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EXISTENCE OF THE GENERALIZED
EXPONENTIAL ATTRACTOR FOR COUPLED
SUSPENSION BRIDGE EQUATIONS WITH

DOUBLE NONLOCAL TERMS∗
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Abstract We investigate the long-time dynamical behavior of coupled sus-
pension bridge equations with double nonlocal terms by using the quasi-stable
methods. We first establish the well-posedness of the solutions by means of
the monotone operator theory. Secondly, the dissipation of solution semigroup
{S(t)}t≥0 is obtained, and then, the asymptotic smoothness of solution semi-
group {S(t)}t≥0 is verified by the energy reconstruction method; ultimately,
we prove the existence of global attractor. Finally, we show the existence of
the generalized exponential attractor.
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1. Introduction

The early suspension bridge equation is derived from the mathematical model of
one-dimensional simple support beam suspended by hangers, which describes the
deflection of the roadbed in the vertical plane, see [12,17]. As a new problem in the
field of nonlinear analysis in 1990, Lazer and McKenna [13] introduced the following
one-dimensional suspension bridge equationutt + EIuxxxx + δut + ku+ = W (x) + εf(x, t), (x, t) ∈ (0, L)× R+,

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ≥ 0.
(1.1)

In 1998, Ahmed and Harbi [1] made a rigorous mathematical analysis for the cou-
pled suspension bridge equations, which studied the dynamical behavior of system
under the different conditions, and gave the relevant simulation and physical inter-
pretation.

In recent years, a series of important researches have been made on long-time
dynamics of suspension bridge equations, see [2–5,8–11,14–16,18,19,21–23,25] and
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the references therein. Ma and Zhong [15] first obtained the global attractor of the
weak solution for coupled suspension bridge equations in 2005, and they further
studied the existence of strong solution and strong global attractor for the following
beam-string coupling system in [16]utt + αuxxxx + δ1ut + k(u− v)+ + fB(u) = hB(x), x ∈ [0, L],

vtt − βvxx + δ2vt − k(u− v)+ + fS(v) = hS(x), x ∈ [0, L]. (1.2)

Bochicchio, Giorgi and Vuk [5] proved the existence and regularity of the global
attractor with finite fractal dimension for the extensible suspension bridge equation

∂ttu+ ∂xxxxu+ (p− ‖∂xu‖2L2(0,1))∂xxu+ ∂tu+ k2u+ = f, (1.3)

where p ∈ R. Park and Kang [19] proved existence of global attractor for suspension
bridge equation with nonlinear damping. Wang and Ma obtained the existence of
pullback attractors for non-autonomous suspension bridge with time delay in [22],
Hajjej et al. investigate the stability of the energy for suspension bridge with
a localized structural damping in [9]. Recently, Zhao et al. [24] considered the
following extensible beam equations with nonlocal weak damping

utt −42u−m(‖∇u‖2)4u+ ‖ut‖put + f(u) = h, (x, t) ∈ Ω× R+, (1.4)

with two kinds of boundary conditions, namely, clamped or hinged boundary con-
ditions

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0, or u|∂Ω = 4u|∂Ω = 0.

And they showed the existence of solution and global attractor for (1.4) by the
monotone operator theory and the energy reconstruction method.

It is worth noting that most of the researches on the long-time behavior of the
solutions for suspension bridge equation only obtain the existence of the attractors,
while the fractal dimension of the attractors and the existence of exponential at-
tractor are relatively less. Based on the above-mentioned works, we are concerned
with the existence of global attractor with finite fractal dimension and generalized
exponential attractor for the following coupled suspension bridge equations with
double nonlocal termsutt + uxxxx + ‖ut‖put + k2(u− v)+ + ‖u‖qu = hB(x), (x, t) ∈ [0, L]× R+,

vtt − vxx + ‖vt‖pvt − k2(u− v)+ + ‖v‖qv = hS(x), (x, t) ∈ [0, L]× R+,

(1.5)

with initial-boundary value conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, t ∈ R+,

v(0, t) = v(L, t) = 0, t ∈ R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, L],

