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STUDIES ON THE INTERACTION
MECHANISM BETWEEN THE MRNA

VACCINE AGAINST SARS-COV-2 AND THE
IMMUNE SYSTEM
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Abstract Vaccines are an effective tool in the fight against infectious diseases.

However, mathematical models of SARS-CoV-2 focus on the macroscopic situation,

while articles on vaccines focus on effectiveness and safety. We develop four mathe-

matical models to investigate the immune system and the microdynamics of antigens

and viruses in individuals injected with mRNA vaccines. We first theoretically ana-

lyze the optimal model, calculate all equilibria, and prove that the disease-free equi-

librium is globally asymptotically stable while the others are unstable. This suggests

that after a certain period after vaccination, the infected cells and antigens will no

longer exist in vivo and will be eliminated by the immune system over time or will

die naturally. This theoretically proves the safety of the mRNA vaccines. Then, we

use the differential algebra to analyze the structural identifiability of the models. We

find that two of them are globally identifiable while the other two are unidentifiable,

but once a certain parameter is fixed, then they are identifiable as well. To select

the optimal model among four models, we use the Affine Invariant Ensemble Markov

Chain Monte Carlo algorithm for data fitting and parameter estimation. We find

that the roles of memory cells in killing infected cells and promoting immune cells

and neutralizing antibodies in the process of mRNA vaccination are not significant

and can be ignored in the modeling. On the other hand, the innate immunity of the

human body plays an important role in this process. In addition, we also analyze

the practical identifiability of the parameters of the optimal model. The results show

that even if the structure of the system is globally identifiable, it does not ensure that

all the parameters are practically identifiable. After random sampling and simulating

the four unidentifiable parameters, we find that only two variables, infected cells II

and antibodies, are sensitive to these unidentifiable parameters, but the results are

still within acceptable ranges. This suggests that our fitting results are generally reli-

able. Finally, we simulate multiple booster injections and find that booster injections

are indeed effective in maintaining antibody levels in vivo, which could otherwise

gradually die off over time. Therefore, booster injections are beneficial to help the

human body increase and maintain immunity.
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1. Introduction

The discovery of SARS-CoV-2 at the end of 2019 has already caused significant
health risks and economic burdens in human life over the past three years. Although
the virulence of the viruses is decreasing, we still need to emphasize protection
against the viruses. Since vaccination is an important way to prevent and control
the spread of epidemics as well as to reduce symptoms and mortality in patients, it
is medically important to investigate the effects of vaccines on the human immune
system.

Vaccines against polio, encephalitis B, influenza, rabies, and HFMD are usually
inactivated vaccines. The mechanism is to kill or inactivate the infectious viruses
by some physical or chemical treatment, but keep the viruses intact, and then inject
them in vivo. Although they are intact viruses, they do not infect healthy cells.
Once the body’s immune system recognizes these viruses, it responds and develops
a memory of them.

In the 1990s, scientists discovered that target proteins can be successfully de-
tected after injecting mRNAs into mice [24]. Subsequent experiments have shown
that it is possible to inject viral mRNAs in vivo, guiding the cells to synthesize
the corresponding antigens, thereby inducing a specific immune response. Specif-
ically, the mRNA vaccine injects the mRNAs of the desired antigens, rather than
the antigens themselves. Ribosomes in the cells will translate these mRNAs into
the corresponding proteins, which are the antigens. Once circulating in the blood-
stream, these antigens trigger a response from the immune system. In contrast
to traditional inactivated vaccines, these antigens are active, so that they can in-
fect target cells and thus induce both humoral immunity and cellular immunity
simultaneously.

The antigens of the mRNA vaccine against SARS-CoV-2 are the spike proteins
(also known as the S proteins) on the surface of the viruses. In an intact virus,
the S proteins bind with the ACE2 receptors on the surface of human cells to
allow the viral mRNAs to enter the cell [11], thus allowing the virus to proliferate.
Therefore, if the vaccines contain only the mRNAs of the S proteins but not the
viral mRNAs, they will infect the target cells but will not be able to proliferate the
viruses themselves, thus ensuring the safety of the vaccines. In addition, we can
flexibly change and optimize the mRNA sequence to produce vaccines to counteract
viral mutations.

In 2020, two mRNA vaccines against SARS-CoV-2 developed by Modena and
Pfizer/BioNTech were licensed and marketed for the first time for emergency use.
This is the first time that mRNA vaccines have been mass-vaccinated in the world.
Moderna announced Phase 1 clinical trial results of its mRNA vaccine mRNA-1273
against SARS-CoV-2 in July 2020 [18], and Pfizer/BioNTech announced Phase 1/2
clinical trial results of their vaccine BNT162b2 in August of the same year [29], and
preliminary results showed that the vaccines could produce more antibodies than
patients recovering from natural infection and that the vaccines were safe. The
efficacy and safety of mRNA-1273 was further studied by L. R. Baden et al. [4].
The efficacy and safety of BNT162b2 was further studied by F. P. Polack et al. [31].
The effectiveness of a lower dose of mRNA-1273 was studied by J. Mateus et al. [25].
The Sheba Medical Center in Israel evaluated the efficacy of a fourth booster dose
of both vaccines against the Omicron variant [32]. All these results illustrate the
effectiveness and importance of mRNA vaccines for the prevention of SARS-CoV-2
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from different perspectives.

The mRNA vaccine was urgently introduced as a result of the epidemic. Is it
really safe and effective in preventing SARS-CoV-2? And how necessary is a booster
shot? The public has been skeptical about this. Therefore, we develop a nonlinear
dynamics model and simulate virtual experiments to investigate this issue. Using
the nonlinear system theory to research the interaction of the immune system with
foreign matter, such as viruses or bacteria, has been shown to have great practical
significance [15,20,33,37]. However, not many studies have been conducted on the
dynamics of the mRNA vaccine against SARS-CoV-2 in vivo and the dynamics of
SARS-CoV-2 in vaccinated individuals. In general, due to the complexity of the
immune system, we usually simplify the process by dividing the research objects
into four groups. The first group consists of antigens, including invading viruses
and bacteria, as well as tumor antigens and viral vaccines, which are spontaneously
transformed into cancer cells from normal cells in vivo; the second group consists
of immune cells, such as T cells, B cells, and macrophages; the third group consists
of immune molecules, such as lymphokines, interleukins, interferons, and tumor
necrosis factors; and the last group consists of the major histocompatibility antigens
and autoantigens. We will try to use mathematical tools to describe the complex
non-linear interactions among them (or among some of them) to study the complex
behaviors in immune response and immunoregulation and the effects of various
factors on these behaviors.

The main structure of the rest is organized as follows. We establish the differen-
tial equations according to the characteristics of the immune system and the mRNA
vaccines and then theoretically analyze them in Section 2. The structural identifia-
bility of all the models is discussed in Section 3. The data fitting and model selection
are carried out for the clinical data in Section 4. The practical identifiability of the
optimal model is analyzed in Section 5. The sensitivity analysis of parameters is
analyzed and the virtual experiments of the optimal model are simulated in Section
6. Finally, we discuss the results of our model in Section 7.

2. Mathematical models

It is widely known that different assumptions about the interactions between the
viruses or vaccines and the components of the immune system in the host can lead to
different mathematical models. According to the mechanisms of the mRNA vaccine
and the human immune system, we first develop the following differential equation
model to characterize the interaction between them. Based on it, assuming that
some of the immune responses can be ignored, we can obtain the other three models
which are more concise.

The diagram of the basic dynamics model (we call it the full model) is shown
in Figure 1. The variables of the model include target cells that can be infected by
the mRNAs of the S proteins in vaccines (I1), target cells that can be infected by
the antigens (I2), antigens (S), CD8+ T cells (Tk), CD4+ T cells (Th), B cells (B),
antibodies (A), memory CD8+ T cells (Tkm), memory CD4+ T cells (Thm), and
memory B cells (Bm). The system (2.1) and the system (2.2) show the dynamics
of the humoral immunity and the cellular immunity induced by vaccines of the full
model. The biological meanings of each term in the equations are shown in the
appendixes (see Appendix A).
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Figure 1. Dynamics of the mRNA Vaccination.

1. Humoral Immunity

dS

dt
= pI1 − βSA− (θ1 + θ2)S,

dTh
dt

= ωhTh(πh − Th) + αhS,

dB

dt
= ωBB(πB −B) + αBS(Th + µhThm),

dA

dt
= ωAS(B + µBBm)− βSA− δAA,

dThm
dt

= γhTh + ηhThmS − δhThm,

dBm
dt

= γBB + ηBBmS − δBBm.

(2.1)

2. Cellular Immunity

dI1
dt

= −λI1(Tk + µkTkm)− δII1, t 6= τi(i = 1, 2, . . .),

dI2
dt

= θ1S − λI2(Tk + µkTkm)− δII2,

dTk
dt

= ωkTk(πk − Tk) + αk(I1 + I2),

dTkm
dt

= γkTk + ηkTkm(I1 + I2)− δkTkm.

(2.2)

Obviously, the system (2.1) and the system (2.2) respectively characterize the
two forms of immunity induced by the mRNA vaccine. One part is the humoral
immunity involving the CD4+ T cells, the B cells, the memory CD4+ T cells, the
memory B cells, and the neutralizing antibodies (system (2.1)). Like traditional
inactivated vaccines, they are stimulated to proliferate by antigens free in the blood
and are eventually neutralized by the neutralizing antibodies. The other part is the
cellular immunity (system (2.2)) consisting of the CD8+ T cells and the memory
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Table 1. Sub-models.

Model Assumption Biological Meaning

Model 1 Full model /

Model 2 θ2 = 0 Ignoring the killing of antigens by the innate immune system

Model 3 µi = 0 (i = k, h,B) Ignoring the killing of infected cells and the promotion of
immune cells and neutralizing antibodies by memory cells

Model 4 θ2, µi = 0 (i = k, h,B) Ignoring the killing of infected cells and antigens by the innate
immune system and memory cells

CD8+ T cells. This is the advantage of mRNA vaccines over regular inactivated
vaccines.

