,0.001 with various values o = 0.3,0.7.

It can be seen from Figures 1-2 that the Tikhonov regularization method is very
effective for solving the inverse problem of space-fractional Allen-Cahn equation.

Example 6.2. Consider the following equations:

4z, x € [0,
f(z) = 1 2
—4(z - 1), T € [571],

o(x) = sin(27x), z € 10,1].
Figure 3 shows the exact f(x) and its Tikhonov regularization solution fg (2)
for the relative error levels € = 0.05,0.01,0.001 with value o = 0.3,0.55. Figure 4

shows the exact ¢(z) and its Tikhonov regularization solution (pi (x) for the relative
error levels € = 0.05,0.01,0.001 with value o = 0.3,0.55. From these images, it can
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Table 2. Numerical results of Example 2 for different e

e 005 001  0.001
flz) a=03 eq 00156 0.0130 0.0127
a=055 e 00066 0.0051 0.0050
o(r) a=03 eo 00212 00099 0.0094
a=055 e 00283 00163 0.0169

be seen that Tikhonov regularization method has certain limitations in handing
inflection points.

Example 6.3. Consider the following discontinuous equations:

1
Oa 336[0,5),
o) = 1
1 -1
) .1?6[2, ]7
3
1 0, —
; $€[710)7
3 3
So(x)_ 07 HAES [TO7Z),
3
1 -, 1].
, z € [1,1]

Figure 5 shows the exact f(x) and its Tikhonov regularization solution fﬁ(x)

Table 3. Numerical results of Example 3 for different e

€ 0.05 0.01 0.001
flz) a=03 e1 0.0517 0.0464 0.0466
a=045 e,; 0.0088 0.0061 0.0060

pr) a=03 €2 00260 0.0158 0.0160
a=045 e 0.0860 0.0612 0.0805

for the relative error levels ¢ = 0.05,0.01,0.001 with value o = 0.3,0.45. Figure 6
shows the exact p(z) and its Tikhonov regularization solution gpz(:c) for the relative
error levels e = 0.05,0.01,0.001 with value o« = 0.3,0.45. Obviously, this method
produces large errors when dealing with discontinuous function, but it can still be
used to approximate the exact solution.

Through the above examples, we find that from Figures 1-6, it can be seen that
the fitting results of different o are not significantly different. From Tables 1-3, it
can be seen that the smaller the relative error level, the better the approximation
effect. This indicates that regardless of how a changes in [0, 1], image fitting is
relatively stable. This also means that the fractional order Tikhonov regularization
method is effective.
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Figure 5. The exact solution f(z) and regularization solution f;i(:v) for (a)a = 0.3, (b)ax = 0.45.
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Figure 6. The exact solution ¢(z) and regularization solution wi(z) for (a)a = 0.3, (b)aw = 0.45.

7. Conclusion

In this paper, we consider an inverse problem to identify simultaneously the source
term and initial value of space-fractional Allen-Cahn equation. We use the frac-
tional Tikhonov method to overcome the ill-posedness. The error estimations are
obtained under a priori regularization parameter choice rule and a posteriori regu-
larization parameter choice rule, respectively. And we compare this method from
error estimates and numerical results. The numerical tests are presented to show
the validity and the advantage of the proposed schemes.
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