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ [0, L],

(1.6)
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where u = u(x, t), v = v(x, t) are the unknown function and denote the downward
deflections of the roadbed and the cable, respectively. ‖ut‖put, ‖vt‖pvt are the
nonlocal weak damping terms, ‖u‖qu, ‖v‖qv are the nonlocal functions, p, q ≥ 0,
and the simplest function to model the restoring force of the stays in the suspension
bridge can be denoted by multiplying the constant k2 by u−v, where k2 > 0 denotes
the spring coefficient, (u − v)+ = max{(u − v), 0}, namely, the expansion if u − v
is positive, but zero, if u− v is negative, corresponding to compression. Moreover,
the external forcing term hB , hS ∈ L2([0, L]) (here we can give two examples of
the external forcing term for this work: h(x) = cos( 2πx

L ), or h(x) = sin( 2πx
L ) ∈

L2([0, L])). For brevity, we denote Ω = [0, L], 42u = uxxxx, −4v = −vxx.
Our main object in this paper is to investigate the existence of global attractor

with finite fractal dimension and generalized exponential attractor for beam-string
coupled equations with double nonlocal functions. Since the coupling of the equa-
tions is reflected in the semilinear term (u − v)+, the double nonlocal terms don’t
effect the energy reconstruction method proposed in [24], so we don’t meet the new
difficulties in dealing with existence of global attractor. Different from [24], we
further obtain the finite fractal dimension of global attractor and the existence of
generalized exponential attractor.

This paper is organized as follows. In section 2, we recall several definition and
abstract results in theory of nonlinear dynamical systems that will be useful to dis-
cuss our problem, and obtain the well-posedness results by means of the monotone
operator theory and show that the problem (1.5)-(1.6) generates a dynamical sys-
tem (H, S(t)) in the space H = (H2(Ω) ∩ H1

0 (Ω)) × L2(Ω) × H1
0 (Ω) × L2(Ω). In

the next section, we give the dissipativity, and then prove the existence of global
attractor for (1.5)-(1.6). Finally, we obtain the existence of generalized exponential
attractor with finite fractal dimension in section 4.

Explaining in here, all C throughout the paper represent a normal numbers, and
each C is not exactly the same.

2. Preliminaries

Let V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩ H1

0 (Ω). Then we define the phase
space

H = V2 × V0 × V1 × V0,

and endowed with the norms

‖(u, ut, v, vt)‖H =

(
1

2
(‖4u‖2 + ‖ut‖2 + ‖∇v‖2 + ‖vt‖2)

) 1
2

,

where ‖∇·‖ and ‖4·‖ stand for the norm of V1 and V2, respectively. Denote A = 42

with domain D(A) =
{
u ∈ H4(Ω) ∩H1

0 (Ω)|uxx(0, t) = uxx(L, t) = 0
}

.
Suppose that λ1 > 0 is the first eigenvalue of 42 with u(0) = u(L) = uxx(0) =

uxx(L) = 0, then λ
1
2
1 is the first eigenvalue of −4 with u(0) = u(L) = 0, and there

holds

‖4u‖2 ≥ λ1‖u‖2, ∀u ∈ V2, ‖∇u‖2 ≥ λ
1
2
1 ‖u‖2, ∀u ∈ V1. (2.1)

Lemma 2.1. [20] Let X be a separable Banach space. We denote by Lp(a, b;X)
(1 ≤ p ≤ ∞) the space of (equivalence classes of) Bochner measurable functions
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f : [a, b] → X such that ‖f(·)‖X ∈ Lp(a, b). Each Lp(a, b;X) is a Banach space
with the norms

‖f‖Lp(a,b;X) =
(∫ b

a

‖f(t)‖pXdt
) 1

p

, 1 ≤ p <∞,

‖f‖L∞(a,b;X) = esssup{‖f(t)‖X : t ∈ [a, b]}.

We also denote by C(a, b;X) the space of strongly continuous functions with values
in X and use the space

W 1,p(a, b;X) = {f ∈ C(a, b;X) : f ′ ∈ Lp(a, b;X)},

where f ′(t) is a distributional derivative of f(t) with respect to t. We note that the
space W 1,1(a, b;X) coincides with the set absolutely continuous functions from [a, b]
into X.