Based on the mechanism of mRNA vaccines, the full model (system (2.1) &
(2.2)) contains three more concise sub-models under different biological assump-
tions. Table 1 lists four models based on different biological assumptions. For
example, Model 3 assumes that the parameters µi = 0 (i = k, h,B) in the full
model, i.e., it assumes that the roles of memory cells in killing infected cells and
promoting immune cells and neutralizing antibodies can be ignored. Of the four
models, Model 4 is the most concise, while ignoring the roles of both memory cells
and the innate immune system in killing infected cells and antigens.

It is easy to see that none of the four models in Table 1 based on different
biological assumptions has an infection equilibrium whose variables are all positive,
and all of them have 8 disease-free equilibria (see Appendix A). We have obtained
the following theorem about the stabilities of the 8 disease-free equilibria.

Theorem 2.1. In the case of a single vaccination, the disease-free equilibrium of
four systems of vaccination Model 1-Model 4

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)

=

(
0, 0, 0, πk, πh, πB , 0,

γkπk
δk

,
γhπh
δh

,
γBπB
δB

)T
is unconditionally globally asymptotically stable, while the other equilibria Ei(i =
2, . . . , 8) are unstable.

The details of the proof are shown in the last chapter of the paper (see Appendix
A). In fact, Model 2, Model3 and Model 4 are obtained from Model 1 with some
cuts. Take Model 3 as an example, since the memory immune cells Tkm, Thm, Bm
are not involved in the immunization process, we can ignore them in the proof.
Therefore, the expressions of the equilibria Ei, i = 1, 2, . . . , 8 and the proof are
more concise. Here, we only show the proof of the most complex sub-model Model
1. The proofs of the other three sub-models are the simplified versions of it, so we
do not repeat them. This theorem implies that the mRNA vaccines are safe to some
extent because there is no risk that a vaccinated individual will become infected
with the viruses as a result of vaccination. This result also suggests that the level
of antibodies will decrease with time until antibodies are completely eliminated.
Multiple vaccinations may be necessary to maintain a certain level of antibodies
in the absence of the viruses. We will prove this hypothesis through numerical
simulations later.
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3. Identifiability analysis of models

We collect the data of CD8+ T cells Tk, CD4+ T cells Th, neutralizing antibodies
A, memory CD8+ T cells Tkm, memory CD4+ T cells Thm and memory B cells Bm
in individuals injected with mRNA vaccines mRNA-1273 or BNT162b2 from the
literature [13, 22, 39]. Details about these data can be found in Appendix B. We
plan to use these clinical data to estimate the parameters of each of the four models
mentioned above (see Table 1) and do model selection. To ensure the reliabilities of
parameter estimation and model selection, first, we need to analyze the structural
identifiability of the models.

Structural identifiability analysis assumes that the measured data are ideally free
of interferences and errors. The structure of a model is said to be unidentifiable if
an infinite number of combinations of parameters can be fitted to the data. The
structure of a model is said to be locally identifiable if only a finite number of
parameter combinations can be fitted to the data. The structure of a model is said
to be globally identifiable if there is only one unique combination of parameters that
can fit the data. For the data observed, assuming that they are free of noise errors,
the predictions of the unidentifiable and locally identifiable cases can be greatly
different, even though models with different parameter combinations can fit the
observations well. Therefore, the fact that the structure of a model is identifiable
from the data is a prerequisite for the reliability of the parameter estimation. In
contrast, although the structure is found to be unidentifiable, even if the parameter
estimation fails, we can reveal useful information about the relationship between
the parameters. This makes the structural identifiability analysis of models an
important factor to consider in immunological modeling [9]. However, structural
identifiability analysis has been neglected in the majority of modeling studies in
systematic biology.

To determine whether the parameters of the four built models are identifiable
in the ideal case (noise-free data), we use differential algebra to test the structural
identifiability of the models, and the following are the strict definitions of structural
identifiability [27]:

Definition 3.1. Global identifiability: A system structure is said to be globally
identifiable if for any admissible input u(t) and any two parameter vectors θ1 and
θ2 in the parameter space Θ, the system outputs y(u, θ1) = y(u, θ2) holds if and
only if θ1 = θ2.

Definition 3.2. Local identifiability: A system structure is said to be locally iden-
tifiable if for any parameter vector θ within an open neighborhood of some point
θ∗ in the parameter space Θ, the system outputs y(u, θ1) = y(u, θ2) holds if and
only if θ1 = θ2.

The key to the differential algebra method is the computation of the character-
istic set. By deriving, substituting, and eliminating the unknown state variables,
the final equation containing only the output variables and unknown parameters
is called the input-output equation. Analyzing the coefficients of these equations
reveals the identifiability of the parameter structure of the model [5]. The state
variables we collecte from the literature are the concentrations of CD8+ T cells Tk,
CD4+ T cells Th, neutralizing antibodies A, memory CD8+ T cells Tkm, memory
CD4+ T cells Thm and memory B cells Bm. Based on the clinical data, we analyze
the structural identifiability of each of the above four models (see Table 1) by differ-
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ential algebra. Here, we only show the analysis of Model 3. Since the three kinds
of memory immune cells do not appear in the equations of the other variables, we
can ignore them during our analysis, only using the data of Tk, Th, A.

Theorem 3.1. The structure of all parameters of Model 3 is globally identifiable
if the initial values of all variables and the clinical data Tk, Th, A are known.

Proof. For simplicity, we merge the corresponding humoral immunity and cellular
immunity of Model 3 into one model and express them in a simpler derivative
notation, which yields the following system.

I ′1 = −λI1Tk − δII1, t 6= τi (i = 1, 2, . . .),

I ′2 = θ1S − λI2Tk − δII2,

S′ = pI1 − βSA− (θ1 + θ2)S,

T ′
k = ωkTk(πk − Tk) + αk(I1 + I2),

T ′
h = ωhTh(πh − Th) + αhS,

B′ = ωBB(πB −B) + αBSTh,

A′ = ωASB − βSA− δAA.

(3.1)

First, we define the following partial ordering relation [5].

Tk < Th < A < T ′k < T ′′k < . . . < A < A′ < . . . <

I1 < I2 < S < B < I ′1 < I ′2 < . . . < I ′′1 < I ′′2 < . . . .

The largest one in an equation is the leader, and the equations are reordered
according to their leaders from smallest to largest and shifted to the same side of
the equations, resulting in

T ′
k − ωkTk(πk − Tk)− αk(I1 + I2) = 0, (leader: I2) (3.2a)

T ′
h − ωhTh(πh − Th)− αhS = 0, (leader: S) (3.2b)

A′ − ωASB + βSA+ δAA = 0, (leader: B) (3.2c)

I ′1 + λI1Tk + δII1 = 0, (leader: I ′1) (3.2d)

I ′2 − θ1S + λI2Tk + δII2 = 0, (leader: I ′2) (3.2e)

S′ − pI1 + βSA+ (θ1 + θ2)S = 0, (leader: S′) (3.2f)

B′ − ωBB(πB −B)− αBSTh = 0. (leader: B′) (3.2g)

Then, we calculate the input-output equations.

1. Since (3.2g) contains the leader B of (3.2c), from (3.2c) we get

B =
A′ + βSA+ δAA

ωAS
,

B′ =
A′′ + βS′A+ βSA′ + δAA

′

ωAS
− (A′ + βSA+ δAA)S′

ωAS2
.

(3.3)
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By substituting (3.3) into (3.2g) and simplifying it, we get

ωASA
′′ + βωAS

2A′ + ωAδASA
′ − ωAS′A′ − ωAδAS′A− ωAωBπBSA′

+ωBA
′2 + 2βωBSAA

′ + 2ωBδAAA
′ − βωAωBπBS2A+ β2ωBS

2A2

+2βωBδASA
2 − ωAωBπBδASA+ ωBδ

2
AA

2 − αBω2
AS

3Th = 0. (leader: S′)

(3.4)

2. Since (3.2c), (3.2f), and (3.4) contain the leader S of (3.2b), from (3.2b) we
get

S =
1

αh
(ωhT

2
h − ωhπhTh + T ′h),

S′ =
1

αh
(2ωhThT

′
h − ωhπhT ′h + T ′′h ).

(3.5)

By substituting (3.5) into (3.2c) and simplifying it, we get

αhA
′ − ωAωhT 2

hB + ωAωhπhThB − ωAT ′hB + βωhT
2
hA− βωhπhThA

+βT ′hA+ αhδAA = 0. (leader: B)

(3.6)
By substituting (3.5) into (3.2f) and simplifying it, we get

2ωhThT
′
h − ωhπhT ′h + T ′′h − pαhI1 + βωhT

2
hA− βωhπhThA+ βT ′hA

+(θ1 + θ2)ωhT
2
h − (θ1 + θ2)ωhπhTh + (θ1 + θ2)T ′h = 0. (leader: I1)

(3.7)
By substituting (3.5) into (3.4) and simplifying it, we get

− αhβωAωBω2
hπBT

4
hA− α2

hωAωBωhπBδAT
2
hA− 2αhβ

2ωBωhπhThT
′
hA

2

− 2α2
hβωBωhπhδAThA

2 − 2α2
hβωBωhπhThAA

′ + α2
hωAωBωhπBπhThA

′

− 2αhβωAωhπhThT
′
hA
′ − α2

hωAωhπhThA
′′ + 2αhβωAωBω

2
hπBπhT

3
hA

− αhβωAωBω2
hπBπ

2
hT

2
hA− 2αhβωAωBωhπBT

2
hT
′
hA− α2

hωAT
′′
hA
′

+ 2αhβωAωBωhπBπhThT
′
hA+ α2

hωAT
′
hA
′′ + α2

hωAωBωhπBπhδAThA

− 2αhβ
2ωBω

2
hπhT

3
hA

2 + αhβ
2ωBω

2
hπ

2
hT

2
hA

2 − 2αhβωAω
2
hπhT

3
hA
′

+ 2αhβ
2ωBωhT

2
hT
′
hA

2 + 2α2
hβωBωhδAT

2
hA

2 + αhβωAω
2
hπ

2
hT

2
hA
′

+ 2α2
hβωBωhT

2
hAA

′ − α2
hωAωBωhπBT

2
hA
′ + 2αhβωAωhT

2
hT
′
hA
′

− 2α2
hωAωhδAThT

′
hA− α2

hωAωhπhδAThA
′ − αhβωAωBπBT ′2h A

− α2
hωAωBπBδAT

′
hA+ α2

hωAωhπhδAT
′
hA+ αhβ

2ωBω
2
hT

4
hA

2

+ 6αBω
2
Aω

2
hπhT

4
hT
′
h − 3αBω

2
Aω

2
hπ

2
hT

3
hT
′
h + αhβωAω

2
hT

4
hA
′

+ 3αBω
2
AωhπhT

2
hT
′2
h + α2

hωAωhδAT
2
hA
′ + 2α2

hβωBδAT
′
hA

2

− 2α2
hωAωhThT

′
hA
′ + 2α2

hβωBT
′
hAA

′ − α2
hωAωBπBT

′
hA
′ + α2

hωAωhπhT
′
hA
′

+ 3αBω
2
Aω

3
hπhT

6
h − 3αBω

2
Aω

3
hπ

2
hT

5
h + αBω

2
Aω

3
hπ

3
hT

4
h − 3αBω

2
Aω

2
hT

5
hT
′
h
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− 3αBω
2
AωhT

3
hT
′2
h + αhβ

2ωBT
′2
h A

2 + 2α3
hωBδAAA

′ + βαhωAT
′2
h A
′

+ α2
hωAδAT

′
hA
′ + α3

hωBA
′2 − αBω2

Aω
3
hT

7
h + α3

hωBδ
2
AA

2

− αBω2
AThT

′3
h + α2

hωAωhT
2
hA
′′ − α2

hωAδAT
′′
hA = 0. (leader: A′′)

(3.8)

3. Since (3.2e) contains the leader I2 of (3.2a), from (3.2a) we get

I2 =
1

αk
(ωkT

2
k − ωkπkTk + T ′

k − αkI1),

I ′2 =
1

αk
(2ωkTkT

′
k − ωkπkT

′
k + T ′′

k − αkI
′
1).

(3.9)

By substituting (3.9) into (3.2e) and simplifying it, we get

2ωkTkT
′
k − ωkπkT ′k + T ′′k − αkI ′1 + (λTk + δI)(ωkT

2
k − ωkπkTk + T ′k − αkI1)

−αkθ1S = 0. (leader: I ′1)

(3.10)

4. Since (3.2a), (3.2d), and (3.10) contain the leader I1 of (3.7), from (3.7) we
get

I1 =
1

pαh
[βωhT

2
hA− βωhπhThA+ (θ1 + θ2)ωhT

2
h − (θ1 + θ2)ωhπhTh

+2ωhThT
′
h + βT ′hA− ωhπhT ′h + (θ1 + θ2)T ′h + T ′′h ],

I ′1 =
1

pαh
[βωhT

2
hA
′ + 2βωhThT

′
hA− βωhπhThA′ − βωhπhT ′hA

+2(θ1 + θ2)ωhThT
′
h − (θ1 + θ2)ωhπhT

′
h + 2ωhT

′2
h + 2ωhThT

′′
h

+βT ′hA
′ + βT ′′hA− ωhπhT ′′h + (θ1 + θ2)T ′′h + T ′′′h ].

(3.11)
By substituting (3.11) into (3.2a) and simplifying it, we get

pαhT
′
k − pαhωkπkTk + pαhωkT

2
k − αkβωhAT 2

h + αkβωhπhThA

−(θ1 + θ2)αkωhT
2
h + (θ1 + θ2)αkωhπhTh − 2αkωhThT

′
h − αkβT ′hA

+αkωhπhT
′
h − (θ1 + θ2)αkT

′
h − αkT ′′h − pαkαhI2 = 0. (leader: I2)

(3.12)
By substituting (3.11) into (3.2d) and simplifying it, we get

λβωhTkT
2
hA− (θ1 + θ2)λωhπhTkTh − βωhπhδIThA− λβωhπhTkThA

+ T ′′′h + 2ωhThT
′′
h + βT ′′hA− ωhπhT ′′h + λTkT

′′
h + 2ωhT

′2
h + βT ′hA

′

+ (θ1 + θ2)T ′′h + δIT
′′
h + (θ1 + θ2)δIT

′
h + 2βωhThT

′
hA− βωhπhThA′

− βωhπhT ′hA+ (θ1 + θ2)λTkT
′
h + (θ1 + θ2)ωhδIT

2
h + 2ωhδIThT

′
h

+ βδIT
′
hA− ωhπhδIT ′h + λβTkT

′
hA− λωhπhTkT ′h + βωhδIT

2
hA

− (θ1 + θ2)ωhπhδITh + (θ1 + θ2)λωhTkT
2
h + 2λωhTkThT

′
h
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+ βωhT
2
hA
′ + 2(θ1 + θ2)ωhThT

′
h − (θ1 + θ2)ωhπhT

′
h = 0. (leader: A′)

(3.13)

By substituting (3.5) and (3.11) into (3.10) and simplifying it, we get

−2αkβωhThT
′
hA+ αkβωhπhThA

′ + αkβωhπhT
′
hA− (θ1 + θ2)λαkωhTkT

2
h

−2λαkωhTkThT
′
h − λαkβTkT ′hA+ λαkωhπhTkT

′
h − αkβωhδIT 2

hA

+(θ1 + θ2)αkωhπhδITh + pθ1αkωhπhTh − pθ1αkT
′
h + λαkβωhπhTkThA

−λαkβωhTkT 2
hA+ (θ1 + θ2)λαkωhπhTkTh + αkβωhπhδIThA

+pαhωkδIT
2
k − αkβT ′hA′ − (θ1 + θ2)αkδIT

′
h + 2pαhωkTkT

′
k − pαhωkπkT ′k

+pλαhωkT
3
k + pλαhTkT

′
k − αkT ′′′h − 2αkωhThT

′′
h − αkβT ′′hA

+αkωhπhT
′′
h − λαkTkT ′′h − αkδIT ′′h + pαhT

′′
k − (θ1 + θ2)αkT

′′
h

+pαhδIT
′
k − 2αkωhT

′2
h − 2αkωhδIThT

′
h − αkβδIT ′hA+ αkωhπhδIT

′
h

−pλαhωkπkT 2
k − pαhωkπkδITk − αkβωhT 2

hA
′ − 2(θ1 + θ2)αkωhThT

′
h

+(θ1 + θ2)αkωhπhT
′
h − (θ1 + θ2)λαkTkT

′
h − (θ1 + θ2)αkωhδIT

2
h

−pθ1αkωhT
2
h = 0. (leader: A′)

(3.14)

5. Since (3.14) contains the leader A′ of (3.13), by (3.13) we get A′, and substi-
tute it into (3.14) and simplify it, we get

λαhωkT
3
k − λαhπkωkT 2

k + αhωkδIT
2
k − αhωkπkδITk − θ1αkωhT

2
h

+θ1αkωhπhTh + λαhTkT
′
k + 2αhωkTkT

′
k − αhωkπkT ′k + αhδIT

′
k

−θ1αkT
′
h + αhT

′′
k = 0. (leader: T ′h)

(3.15)

6. Finally, the equations (3.15), (3.8), (3.13), (3.7), (3.12), (3.2b), (3.6) in order
can not be further simplified. They form the characteristic set of (3.2), where
the first three equations contain only the output variables Tk, Th, A and their
derivatives of each order, and thus form the input-output equations. Despite
their complicated form, we only need to extract some coefficients for testing.
Before that, to ensure good results, the three equations are normalized by
eliminating the coefficient α2

hωAωh of T 2
hA
′′ in (3.8) and the coefficient αh of

T ′′k in (3.15). Since the coefficient of T ′′′h in (3.13) is already 1, no further
processing is needed.

Let another set of parameters u = (u1, u2, . . . , u17) (corresponding to the pa-
rameters in Table 5 in order) satisfy the input-output equations. Extracting the co-
efficients of T ′′hA, ThT

3
h , T

4
hA, T

′′2
h A2 from (3.8), the coefficients of ThT

′′
h , T

′′
hA, TkT

′′
h ,

ThA
′, T 2

hA, T
2
h from (3.13), and the coefficients of T 3

k , T
2
k , T

′
k, T

2
h from (3.15), we get
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the following equations



− δA
ωh

= −u10

u13
,

−αBωA
αhωh

= −u8u11

u7u13
,

βωBωhπB
αh

=
u3u14u13u17

u7
,

2ωh = 2u13,

β = u3,

λ = u2,

−βωhπh = −u3u13u16,

and



βωhδI = u3u13u9,

(θ1 + θ2)ωhδI = (u4 + u5)u13u9,

λωk = u2u12,

ωk(δI − λπk) = u12(u9 − u2u15),

αh(δI − ωkπk) = u7(u9 − u12u15),

−θ1αk
αh

= −u4u6

u7
,

β2ωB
αhωAωh

=
u2

3u14

u7u11u13
.

By solving them, we get



δA = u10,

αBωA = u8u11,

ωBπB = u14u17,

ωh = u13,

β = u3,

λ = u2,

πh = u16,

and



δI = u9,

θ1 + θ2 = u4 + u5,

ωk = u12,

πk = u15,

αh = u7,

θ1αk = u4u6,
ωB
ωA

=
u14

u11
.

(3.16)

In addition, we find that even if we use the coefficients of the other terms in
the equations, we cannot get a better result. Therefore, if only the clinical data
Tk, Th, A are known, the parameters p, θ1, θ2, αk, αB , ωA, ωB , πB are unidentifiable,
while the structure of the rest parameters is globally identifiable.