Definition 2.1. [6, 24] A function (u(t), v(t)) ∈ C([0, T ];V2 × V1) possessing the
initial data u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1 is said to be

(S) a strong solution of (1.5)-(1.6) on the interval [0, T ] if and only if

(i) u ∈ W 1,1(a, b;V2), v ∈ W 1,1(a, b;V1), ut ∈ W 1,1(a, b;V2) and vt ∈ W 1,1(a, b;
V1) for any 0 < a < b < T ;

(ii) Au(t) + A
1
2 v(t) + Dut(t) + Dvt(t) ∈ V

′

0 for almost all t ∈ [0, T ], where the
operator D satisfies [6, Assumption 1.1], and Dut(t) = ‖ut‖put, Dvt(t) =
‖vt‖pvt;

(iii) Eq. (1.5) is satisfied in V ′0 for almost all t ∈ [0, T ].

(G) a generalized solution of (1.5)-(1.6) on the interval [0, T ] if and only if there
exists sequence of the strong solution {un(t)}, {vn(t)} of (1.5)-(1.6) with initial
data (u0n, u1n, v0n, v1n) instead of (u0, u1, v0, v1) such that

lim
n→∞

max
t∈[0,T ]

{
|∂tu(t)− ∂tun(t)|+ |A 1

2u(t)−A 1
2un(t)|

+ |∂tv(t)− ∂tvn(t)|+ |A 1
4 v(t)−A 1

4 vn(t)|
}

= 0.

Remark 2.1. For the convenience of readers, [6, Assumption 1.1] is given as follow:

the operator D : D(A
1
2 )→ [D(A

1
2 )]′ is assumed the monotone semicontinuous with

D(0) = 0, i.e., (Du−Dv, u− v) ≥ 0 for all u, v ∈ D(A
1
2 ), and λ 7→ (D(u+ λv), v)

is a continuous function from R into itself. Moreover, we assume that there exists
a set W ⊂ D(A

1
2 ) such that D(w) ⊂ V ′ for every w ∈W and W is dense in V .

Lemma 2.2. [24] Let H be a Hilbert space with inner product (·, ·) and norm ‖·‖H ,
u, v ∈ H. Then there exists some constant Cγ which depends on γ such that

(‖u‖γ−2
H u− ‖v‖γ−2

H v, u− v) ≥

Cγ‖u− v‖
γ
H , γ ≥ 2,

Cγ
‖u− v‖2H

(‖u‖H + ‖v‖H)2−γ , 1 ≤ γ ≤ 2.
(2.2)

Corollary 2.1. Denote D(µt) = ‖µt‖pµt and by Lemma 2.2, we obtain(
D(µt)−D(ϑt), µt − ϑt

)
≥ Cp‖µt − ϑt‖p+2, p ≥ 0, µt, ϑt ∈ V0, (2.3)

i.e., the damping operator D is strong monotone. Moreover, the damping operator
D satisfies [6, Assumption 1.1].
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Theorem 2.1. Let T > 0 be arbitrary, the following statements hold:

(i) For every (u0, u1, v0, v1) ∈ V2 × V2 × V1 × V1, such that Au0 +A
1
2 v0 +Du1 +

Dv1 ∈ L2(Ω), there exists a unique strong solution of problem (1.5)-(1.6) on
the interval [0, T ] such that

(ut, utt, vt, vtt) ∈ L∞([0, T ];V2 × V0 × V1 × V0),

(ut, vt) ∈ Cr([0, T ];V2 × V1), (utt, vtt) ∈ Cr([0, T ];V0 × V0),

Au(t) +Dut(t) ∈ Cr([0, T ];V
′

0 ), A
1
2 v(t) +Dvt(t) ∈ Cr([0, T ];V

′

0 ),

where Cr represents the space of right continuous functions, and the solution
of Eq.(1.5) satisfies the energy relation

E(t) +

∫ t

0

(‖ut‖put, ut)dσ +

∫ t

0

(‖vt‖pvt, vt)dσ = E(0), (2.4)

where

E(t) =
1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2

+
1

2
k2‖(u− v)+‖2 +

1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2

−
∫

Ω

hB(x)u(t)dx−
∫

Ω

hS(x)v(t)dx, (2.5)

E0(t) =
1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

1

2
k2‖(u− v)+‖2

+
1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2. (2.6)

(ii) For any initial data (u0, u1, v0, v1) ∈ V2 × V0 × V1 × V0 there exists a unique
generalized solution such that

(u, ut, v, vt) ∈ C([0, T ];V2 × V0 × V1 × V0). (2.7)