Considering that the initial values of each variable in the model are known,
the remaining four equations of the characteristic set at t = t0 can be considered
input-output equations as well. Extracting the coefficient of T 2

hB from (3.6), the
coefficient of I1 from (3.7), and the coefficient of T ′′h from (3.12), the following
equations are obtained: 

−ωAωh = −u11u13,

pαh = u1u7,

−αk = −u6.
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Meanwhile, considering (3.16), we get

ωA = u11,

αB = u8,

ωB = u14,

πB = u17,

and



p = u1,

αk = u6,

θ1 = u4,

θ2 = u5.

Thus the structure of the system (3.1) is globally identifiable, i.e., the changes
of the variables are completely known if the initial values are known.

In summary, in the case where the initial values of all variables are known and the
variables Tk, Th, A are output variables, there is only one unique set of parameters
that can satisfy the output variables, hence, the structure of Model 3 is globally
identifiable.

Similarly, we can obtain the structural identifiability of Model 1, Model 2 and
Model 4. Due to the complicated calculations, we only give the results of structural
identifiability for the other three models, and we will not repeat the details of the
proof.

Theorem 3.2. The structures of Model 1 and Model 2 are unidentifiable if
the initial values of all variables and the clinical data Tk, Th, A, Tkm, Thm, Bm are
known. But as long as any one of the parameters αB , πB , ωB , ωA, γB , µB is known,
the structures of Model 1 and Model 2 are globally identifiable.

Meanwhile, from Theorem 3.1 we can directly obtain the corresponding conclu-
sion of Model 4.

Theorem 3.3. The structure of all parameters of Model 4 is globally identifiable
if the initial values of all variables and the clinical data Tk, Th, A are known.

Whether the model is reasonable or not, and whether the prediction results are
robust or not, are closely related to the reliability of the parameter estimation. The
credibility of parameter estimation depends on whether the structure of the model
is identifiable or not. Therefore, we first analyze the structural identifiability of the
models before further research. In this section, we show that two of the four models
are globally identifiable under the available clinical data (Model 3 and Model 4)
while the other two are unidentifiable (Model 1 and Model 2). This provides
theoretical support for the following parameter estimation and model selection.

4. Data fitting and model selection

We often want to use a simple model to describe the viral infection process, but we
are concerned that simplicity may overlook some important factors, which requires
the modelers to select among the models with different complexities. It is worthwhile
to investigate how to select a model that best represents the dynamic responses of
the vaccines or the viruses in the hosts from a large number of models with limited
clinical data.

Japanese researcher Hirotugu Akaike proposed a model selection method in 1973:
Akaike’s Information Criterion (AIC). He pointed out that when trying to select
an optimal model from a set of candidate models, the one with the smallest AIC
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value [1–3] should be chosen. Common model selection criteria are AIC and BIC,
given the large numbers of parameters, we use the corrected AIC, i.e. AICc, for
model selection, which is calculated by the following formula [35]

AICc = −2 ln(L(θ̂MLE)) + 2K +
2K(K + 1)

N −K − 1
, (4.1)

where, K is the number of unknown parameters, N is the number of observations,
and L is the likelihood function. The smaller the value of AICc, the better the
model.

We are going to use the Affine Invariant Ensemble Markov Chain Monte Carlo
(GWMCMC) algorithm [14] for parameter estimation. The traditional Markov
Chain Monte Carlo algorithm approximates the posterior distribution of the param-
eters by randomly sampling the parameter space [12]. The GWMCMC algorithm
we use is superior to the Metropolis-Hastings (M-H) algorithm and the Random
Walk M-H algorithm [7], especially when the parameters are unidentifiable. The
advantage of this algorithm is that it does not take into account the normalization
of the parameters and is iterated by several walkers at the same time. The posi-
tions of the walkers are based on the current positions of all other walkers, which
makes the estimation more accurate. Details of the algorithm can be found in the
literature [14, 34]. In this study, we assume that all known data have normally
distributed noise. The meanings, prior ranges, and sources of the parameters in the
paper are given in Table 5.

Also, the MCMC algorithm needs to be determined whether it has converged
or not. This crucial aspect is often avoided. If the Markov Chain has not yet
reached the convergence state, it means that the result has not yet reached the target
posterior distribution, and further iterations are needed to get a better result. The
existing convergence theorem can only theoretically guarantee that it will converge
to the target distribution [19] after a sufficiently long iteration, but it cannot tell
us quantitatively how long it will take. In general, we can judge whether it has
converged subjectively by drawing an iterative graph. In addition to this observation
method, we can also use the method proposed by Gelman et al. [6,10], which utilizes
the idea of analysis of variance (ANOVA) to construct an estimator V̂ of the variance
σ2 and compute the potential scale reduction factor (PSRF) to determine whether
it has converged.

It can be considered that the chain has converged when PSRF ≈ 1, otherwise it
is necessary to continue iterating or to look for other ways to help it converge.

Based on the above GWMCMC algorithm and convergence criteria, we first
select the optimal one among four models (see Table 1) using the clinical data
of Moderna’s vaccine mRNA-1273 and find a set of optimal parameter posterior
distributions, optimal values, and their 95% confidence intervals for each model.

We performed about 100 million iterations on 34 chains, with 3 million steps
per chain. Since the iterations of each chain are performed simultaneously, the
iteration steps mentioned below are for a single chain. We save the results every 10
iterations and calculate the PSRF values of each parameter for 10×2n(n = 1, . . . , 17)
iterations. In addition, because the result at the beginning of iteration is unstable,
to eliminate its side effect, when the number of iteration steps is more than 400
thousand steps, only the result of the first 400 thousand steps of the current step
number is taken for calculation. Here we only show the result based on the mRNA-
1273 (Figure 2), and it is easy to see that PSRFs are approaching 1.
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Figure 2. Convergence of PSRF. Every line shows the PSRF of one specific parameter converging to 1
with transitions when we fit the data of mRNA-1273.

The parameter estimation results of the four models are shown in Table 2 with
respect to mRNA-1273. For model selection, we calculate the corresponding AICc
values by using the formula (4.1) and corroborate them with the BIC values, and
the results are shown in Table 3. Obviously, correlation values of Model 3 are the
smallest among the four models, whether the AICc value or the BIC value is used as
the criterion for model selection. This suggests that Model 3 is the most suitable of
the four models for describing the dynamics of mRNA vaccination and the clinical
data collected. In addition, this result also suggests that the killing of infected cells
by memory cells and the promotion of immune cells and neutralizing antibodies
by memory cells during mRNA vaccination are not significant and can be ignored.
On the other hand, the fact that Model 4 is not selected implies that the role of
the body’s inherent innate immunity in this process cannot be ignored. The blue
curves in Figure 3 are the fitting results of the selected model Model 3 under the
optimal parameters, and the upper arrows represent the time points of vaccination.
Finally, we perform the same process on the data of the mRNA vaccine BNT162b2
from Pfizer/BioNTech and obtain results consistent with the vaccine mRNA-1273.
The fitting results of the selected model Model 3 are shown by the brown curves
in Figure 3. The fitting results show that both vaccines can significantly increase
the numbers of immune cells and neutralizing antibodies, among which the increase
of CD8+ T cells, CD4+ T cells, and neutralizing antibodies are more obvious and
remain at high levels on day 181. This suggests that the vaccine can enhance the
immunity against SARS-CoV-2.

Also can be seen from Figure 3, different variables peak at different time points.
After the first vaccination of mRNA-1273, CD8+ T cells, CD4+ T cells, and neu-
tralizing antibodies respectively peak on day 21, day 19, and day 26, which shows
that the components of the immunity system are decreasing on day 27, the day one
gets the second vaccination. So, this may mean one can be vaccinated a little ear-
lier. By contrast, the day one is vaccinated with the second BNT162b2 is generally
the day the effect of vaccination peaks. The time points of the two vaccinations are
better articulated than mRNA-1273.
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Figure 3. Fitting Results with GWMCMC of Model 3. The first vaccination is injected on day 0
and the second vaccination is injected on day 27. The blue lines and the brown dashed lines show the
fitting results of the data of mRNA-1273 and BNT162b2 respectively. Squares and diamonds represent
the processed data of two vaccines. The arrows mark the time points one is injected.

Table 3. List of AICc and BIC for Different Sub-models of mRNA-1273.

Model Number of Parameters AICc BIC Maximum Likelihood

Model 1 26 376.73 418.04 2.86e-84

Model 2 25 377.82 417.88 1.63e-84

Model 3 14 263.73 277.74 6.27e-59

Model 4 13 318.00 331.35 1.01e-70

5. Practical identifiability analysis

The structural identifiability discussed above is based on the premise that the data
are free of noise. In reality, data are inevitably subject to measurement and pro-
cessing errors, which leads to the question of practical identifiability, i.e., the effect
of noise on fitting and estimation. A model whose structure is identifiable may not
be practically identifiable [36]. Therefore, we simulate by exerting different levels of
noise on the data to investigate the effect of noise on the system. We assume that
the data have two types of noise: Gaussian error with standard deviations of 10%
and 20%, respectively. We take the optimal parameters obtained by GWMCMC as
the real values, add 1000 sets of random errors to the dynamics curves of variables
Tk, Th, A as the error dataset, and then fit them with GWMCMC again to obtain
the optimal parameters with the noisy data. By calculating the average relative
error (ARE) between these 1000 sets of optimal parameters and the true values, we
present the results in Table 4.

ARE values can be used to quantitatively determine whether each parameter is
practically identifiable or not. Obviously, for a practically identifiable parameter,
the ARE value should be close to 0, and as the error increases, the ARE value
increases. If the ARE of a parameter is large for a small error, it means that the error
in the data causes the parameter estimate to be unreliable, i.e., the parameter is
sensitive to changes in the data, and then the parameter is practically unidentifiable.
However, although the ARE value can be used to analyze the practical identifiability,
there is no universal standard, so different standards will lead to different results.
Here, we refer to the method in [36], considering a parameter to be practically
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Table 4. List of AREs of Parameters for Model 3 with Measurement Error Levels 10% and 20%. *ARE
> noise.

Parameter True Value N(0, 10%) N(0, 20%) Parameter True Value N(0, 10%) N(0, 20%)

p 0.02 0.07 0.16 αB 0.04 0.08 0.24*

λ 0.03 0.08 0.17 δI 0.03 0.07 0.14

β 0.04 0.15* 0.22* δA 0.04 0.05 0.05

θ1 0.02 0.14* 0.25* ωA 0.04 0.18* 0.27*

θ2 0.02 0.10 0.15 ωk 0.02 0.08 0.17

αk 0.01 0.07 0.16 ωh 0.03 0.09 0.17

αh 0.03 0.06 0.09 ωB 0.01 0.10 0.15

identifiable when the ARE value is not larger than the noise error of our simulation,
and vice versa, it is considered practically unidentifiable.

In addition to the two errors we mentioned, we also simulated the noise-free case
(assuming the noise is 0 and repeating the previous fitting procedure). As can be
seen from Table 4, for the true values, the maximum ARE value for each param-
eter is 0.04. Considering the small number of iterations here (1 million steps), we
consider this to be low enough, which suggests that the parameters can be uniquely
determined for the noise-free data, which confirms that Model 3 is globally identi-
fiable. In addition, we find that the parameter αB is practically identifiable at 10%
noise, but becomes unidentifiable when the noise increases to 20%. Unfortunately,
the parameters β, θ1, ωA are practically unidentifiable at both noise levels. The re-
maining parameters are practically identifiable at both noise levels. To investigate
how much these practically unidentifiable parameters affect the fit, we perform the
following numerical simulation. The practically identifiable parameters are fixed to
the optimal values fitted by Model 3 (see Table 2), and the four unidentifiable
parameters αB , β, θ1, ωA are added with 10% and 20% standard deviations of nor-
mal distribution noise. We randomly sample parameters 10 thousand times each,
and then we obtain the dynamics curves and their 95% confidence intervals of each
variable in Model 3, which are shown in Figure 4. As can be seen from the figure,
most of the variables maintain a narrow range under these 10 thousand samples,
and only two variables, infected cells II and antibodies, have a wider range of con-
fidence intervals, which are within acceptable limits. This indicates that our fitting
results are generally reliable.

6. Parameter sensitivity analysis and virtual exper-
iments

6.1. Parameter sensitivity analysis

In the previous section, we find that some of the parameters are practically uniden-
tifiable. This suggests that errors in observations can lead to increased errors in
parameter estimation, making the fit less robust. Conversely, the question of how
much a change in a parameter may affect the predicted outcome is the parameter
sensitivity analysis. This helps us to find the key parameters in the model that
have a greater impact on the results, and through this process we can see which
biological factors play a more important role in vaccination and the human immune
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Figure 4. Effects of Practically Unidentifiable Parameters on the System. The red lines show the fitting
results of the data of mRNA-1273. Squares represent the processed data. The shades are the 95% CIs
with some parameters exerted noise of 10% and 20%. The arrows mark the time points one is injected.

response. In general, we can fix other factors and change a single factor, which is
called local sensitivity analysis, but in biological processes, the factors are usually
very uncertain, and they may be related to each other. Therefore, we use global
sensitivity analysis [23] to study the sensitivity of models to the parameters more
comprehensively.

We use Latin Hypercube Sampling (LHS) [26] to sample the parameters, and
Partial Rank Correlation Coefficient (PRCC) values to perform the sensitivity anal-
ysis, to find out the parameters that most affect the model. The results of the
sensitivity analysis are shown in Figure 5. It can be seen that the three important
immune variables, CD8+ T cells Tk, CD4+ T cells Th and antibodies A are insen-
sitive to the parameters p, αB , δA, ωB , whereas they are sensitive to the parameters
λ, θ1, θ2, αk, ωk. These parameters are mostly related to CD8+ T cells and antigens,
so we can start from these two aspects to resist the viral infection process. In addi-
tion, we find that the parameters αh, ωh associated with CD4+ T cells only have a
significant effect on neutralizing antibodies, suggesting that although the CD4+ T
cells may not change much after vaccination, it is enough to effectively impact on
the production of neutralizing antibodies.

6.2. Injection of the booster

One advantage of the mathematical model is that the experiments can be carried
on easily with little cost. The effects of different strategies for epidemics can be
compared directly [16,38]. For the real vaccinations with the mRNA vaccines against
SARS-CoV-2, the first vaccination is usually injected on day 0, followed by a second
vaccination on day 27. The body then produces a great quantity of antibodies that
last for a long period. Subsequent vaccinations are often called “boosters” and are
often given at intervals of no less than 6 months.

Next, we simulate the viral and immune dynamics in vivo after the initial two
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Figure 5. Sensitivity Analysis. PRCCs for Tk, Th, A with all parameters. LHS is done 1 thousand
times. ∗p < 0.05,∗∗ p < 0.01.

vaccinations followed by booster injections at 6-month and 12-month intervals. Fig-
ure 6 is a numerical simulation based on the fitting results of Table 2 and Model
3 (Results of BNT162b2 are shown in Appendix C). The arrows above the subfig-
ures mark the time points one is injected. We find that after a period after the
first two vaccinations, the immune cells CD8+ T cells (Subfigure D) and CD4+ T
cells (Subfigure E) reach certain stable states with time, whereas the neutralizing
antibodies (Subfigure F) show a continuous decline, and if the individual does not
receive new vaccinations, the level of antibodies eventually drops to 0 after about 1
thousand days. Obviously, this simulation result is consistent with the theoretical
result in Theorem 2.1. However, once the individual receives a booster injection 6
months later, all infected cells (Subfigure A, B), antigens (Subfigure C), immune
cells (Subfigure D, E), and neutralizing antibodies (Subfigure F) increase rapidly to
a peak a little lower than that of the second vaccination and then show a decreasing
trend. Infected cells and antigens decrease the fastest, immune cells the second
fastest, and neutralizing antibodies the slowest. The dynamics of the system are
similar when an individual is vaccinated again after 12 months. However, according
to Theorem 2.1, if an individual does not receive a new vaccination, the antibody
level will eventually drop to 0 after a certain period. Therefore, boosters do main-
tain high levels of neutralizing antibodies for some time. Compared to neutralizing
antibodies, boosters do not stimulate other immune cells as much. There are two
hypotheses: one is that the immune system has already memorized the S proteins
from the vaccine, so when the S proteins reappear in vivo, they will be bound by
the rapidly produced antibodies; the other is that the antibody level is already rela-
tively high, and the antibodies produced previously can bind to the S proteins. Both
suggest that the antibodies are effective in stopping the viruses from proliferating
and also further support the previous results of the parameter sensitivity analysis.
In conclusion, we believe that the boosters can effectively enhance the resistance of
the human body to viruses.
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Figure 6. Injection of the Booster. The red lines show the dynamics after the boosters of mRNA-1273.
The shades are the 95% CIs with some parameters exerted noise of 10% and 20%. The arrows mark the
time points one is injected.

7. Discussion

Mathematical models are an effective means of analyzing biological processes. This
paper investigates the microdynamics of the mRNA vaccine in vivo. We first de-
velop a model describing the dynamics of infection in vivo after vaccination based
on the characteristics of mRNA vaccines. Unfortunately, models of vaccines are
rarely studied, and there is little literature to draw on. We propose four sub-models
based on biological meanings and use the GWMCMC for data fitting and parameter
estimation. Although the parameter space is very large, the parallel computation
of the GWMCMC can help the iterations converge quickly. We obtain the opti-
mal parameters and their 95% confidence intervals and calculate their AICc and
BIC, which show that Model 3 is the best under both criteria, i.e., the roles of
memory cells can be ignored temporarily in the immunization induced by the first
two vaccinations, and the innate immune mechanism cannot be ignored. We also
calculate the PSRF to determine the convergence, and the results show that the
Markov Chain can be considered to have reached convergence.

Assuming that the observed data are free of noise, the predictions of the struc-
turally unidentifiable and locally identifiable cases may differ significantly, even
though models with different parameter combinations can fit the observations well.
To make the results more robust, structural identifiability analysis of the proposed
system is critical, but it is neglected in many immunological modeling processes.
We analyze the identifiability of the system using differential algebra. Based on
immunological clinical data, we show that all four systems are either globally iden-
tifiable or if only one parameter needs to be known, the rest of the parameters
are globally identifiable. This theoretically supports the reliability of parameter
estimation by GWMCMC. The GWMCMC is a global optimization method that
searches through the parameter space to obtain the posterior distribution of the
parameters to maximize the fit to the data. Then we take these fitting results as
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the basis for model selection for the four systems and find that Model 3 is the best
model among them for the collected clinical data, i.e., this model is the most suit-
able for explaining the interaction process between mRNA vaccines and the immune
system. This suggests that the roles of memory cells in killing infected cells and
promoting immune cells and neutralizing antibodies during mRNA vaccination are
not significant and can be ignored in the modeling process. On the other hand, the
fact that Model 4 is not selected suggests that the innate immunity of the human
body plays a necessary role in this process. We first analyze the optimal model
theoretically, calculate the equilibria, and show that the disease-free equilibrium
E1 is globally asymptotically stable, while the boundary equilibria are unstable.
This indicates that after vaccination, infected cells and antigens are no longer alive,
and they are all killed due to the immune system or apoptosis. This supports the
theoretical safety of mRNA vaccines.

Mathematical models play an important role in medical research. Of course,
any nonlinear dynamic model cannot take into account all factors and is only an
approximate representation of the actual situation. A good dynamic model can
better describe the basic laws of the research objects. In addition, due to the
complexity of the immune system, experimental immunologists often hold different
views and interpretations on some of the phenomena, in which case theoretical
analysis can help to determine which view or interpretation is more plausible and
to know which factors play a major role. Sometimes the analysis and computation
of theoretical models can lead to interesting results, which may predict a discovery.
It is of course the most desirable. Even if this is not the case, it can be used as
a reference for medical scientists to plan their experiments. Whether the result is
positive or negative, we consider it valuable.