Theorem 2.2. [24] Assume that the damping operator D maps V0 into V
′

0 and is
a monotone semicontinuous operator which is bounded on bounded sets, that is, for
any ρ, there have

sup
{
|D(u)|V ′0 : u ∈ V0, ‖u‖ ≤ ρ

}
<∞. (2.8)

Then every generalized solution is also weak, i.e., the relation

(ut(t), ω) =(u1, ω)−
∫ t

0

((
Au(σ), ω

)
−
(
Dut(σ), ω

)
+
(
(hB − k2(u− v)+ − ‖u‖qu), ω

))
dσ,

(vt(t), ν) =(v1, ν)−
∫ t

0

((
A

1
2 v(σ), ν

)
−
(
Dvt(σ), ν

)
+
(
(hS + k2(u− v)+ − ‖v‖qv), ν

))
dσ,

hold for ∀ω ∈ V2, ∀ν ∈ V1 and for almost all t ∈ [0, T ].
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Remark 2.2. The proof of Theorem 2.1 is similar to the proof of [24, Theorem
2.3], so we only give the above conclusion.

Corollary 2.2. Problem (1.5)-(1.6) generates a dynamical system (H, S(t)) in the
space H, the corresponding evolution operator S(t) is given by the formula

S(t)(u0, u1, v0, v1) = (u(t), ut(t), v(t), vt(t)), (2.9)

where (u(t), v(t)) solve (1.5) with the initial data (u0, u1, v0, v1).

In order to obtain the main result for our problem, we also need the following
definitions and abstract results from the book of Chueshov and Lasiecka (see [7,
Chapter. 7]).

Definition 2.2. [6] A dynamical system (X,S(t)) is said to be asymptotically
smooth if and only if for any bounded set D such that S(t)D ⊂ D for t > 0, there
exists a compact set K ⊂ D̄ in the closure D̄ of D, such that

lim
t→+∞

distX{S(t)D,K} = 0, (2.10)

where distX{A,B} is the Hausdorff semidistance between sets A and B.

Definition 2.3. [6] A bounded closed set A ⊂ X is said to be a global attractor
of the dynamical system (X,S(t)) if and only if

(i) A is an invariant set, i.e. S(t)A = A for ∀t ≥ 0;

(ii) A is uniformly attracting, i.e. lim
t→+∞

distX{S(t)M,A} = 0 for all bounded set

M ⊂ X.

Theorem 2.3. [6] Let (X,S(t)) be a dynamical system on a complete metric space
X endowed with a metric d. Assume that for any bounded positively invariant set
B ⊂ X there exist T > 0, a continuous non-decreasing function r : R+ → R+ and
a pseudometric %TB ∈ C(0, T ;X) such that

(i) r(0) = 0 and r(s) < s for every s > 0;

(ii) the pseudometric %TB is precompact (with respect to X), i.e. for any sequence
{xn} ⊂ B has a subsequence {xnk

} such that the sequence {yk} ⊂ C(0, T ;X)
of elements yk(τ) = S(τ)xnk

is Cauchy with respect to %TB;

(iii) the following inequality holds

d(S(T )y1, S(T )y2)

≤r
(
d(y1, y2) + %TB

(
{S(τ)y1}, {S(τ)y2}

))
, ∀y1, y2 ∈ B, (2.11)

where we denote by {S(·)yi} the element in the space C(0, T ;X) given by function
yi(·) = S(·)yi, i = 1, 2. Then (X,S(t)) is an asymptotically smooth dynamical
system.

Definition 2.4. [7] Let (X,S(t)) be a dissipative dynamical system in a complete
metric space X. Then the dynamical system (X,S(t)) possesses a compact global
attractor if and only if (X,S(t)) is asymptotically smooth.
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Definition 2.5. [7] Let X and Y be two reflexive Banach spaces with X ↪→↪→ Y
and put H = X × Y . If there exist a compact semi-norm nX on X and two locally
bounded nonnegative functions a(t) and c(t) satisfying

b(t) ∈ L1(R+) with lim
t→∞

b(t) = 0, (2.12)

‖S(t)y1 − S(t)y2‖2H ≤ a(t)‖y1 − y2‖2H , (2.13)

and

‖S(t)y1 − S(t)y2‖2H ≤ b(t)‖y1 − y2‖2H + c(t) sup
s∈[0,1]

[nX(u(s)− v(s))]2, (2.14)

for every yi ∈ B, i = 1, 2, where B ⊂ H is the bounded positively invariant set,
and S(t)yi = yi(t), t > 0. Then (H,S(t)) is called quasi-stable on B.