Appendix A. Model of the mRNA vaccine

The biological meanings of the variables in the system (2.1) and the system (2.2)
are described as follows:

1. The equation for the variable S describes the dynamics of the antigens. When
a vaccine is injected, it can only be produced by I1 (the first term on the
right side of the equation). Some of these antigens are neutralized by the
neutralizing antibodies A that substitute for ACE2 receptors on the surface
of the target cells (the second term), some are killed by the innate immune
system [8], such as phagocytosis by macrophages, etc. (θ2S in the third term),
the rest may infect healthy cells (θ1S).

2. The equation for the variable I1 describes the dynamics of the target cells
entered by the mRNAs of the S proteins in the vaccine. We characterize the
injection process of a multi-shot vaccine in the form of an impulsive differential
equation. This type of infected target cells produce the antigens S. The first
term on the right-hand side of the equation describes the killing of I1 by
immune cells, the CD8+ T cells Tk and the memory CD8+ T cells Tkm, while
the second term describes the natural apoptosis of these target cells.

3. The equation for the variable I2 describes the dynamics of the target cells
infected by the antigens. We assume that healthy target cells are infected by
the antigens S produced by I1. The intact viruses utilize the S proteins on
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their surfaces to bind to the ACE2 receptors on the surfaces of the target cells,
thereby opening the target cells and injecting the mRNAs of the intact viruses
to replicate the viruses [11]. Therefore, as long as the immune system can deal
with the S proteins, for example, by producing neutralizing antibodies that
bind to these S proteins instead of ACE2 receptors, we can prevent the viruses
from reproducing in vivo. So in an mRNA vaccine, the S proteins are the
antigens. Since the mRNAs in an mRNA vaccine are only the mRNAs of the
S proteins and not the mRNAs of the complete viruses, target cells infected
with the S proteins will only stimulate the immune system but will not be able
to produce complete viral particles. The first term on the right side of the
equation describes the infection of healthy target cells by the antigens S, and
the second term characterizes the killing of infected target cells by the CD8+

T cells Tk and the memory CD8+ T cells Tkm, and the third term represents
the natural apoptosis of infected target cells.

4. The equations for the variables Tk, Th and B describe the dynamics of the
CD8+ T cells, the CD4+ T cells and the B lymphocytes, respectively. The
first term of each equation describes the growth of the immune component,
while the second term characterizes the stimulation of the proliferation of each
component by the infected target cells (I1 and I2), the antigens S, and the
CD4+ T cells, respectively.

5. The equation for the variable A describes the dynamics of neutralizing anti-
bodies. The first term describes the interaction of the lymphocytes B and the
memory lymphocytes Bm with the antigens S stimulating the production of
more neutralizing antibodies A. The second term describes the consumption
of neutralizing antibodies as a result of binding to the antigens S, and the
third term represents the natural apoptosis of neutralizing antibodies.

6. The equations for the variables Tkm, Thm and Bm represent the memory CD8+

T cells, the memory CD4+ T cells and the memory B cells respectively. The
first term of each equation describes the eventual transformation of a fraction
of lymphocytes into the corresponding memory lymphocytes, the second term
represents the rapid proliferation of the corresponding memory cells when
stimulated by infected target cells or antigens, and the third term represents
the natural apoptosis of the memory cells.

Here we have ignored other details and intermediate processes, such as the in-
volvement of plasma cells, antigen-presenting cells, etc. [17, 30]. For the sake of
practicality, it is also assumed that the vaccine is injected in a pulsatile manner. To
do this, we need to add the following conditions:

I1(τ+
i ) = I1(τi) + I1i, t = τi (i = 1, 2, . . .).

This equation represents the increase of I1 due to the injection of a new vaccine
at the moment of τi (i = 1, 2, . . .), where I1(τi) denotes the number of target cells
infected in the original system at the moment of τi, and I1i denotes the number of
target cells newly infected by the mRNAs of the S proteins in the newly injected
vaccine. The meanings of the parameters in the system (2.1) & (2.2) are summarized
in Table 5.

Considering the equilibria of the dynamic model of the vaccine in vivo. Letting
both (2.1) and (2.2) be 0, it is easy to know that there are 8 equilibria as follows:

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)



Studies on the interaction mechanism between... 2305

Table 5. Parameters of the System (2.1) & (2.2).

Parameter Biological Meaning Prior Ranges/Values Source

p Proliferation rate of antigens [1.9e2, 2.3e2] Estimated

λ Killing rate of CD8+ T cells against infected cells [7e− 2, 1.5e− 1] Estimated

β Binding rate of antibodies and antigens [7e− 14, 1.5e− 13] Estimated

θ1 Infection rate of cells by antigens [2e− 2, 6e− 1] Estimated

θ2 Killing rate of innate immunity against antigens [1.5e− 1, 6e− 1] Estimated

αk Stimulation of CD8+ T cells by infected cells [4e− 7, 1.2e− 6] Estimated

αh Stimulation of CD4+ T cells by antigens [2e− 6, 5e− 6] Estimated

αB Stimulation of B cells by antigens and CD4+ T cells [8e− 8, 3.5e− 6] Estimated

δI Apoptosis rate of infected cells [8e− 3, 1.4e− 2] Estimated

δA Apoptosis rate of neutralizing antibodies [8e− 3, 1e− 1] Estimated

ωA Growth rate of neutralizing antibodies [2e2, 3e3] Estimated

ωk Growth rate of CD8+ T cells [2e− 1, 5e− 1] Estimated

ωh Growth rate of CD4+ T cells [8e− 3, 3e− 2] Estimated

ωB Growth rate of B cells [7.5e− 2, 1.2e− 1] Estimated

πk Carrying capacity of CD8+ T cells 0.3 [21,39]

πh Carrying capacity of CD4+ T cells 9 [21,39]

πB Carrying capacity of B cells 211 [28]

γk Differentiation rate of memory CD8+ T cells / /

γh Differentiation rate of memory CD4+ T cells / /

γB Differentiation rate of memory B cells / /

ηk Proliferation rate of memory CD8+ T cells / /

ηh Proliferation rate of memory CD4+ T cells / /

ηB Proliferation rate of memory B cells / /

δk Apoptosis rate of memory CD8+ T cells / /

δh Apoptosis rate of memory CD4+ T cells / /

δB Apoptosis rate of memory B cells / /

µk Ratio of effect of memory CD8+ T cells / /

µh Ratio of effect of memory CD4+ T cells / /

µB Ratio of effect of memory B cells / /

=

(
0, 0, 0, πk, πh, πB , 0,

γkπk
δk

,
γhπh
δh

,
γBπB
δB

)T
,

E2(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)

=

(
0, 0, 0, 0, πh, πB , 0, 0,

γhπh
δh

,
γBπB
δB

)T
,

E3(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, 0, πB , 0,

γkπk
δk

, 0,
γBπB
δB

)T
,

E4(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, πh, 0, 0,

γkπk
δk

,
γhπh
δh

, 0

)T
,

E5(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, πk, 0, 0, 0,

γkπk
δk

, 0, 0

)T
,
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E6(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, 0, πh, 0, 0, 0,

γhπh
δh

, 0

)T
,

E7(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) =

(
0, 0, 0, 0, 0, πB , 0, 0, 0,

γBπB
δB

)T
,

E8(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T
.

We obtain the following conclusion about these equilibria.
Theorem 2.1. In the case of a single vaccination, the disease-free equilibrium of
four systems of vaccination Model 1-Model 4

E1(I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)

=

(
0, 0, 0, πk, πh, πB , 0,

γkπk
δk

,
γhπh
δh

,
γBπB
δB

)T
is unconditionally globally asymptotically stable, while the other equilibria Ei(i =
2, . . . , 8) are unstable.
Proof. First, we prove it is locally asymptotically stable. For simplicity, denote

Z = (I1, I2, S, Tk, Th, B,A, Tkm, Thm, Bm)T ,

Y = (I∗1 , I
∗
2 , S

∗, T ∗k , T
∗
h , B

∗, A∗, T ∗km, T
∗
hm, B

∗
m)T = Z +E1,

and we get a transformed model

dI∗1
dt

= −λπkI∗1 −
λµkγkπk

δk
I∗1 − δII∗1 − λµkI∗1T ∗km − λI∗1T ∗k ,

dI∗2
dt

= −λπkI∗2 −
λµkγkπk

δk
I∗2 − δII∗2 + θ1S

∗ − λµkI∗2T ∗km − λI∗2T ∗k ,

dS∗

dt
= pI∗1 − θ1S

∗ − θ2S
∗ − βS∗A∗,

dT ∗k
dt

= αkI
∗
1 + αkI

∗
2 − ωkπkT ∗k − ωkT ∗2k ,

dT ∗h
dt

= αhS
∗ − ωhπhT ∗h − ωhT ∗2h ,

dB∗

dt
= αBπhS

∗ +
αBµhγhπh

δh
S∗ − ωBπBB∗ − ωBB∗2 + αBµhS

∗T ∗hm

+αBS
∗T ∗h ,

dA∗

dt
= ωAπBS

∗ +
ωAµBγBπB

δB
S∗ − δAA∗ + ωAµBS

∗B∗m + ωAS
∗B∗ − βS∗A∗,

dT ∗km
dt

=
ηkγkπk
δk

I∗1 +
ηkγkπk
δk

I∗2 + γkT
∗
k − δkT ∗km + ηkT

∗
kmI

∗
1 + ηkT

∗
kmI

∗
2 ,

dT ∗hm
dt

=
ηhγhπh
δh

S∗ + γhT
∗
h − δhT ∗hm + ηhT

∗
hmS

∗,

dB∗m
dt

=
ηBγBπB
δB

S∗ + γBB
∗ − δBB∗m + ηBB

∗
mS
∗.

(8.1)



Studies on the interaction mechanism between... 2307

So the disease-free equilibrium E1 of the system (2.1) & (2.2) is equivalent to
the equilibrium 0 of the system (8.1), and they have the same stability. It is easy
to write the coefficient matrix of the linearized system of the system (8.1) at 0 as
follows:

−a1 0 0 0 0 0 0 0 0 0

0 −a1 θ1 0 0 0 0 0 0 0

p 0 −(θ1 + θ2) 0 0 0 0 0 0 0

αk αk 0 −ωkπk 0 0 0 0 0 0

0 0 αh 0 −ωhπh 0 0 0 0 0

0 0 a2 0 0 −ωBπB 0 0 0 0

0 0 a3 0 0 0 −δA 0 0 0
ηkγkπk
δk

ηkγkπk
δk

0 γk 0 0 0 −δk 0 0

0 0
ηhγhπh
δh

0 γh 0 0 0 −δh 0

0 0
ηBγBπB
δB

0 0 γB 0 0 0 −δB


where, a1 = λπk + λµkγkπk

δk
+ δI , a2 = αBπh + αBµhγhπh

δh
, a3 = ωAπB + ωAµBγBπB

δB
.

We can get its characteristic equation

(λ∗ + a1)2(λ∗ + θ1 + θ2)(λ∗ + ωkπk)(λ∗ + ωhπh)(λ∗ + ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0.

Since the parameters are all positive real numbers, the eigenvalues are all nega-
tive real numbers, so it can be known that the zero solution of (8.1) is locally
asymptotically stable, i.e., the disease-free equilibrium E1 of (2.1) & (2.2) is locally
asymptotically stable.

Then we prove that E1 is globally attractive. Denote the space

U = R∗ ×R∗ ×R∗ ×R+ ×R+ ×R+ ×R∗ ×R∗ ×R∗ ×R∗,

where, R+ denotes all positive real numbers, and R∗ = R+ ∪ {0}. The following
shows that the domain of attraction of E1 is U by analyzing the equations one by
one of the original system (2.1) & (2.2).

First, we take arbitrary x(t0) ∈ U, and denote x(ti) = (I
(i)
1 , I

(i)
2 , S(i), T

(i)
k , T

(i)
h ,

B(i), A(i), T
(i)
km, T

(i)
hm, B

(i)
m )T the point when t = ti when the system started from

x(t0).

I Considering
dI1
dt

= −δII1 − λI1(Tk + µkTkm) ≤ −δII1.

Then,

I1 ≤ I(0)
1 e−δI(t−t0) , x1(t).

So, for x1, for ∀ε1 ∈ (0, I
(0)
1 ],∃t1 = t0− 1

δI
ln ε1

I
(0)
1

≥ t0, s.t.∀t > t1, ||x1(t)|| < ε1.

Also, because dI1
dt |I1=0 = 0, we can know I1 ≥ 0, so, ||I1(t)|| < ε1 when t > t1.
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II When t ≥ t1, considering

dS

dt
= pI1 − (θ1 + θ2)S − βSA ≤ pε1 − (θ1 + θ2)S.

Then,

S ≤ pε1
θ1 + θ2

+ (S(1) − pε1
θ1 + θ2

)e−(θ1+θ2)(t−t1)

≤ pε1
θ1 + θ2

+ S(1)e−(θ1+θ2)(t−t1) , x2(t).

So, for x2, for ∀ε2 > 0, we define arbitrary small positive numbers ε1 <

min{ (θ1+θ2)ε2
p , I

(0)
1 }, and we get ∃t2 = t1 − 1

θ1+θ2
ln( ε2

S(1) − pε1
S(1)(θ1+θ2)

) >

t1, s.t.∀t > t2, ||x2(t)|| < ε2. Obviously, S ≥ 0, so ||S(t)|| < ε2 when t > t2.

III When t ≥ t2, considering

dI2
dt

= θ1S − δII2 − λI2(Tk + µkTkm) ≤ θ1ε2 − δII2.

Then,

I2 ≤
θ1ε2
δI

+ (I
(2)
2 − θ1ε2

δI
)e−δI(t−t2) ≤ θ1ε2

δI
+ I

(2)
2 e−δI(t−t2) , x3(t).

So, for x3, for ∀ε3 > 0, we define arbitrary small positive numbers ε2 <
δIε3
θ1
, ε1 < min{ (θ1+θ2)ε2

p , I
(0)
1 }, and we get ∃t3 = t2 − 1

δI
ln( ε3

I
(2)
2

− θ1ε2
I
(2)
2 δI

) >

t2, s.t.∀t > t3, ||x3(t)|| < ε3. Obviously, I2 ≥ 0, so ||I2(t)|| < ε3 when t > t3.

IV When t ≥ t3, considering

dTk
dt

= αk(I1 + I2) + ωkπkTk − ωkT 2
k ≤ αk(ε1 + ε3) + ωkπkTk − ωkT 2

k .

Then,

Tk ≤
tanh

[
(t−t3)G1

2 + arctanh

(
ωk(2T

(3)
k −πk)

G1

)]
G1 + ωkπk

2ωk
, x

(u)
4 (t),

where, G1 =
√
ωk(ωkπ2

k + 4αk(ε1 + ε3)).

It is easy to know x
(u)
4 (t)− πk ≤ G1+ωkπk

2ωk
− πk.

On the other hand, considering

dTk
dt
≥ ωkπkTk − ωkT 2

k .

Then,

Tk ≥
T

(3)
k πke

ωkπk(t−t3)

T
(3)
k eωkπk(t−t3) + πk − T (3)

k

, x
(l)
4 (t).

Obviously, ∀ε∗4 > 0,∃T4 > t3, s.t.∀t > T4, |eωkπk(t−t3)| > 1
ε∗4

and

| tanh

[
(t−t3)G1

2 + arctanh

(
ωk(2T

(3)
k −πk)

G1

)]
− 1| < ε∗4.
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So, for x
(u)
4 and x

(l)
4 , for ∀ε4 > 0, we define arbitrary small positive numbers

ε1 + ε3 <
ωkε4
αk

(πk + ε4), ε2 <
δIε3
θ1
, ε1 < min{ (θ1+θ2)ε2

p , I
(0)
1 }, and we get ∃t4 >

T4, s.t.∀t > t4, ||x(u)
4 (t) − πk|| < ε4, ||x(l)

4 (t) − πk|| < ε4. so ||Tk(t) − πk|| < ε4
when t > t4.

V When t ≥ t4, considering

dTh
dt

= αhS + ωhπhTh − ωhT 2
h ≤ αhε2 + ωhπhTh − ωhT 2

h .

Then,

Th ≤
tanh

[
(t−t4)G2

2 + arctanh

(
ωh(2T

(4)
h −πh)

G2

)]
G2 + ωhπh

2ωh
, x

(u)
5 (t),

where, G2 =
√
ωh(ωhπ2

h + 4αhε2).

It is easy to know x
(u)
5 (t)− πh ≤ G2+ωhπh

2ωh
− πh.

On the other hand, considering

dTh
dt
≥ ωhπhTh − ωhT 2

h .

Then,

Th ≥
T

(4)
h πhe

ωhπh(t−t4)

T
(4)
h eωhπh(t−t4) + πh − T (4)

h

, x
(l)
5 (t).

Similar to IV, for x
(u)
5 and x

(l)
5 , for ∀ε5 > 0, we define arbitrary small positive

numbers ε4 > 0, ε1 + ε3 <
ωkε4
αk

(πk + ε4), ε2 < min{ωhε5αh
(πh + ε5), δIε3θ1

}, ε1 <
min{ (θ1+θ2)ε2

p , I
(0)
1 }, and we get ∃t5 > t4, s.t.∀t > t5, ||x(u)

5 (t) − πh|| < ε5,

||x(l)
5 (t)− πh|| < ε5. So ||Th(t)− πh|| < ε5 when t > t5.

VI When t ≥ t5, considering

dTkm
dt

= γkTk− δkTkm+ηkTkm(I1 + I2) ≤ γk(πk+ ε4)− (δk−ηk(ε1 + ε3))Tkm.

Then,

Tkm ≤
γk(πk + ε4)

δk − ηk(ε1 + ε3)
+ (T

(5)
km −

γk(πk + ε4)

δk − ηk(ε1 + ε3)
)e−(δk−ηk(ε1+ε3))(t−t5)

, x
(u)
6 (t).

On the other hand, considering

dTkm
dt
≥ γk(πk − ε4)− δkTkm.

Then,

Tkm ≥
γk(πk − ε4)

δk
+ (T

(5)
km −

γk(πk − ε4)

δk
)e−δk(t−t5) , x

(l)
6 (t).
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So, for x
(u)
6 and x

(l)
6 , for ∀ε6 > 0, we define arbitrary small positive num-

bers ε5 > 0, γk[δkε4+πkηk(ε1+ε3)]
δk[δk−ηk(ε1+ε3)] < ε6, ε4 <

δkε6
γk

, ε1 + ε3 < min{ δkηk ,
ωkε4
αk

(πk +

ε4)}, ε2 < min{ωhε5αh
(πh + ε5), δIε3θ1

}, ε1 < min{ (θ1+θ2)ε2
p , I

(0)
1 }, and we get

∃t6 > t5, s.t.∀t > t6, ||x(u)
6 (t) − γkπk

δk
|| < ε6, ||x(l)

6 (t) − γkπk
δk
|| < ε6. So

||Tkm(t)− γkπk
δk
|| < ε6 when t > t6.

VII When t ≥ t6, considering

dThm
dt

= γhTh − δhThm + ηhThmS ≤ γh(πh + ε5)− (δh − ηhε2)Thm.

Then,

Thm ≤
γh(πh + ε5)

δh − ηhε2
+ (T

(6)
hm −

γh(πh + ε5)

δh − ηhε2
)e−(δh−ηhε2)(t−t6) , x

(u)
7 (t).

On the other hand, considering

dThm
dt

≥ γh(πh − ε5)− δhThm.

Then,

Thm ≥
γh(πh − ε5)

δh
+ (T

(6)
hm −

γh(πh − ε5)

δh
)e−δh(t−t6) , x

(l)
7 (t).