Theorem 2.4. [7] Let (X,S(t)) be a dynamical system. If (X,S(t)) possesses a
compact global attractor A and is quasi-stable on A, then the attractor A has finite
fractal dimension.

Theorem 2.5. [7] Let B be a bounded positively invariant absorbing set on the

dynamical system (X,S(t)) which is quasi-stable. If there exists a larger space X̃ ⊇
X such that for any T > 0, it holds

‖S(t1)y − S(t2)y‖X̃ ≤ CB |t1 − t2|
τ , t1, t2 ∈ [0, T ], y ∈ B, (2.15)

where CB > 0 depends on B, τ ∈ (0, 1]. Then the dynamical system (X,S(t))
possesses a generalized exponential attractor Aexp ⊂ X whose dimension is finite in
X̃.

3. Global attractor

In this section, we will prove the dissipativity of the semigroup {S(t)}t≥0 corre-
sponding to (1.5)-(1.6), and verify the asymptotic smoothness of the dynamical sys-
tem (H, S(t)) by means of a priori estimates and the energy reconstruction method.
Finally, the existence of global attractor is obtained.

Theorem 3.1. The dynamical system (H, S(t)) generated by problem (1.5)-(1.6)
is dissipative in the space H, namely, for any bounded set B ⊂ H, there exist a
positive constant R > 0 and t0 = t0(B) > 0, such that

‖S(t)y‖H = ‖ (u(t), ut(t), v(t), vt(t))‖H ≤ R,

for all y ∈ B and t ≥ t0.

Proof. Multiplying (1.5) by ut + εu and vt + εv, and integrating over Ω, respec-
tively, we obtain that

d

dt

(1

2
‖ut‖2 +

1

2
‖4u‖2 +

1

2
‖vt‖2 +

1

2
‖∇v‖2 +

1

2
k2‖(u− v)+‖2

+
1

q + 2
‖u‖q+2 +

1

q + 2
‖v‖q+2 + (ut, εu) + (vt, εv)−

∫
Ω

hBudx

−
∫

Ω

hSvdx
)
− ε‖ut‖2 + ε‖4u‖2 − ε‖vt‖2 + ε‖∇v‖2 + εk2‖(u− v)+‖2
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+ ε‖u‖q+2 + ε‖v‖q+2 + (‖ut‖put, ut + εu) + (‖vt‖pvt, vt + εv)

− ε
∫

Ω

hBudx− ε
∫

Ω

hSvdx = 0. (3.1)

According to Hölder and Young inequalities and (2.1), it follows that∣∣∣ ∫
Ω

hBudx
∣∣∣ ≤ 1

λ1
‖hB‖2 +

1

4
‖4u‖2, (3.2)∣∣∣ ∫

Ω

hSvdx
∣∣∣ ≤ 1√

λ1

‖hS‖2 +
1

4
‖∇v‖2. (3.3)

Combining with (2.5)-(2.6) and (3.2)-(3.3), we have

E(t) ≥ c0E0(t)− C0, 0 < c0 < 1. (3.4)

Denote W (t) = E(t)+(ut, εu)+(vt, εv), using Hölder and Young inequalities, there
holds

ε|(ut, u)| ≤ 1

4
‖ut‖2 +

ε2

λ1
‖4u‖2, (3.5)

and

ε|(vt, v)| ≤ 1

4
‖vt‖2 +

ε2√
λ1

‖∇v‖2, (3.6)

exploiting (3.4)-(3.6), there exists ε0 > 0 with 0 < ε < ε0 such that

W (t) ≥ c1E0(t)− C1, 0 < c1 < 1. (3.7)

Next, we rewrite (3.1) as follows

d

dt
W (t) + εW (t) + Y (t) = 0, (3.8)

where

Y (t) =(‖ut‖put, ut + εu) + (‖vt‖pvt, vt + εv)− 3ε

2
‖ut‖2 −

3ε

2
‖vt‖2

+
ε

2
‖4u‖2 +

ε

2
‖∇v‖2 +

εk2

2
‖(u− v)+‖2 +

(q + 1)ε

q + 2
‖u‖q+2

+
(q + 1)ε

q + 2
‖v‖q+2 − ε2(ut, u)− ε2(vt, v). (3.9)