So, for x
(u)
7 and x

(l)
7 , for ∀ε7 > 0, we define arbitrary small positive numbers

γh[δhε5+πhηhε2]
δh(δh−ηhε2) < ε7, ε5 <

δhε7
γh

, γk[δkε4+πkηk(ε1+ε3)]
δk[δk−ηk(ε1+ε3)] < ε6, ε4 <

δkε6
γk

, ε1 + ε3 <

min{ δkηk ,
ωkε4
αk

(πk + ε4)}, ε2 < min{ δhηh ,
ωhε5
αh

(πh + ε5), δIε3θ1
}, ε1 < min{ (θ1+θ2)ε2

p ,

I
(0)
1 }, and we get ∃t7 > t6, s.t.∀t > t7, ||x(u)

7 (t)− γhπh
δh
|| < ε7, ||x(l)

7 (t)− γhπh
δh
|| <

ε7. So ||Thm(t)− γhπh
δh
|| < ε7 when t > t7.

VIII When t ≥ t7, considering

dB

dt
= αBS(Th + µhThm) + ωBπBB − ωBB2

≤ αBε2(πh + ε5 + µh(
γhπh
δh

+ ε7)) + ωBπBB − ωBB2.

Then,

B ≤ πB
2

+
1

2ωBδh
tanh

[
(t− t7)G3

2δh
+ arctanh

(
δhωB(2B(7) − πB)

G3

)]
G3

, x
(u)
8 (t),

where, G3 =
√
ωBδh(4αBε2(δh(µhε7 + πh + ε5) + µhπhγh) + ωBπ2

Bδh).
On the other hand, considering

dB

dt
≥ ωBπBB − ωBB2.

Then,

B ≥ B(7)πBe
ωBπB(t−t7)

B(7)eωBπB(t−t7) + πB −B(7)
, x

(l)
8 (t).
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So, for x
(u)
8 and x

(l)
8 , for ∀ε8 > 0, we define arbitrary small positive numbers

αBε2
ωBδh

[δh(µhε7 + πh + ε5) + µhπhγh] < ε8(πB + ε8), γh[δhε5+πhηhε2]
δh(δh−ηhε2) < ε7, ε5 <

δhε7
γh

, γk[δkε4+πkηk(ε1+ε3)]
δk[δk−ηk(ε1+ε3)] < ε6, ε4 <

δkε6
γk

, ε1 +ε3 < min{ δkηk ,
ωkε4
αk

(πk+ε4)}, ε2 <
min{ δhηh ,

ωhε5
αh

(πh + ε5), δIε3θ1
}, ε1 < min{ (θ1+θ2)ε2

p , I
(0)
1 }, and we get ∃t8 >

t7, s.t.∀t > t8, ||x(u)
8 (t)− πB || < ε8, ||x(l)

8 (t)− πB || < ε8. So ||B(t)− πB || < ε8
when t > t8.

IX When t ≥ t8, considering

dBm
dt

= γBB − δBBm + ηBBmS ≤ γB(πB + ε8)− (δB − ηBε2)Bm.

Then,

Bm ≤
γB(πB + ε8)

δB − ηBε2
+ (B(8)

m −
γB(πB + ε8)

δB − ηBε2
)e−(δB−ηBε2)(t−t8) , x

(u)
9 (t).

On the other hand, considering

dBm
dt
≥ γB(πB − ε8)− δBBm.

Then,

Bm ≥
γB(πB − ε8)

δB
+ (B(8)

m −
γB(πB − ε8)

δB
)e−δB(t−t8) , x

(l)
9 (t).

So, for x
(u)
9 and x

(l)
9 , for ∀ε9 > 0, we define arbitrary small positive num-

bers γB [δBε8+πBηBε2]
δB(δB−ηBε2) < ε9, ε8 <

δBε9
γB

, αBε2[δh(µhε7+πh+ε5)+µhπhγh]
ωBδh

< ε8(πB +

ε8), γh[δhε5+πhηhε2]
δh(δh−ηhε2) < ε7, ε5 < δhε7

γh
, γk[δkε4+πkηk(ε1+ε3)]

δk[δk−ηk(ε1+ε3)] < ε6, ε4 < δkε6
γk

, ε1 +

ε3 < min{ δkηk ,
ωkε4
αk

(πk + ε4)}, ε2 < min{ δBηB ,
δh
ηh
, ωhε5αh

(πh + ε5), δIε3θ1
}, ε1 <

min{ (θ1+θ2)ε2
p , I

(0)
1 }, and we get ∃t9 > t8, s.t.∀t > t9, ||x(u)

9 (t) − γBπB
δB
|| <

ε9, ||x(l)
9 (t)− γBπB

δB
|| < ε9. So ||Bm(t)− γBπB

δB
|| < ε9 when t > t9.

X When t ≥ t9, considering

dA

dt
= −δAA−βSA+ωAS(B+µBBm) ≤ ωAε2(πB+ε8+µB(

γBπB
δB

+ε9))−δAA.

Then,

A ≤ G4

δA
+ (A(9) − G4

δA
)e−δA(t−t9) , x10(t).

where, G4 = ωAε2(πB + ε8 + µB(γBπBδB
+ ε9)).

So, for x10, for ∀ε10 > 0, we define arbitrary small positive numbers
ωAε2(πB+ε8+µB(

γBπB
δB

+ε9))

δA
< ε10,

γB [δBε8+πBηBε2]
δB(δB−ηBε2) < ε9, ε8 < δBε9

γB
,

αBε2[δh(µhε7+πh+ε5)+µhπhγh]
ωBδh

< ε8(πB + ε8), γh[δhε5+πhηhε2]
δh(δh−ηhε2) < ε7, ε5 < δhε7

γh
,

γk[δkε4+πkηk(ε1+ε3)]
δk[δk−ηk(ε1+ε3)] < ε6, ε4 < δkε6

γk
, ε1 + ε3 < min{ δkηk ,

ωkε4
αk

(πk + ε4)}, ε2 <

min{ δBηB ,
δh
ηh
, ωhε5αh

(πh + ε5), δIε3θ1
}, ε1 < min{ (θ1+θ2)ε2

p , I
(0)
1 }, and we get ∃t10 >

t9, s.t.∀t > t10, ||x10(t)|| < ε10. Obviously, A ≥ 0, so ||A(t)|| < ε10 when
t > t10.
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Finally, it can be shown that the domain of attraction of E1 is U. So, E1 is
unconditionally globally asymptotically stable.

For equilibria Ei(i = 2, . . . , 8), we also perform the corresponding translational
transformations of the original system, making the equilibria be 0 after transforma-
tions. Now we can calculate the characteristics equations of the coefficient matrices
of the linearized systems of the transformed systems at 0, and they are displayed
sequentially as follows:

(λ∗ + δI)
2(λ∗ + θ1 + θ2)(λ∗ − ωkπk)(λ∗ + ωhπh)(λ∗ + ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + a1)2(λ∗ + θ1 + θ2)(λ∗ + ωkπk)(λ∗ − ωhπh)(λ∗ + ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + a1)2(λ∗ + θ1 + θ2)(λ∗ + ωkπk)(λ∗ + ωhπh)(λ∗ − ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + a1)2(λ∗ + θ1 + θ2)(λ∗ + ωkπk)(λ∗ − ωhπh)(λ∗ − ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + δI)
2(λ∗ + θ1 + θ2)(λ∗ − ωkπk)(λ∗ + ωhπh)(λ∗ − ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + δI)
2(λ∗ + θ1 + θ2)(λ∗ − ωkπk)(λ∗ − ωhπh)(λ∗ + ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

(λ∗ + δI)
2(λ∗ + θ1 + θ2)(λ∗ − ωkπk)(λ∗ − ωhπh)(λ∗ − ωBπB)(λ∗ + δA)

× (λ∗ + δk)(λ∗ + δh)(λ∗ + δB) = 0,

where, a1 = λπk + λµkγkπk
δk

+ δI . Obviously, they all have at least one positive
characteristic root, so these equilibria are unstable.

Appendix B. Data

Z. Zhang’s team from the La Jolla Institute for Immunology (USA) injected two
groups of 30 adults primarily composed of white individuals with mRNA-1273 at
a dose of 100µg and BNT162b2 at a dose of 30µg, with the subjects receiving
two doses of the vaccine at about 4 weeks intervals [39]. The immune cells were
measured before the first vaccination, 2 weeks, 1 month, 3.5 months, and 6 months
after the first vaccination. The geometric mean of the number of subsets of immune
cells of interest was obtained. These numbers of subsets of the CD8+ T cells and
the CD4+ T cells are used in our fitting, and the results of the fitting are then used
to evaluate the different models to determine which one is more appropriate for this
clinical dataset.

R. R. Goel’s team from the University of Pennsylvania vaccinated 3 adult sub-
jects with mRNA-1273 and 42 adult subjects with BNT162b2. The interval between
the two vaccinations was 4 weeks. Clinical data were collected before the first dose,
2 weeks, 4 weeks, 5 weeks, 3 months, and 6 months after the first dose, and a time
series of the numbers of specific subsets of memory cells was given for each subject.
The team found that the mRNA vaccine induced durable immune memory. The
data of the memory CD8+ T cells, the memory CD4+ T cells, and the memory B
cells in our model were taken from the literature [13].
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Figure 7. Injection of BNT162b2 booster. The red lines show the dynamics after the boosters of
BNT162b2. The arrows mark the time points one is injected.

C. Lucas’s team from Yale University compared the impact of different variants
of the viruses on the immunity induced by the mRNA vaccine by vaccinating 18
test subjects between November 2020 and January 2021. 11 adult subjects were
vaccinated with mRNA-1273, and 7 adult subjects were vaccinated with BNT162b2.
Vaccination intervals were again 4 weeks. The team measured the IgG neutralizing
antibodies against S, S1, and RBD receptors before the first injection, and at 1,
4, 5, 8, and 70 days after the first injection. These antibodies are related to the
antigens in our model. Data on neutralizing antibodies involved in the four models
are taken from the literature [22].

Also, to make the results of the study more credible, we only chose the data
from subjects who had not been infected with SARS-CoV-2 in the literature, to
ensure that the data come from as similar a population as possible and that the
doses of the same vaccine are the same. Finally, we extracted the data and further
processes them so that they have the same units and scale.

Appendix C. Simulation of BNT162b2 booster

The simulation of BNT162b2 booster is shown in Figure 7.
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