Applying Young inequality, we get that there exist constants c2, c3 > 0 such that

(ut, ut) = ‖ut‖2 ≤ c2 + c3‖ut‖p+2. (3.10)

Combining with (2.4) and (3.4), there exists CB > 0 such that

E0(t) ≤ C(1 + E(t)) ≤ C(1 + E(0)) ≤ CB . (3.11)

By Cauchy and Young inequalities, (2.1) and (3.11), we have

|(‖ut‖put, εu)| ≤ ε‖ut‖p(
1

2
‖ut‖2 +

1

2
‖u‖2)
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≤ ε

2
‖ut‖p+2 +

ε

2
‖ut‖p‖u‖2

≤ ε

2
‖ut‖p+2 +

ε

2
(Cσ‖ut‖p+2 + σ)‖u‖2

≤ ε

2
‖ut‖p+2 +

εCσ
2λ1
‖4u‖2 · ‖ut‖p+2 +

εσ

2λ1
‖4u‖2

≤ ε

2
‖ut‖p+2 +

εCσ
2λ1

E0(t) · ‖ut‖p+2 +
εσ

λ1
E0(t)

≤ ε

2
‖ut‖p+2 +

εCσCB
2λ1

‖ut‖p+2 + εC2, (3.12)

similarly, the following inequality holds

|(‖vt‖pvt, εv)| ≤ ε

2
‖vt‖p+2 +

εCσCB

2
√
λ1

‖vt‖p+2 + εC3. (3.13)

Together with (2.1) and (3.12)-(3.13), we achieve

(‖ut‖put, ut + εu) ≥
(

1− ε

2
− εCσCB

2λ1

)
‖ut‖p+2 − εC2, (3.14)

and

(‖vt‖pvt, vt + εv) ≥
(

1− ε

2
− εCσCB

2
√
λ1

)
‖vt‖p+2 − εC3. (3.15)

Now, by virtue of (3.9)-(3.10) and (3.14)-(3.15), it follows that

Y (t) ≥
(

1

c3

(
1− ε

2
− εCσCB

2λ1

)
− 3ε

2
− ε

4

)
‖ut‖2

+

(
1

c3

(
1− ε

2
− εCσCB

2
√
λ1

)
− 3ε

2
− ε

4

)
‖vt‖2

+

(
ε

2
− ε3

λ1

)
‖4u‖2 +

(
ε

2
− ε3√

λ1

)
‖∇v‖2

− c2
c3

(
2− ε− εCσCB

2λ1
− εCσCB

2
√
λ1

)
− εC2 − εC3, (3.16)

choose ε > 0 small enough, such that

1

c3

(
1− ε

2
− εCσCB

2λ1

)
− 3ε

2
− ε

4
> 0,

ε

2
− ε3

λ1
> 0,

ε

2
− ε3√

λ1

> 0, (3.17)

1

c3

(
1− ε

2
− εCσCB

2
√
λ1

)
− 3ε

2
− ε

4
> 0, 2− ε− εCσCB

2λ1
− εCσCB

2
√
λ1

> 0. (3.18)

We obtain that Y (t) ≥ −εC4, then it yields from (3.8) that

d

dt
W (t) + εW (t) ≤ εC4. (3.19)

Applying the Gronwall lemma, we conclude that

W (t) ≤W (0)e−εt + C4(1− e−εt). (3.20)



2346 L. Wang & Q. Ma

Therefore, there exists t0 = t0(B) = 1
ε ln W (0)

C4
such that

W (t) ≤ 2C4, ∀t ≥ t0. (3.21)

We claim from (3.7) that

‖(u, ut, v, vt)‖H ≤
2C4 + C1

c1
= R. (3.22)

This is the complete proof of the dissipativity.

Remark 3.1. Theorem 3.1 implies that

B0 = {(u(t), ut(t), v(t), vt(t)) ∈ H : ‖(u(t), ut(t), v(t), vt(t))‖H ≤ R}

is a bounded absorbing set of semigroup {S(t)}t≥0 corresponding to problem (1.5)-
(1.6). From the above proof, it is easy to see that dissipativity of the semigroup is
independent of p and q.

In order to prove the asymptotic smoothness of the dynamical system (H, S(t)),
we need first to establish the following estimates.

Theorem 3.2. There exist T0 > 0 and a constant C > 0 independent of T such
that for any pair (u1, v1) and (u2, v2) of strong solutions for problem (1.5)-(1.6), we
have the following relation for T ≥ T0,

TEm(t) +

∫ T

0

Em(t)dt

≤C(R)
{∫ T

0

‖ξt‖2dt+

∫ T

0

‖ζt‖2dt+

∫ T

0

(D(t, ξt), ξt)dt

+

∫ T

0

(D(t, ζt), ζt)dt+

∫ T

0

|(D(t, ξt), ξt)|dt+

∫ T

0

|(D(t, ζt), ζt)|dt

+

∫ T

0

‖4ξ‖ · ‖ξt‖dt+

∫ T

0

‖∇ζ‖ · ‖ζt‖dt+

∫ T

0

‖4ξ‖2dt

+

∫ T

0

‖∇ζ‖2dt+

∫ T

0

dt

∫ T

t

‖4ξ‖ · ‖ξt‖dτ +

∫ T

0

dt

∫ T

t

‖∇ζ‖ · ‖ζt‖dτ

+
∣∣∣ ∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξ)dt
∣∣∣+
∣∣∣ ∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζ)dt
∣∣∣

+
∣∣∣ ∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξt)dt
∣∣∣+
∣∣∣ ∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζt)dt
∣∣∣

+
∣∣∣ ∫ T

0

dt

∫ T

t

(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ
∣∣∣

+
∣∣∣ ∫ T

0

dt

∫ T

t

(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ
∣∣∣}, (3.23)

where ξ(t) = u1(t)− u2(t), ζ(t) = v1(t)− v2(t) and

Em(t) =
1

2

(
‖ξt‖2 + ‖4ξ‖2 + ‖ζt‖2 + ‖∇ζ‖2

)
, (3.24)

D(t, ξt) = ‖u1t‖pu1t − ‖u2t‖pu2t, D(t, ζt) = ‖v1t‖pv1t − ‖v2t‖pv2t. (3.25)
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Proof. Note that ξ(t) = u1(t)−u2(t) and ζ(t) = v1(t)−v2(t) satisfy the following
equality

ξtt + ξxxxx +D(t, ξt) + k2(u1 − v1)+ − k2(u2 − v2)+ + ‖u1‖qu1 − ‖u2‖qu2 = 0,
(3.26)

ζtt − ζxx +D(t, ζt)− k2(u1 − v1)+ + k2(u2 − v2)+ + ‖v1‖qv1 − ‖v2‖qv2 = 0.
(3.27)

Multiplying (3.26) and (3.27) by ξt and ζt, and integrating over Ω, respectively, we
obtain

1

2

d

dt
‖ξt‖2 +

1

2

d

dt
‖4ξ‖2 + (D(t, ξt), ξt) + (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)

+ (‖u1‖qu1 − ‖u2‖qu2, ξt) +
1

2

d

dt
‖ζt‖2 +

1

2

d

dt
‖∇ζ‖2 + (D(t, ζt), ζt)

− (k2(u1 − v1)+ − k2(u2 − v2)+, ζt) + (‖v1‖qv1 − ‖v2‖qv2, ζt) = 0, (3.28)

then

d

dt
Em(t) + (D(t, ξt), ξt) + (D(t, ζt), ζt)

=− (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)

+ (k2(u1 − v1)+ − k2(u2 − v2)+, ζt)

− (‖u1‖qu1 − ‖u2‖qu2, ξt)− (‖v1‖qv1 − ‖v2‖qv2, ζt). (3.29)

Integrating over [t, T ] to (3.29), we get that

Em(T ) +

∫ T

t

(D(t, ξt), ξt)dτ +

∫ T

t

(D(t, ζt), ζt)dτ

=Em(t)−
∫ T

t

(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ

+

∫ T

t

(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

−
∫ T

t

(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ −
∫ T

t

(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ. (3.30)

Multiplying (3.26) and (3.27) by ξ and ζ, and integrating over Ω, respectively, we
obtain

d

dt
(ξt, ξ) +

d

dt
(ζt, ζ)− ‖ξt‖2 + ‖4ξ‖2 − ‖ζt‖2 + ‖∇ζ‖2

+ (D(t, ξt), ξ) + (D(t, ζt), ζ)

=− (k2(u1 − v1)+ − k2(u2 − v2)+, ξ) + (k2(u1 − v1)+ − k2(u2 − v2)+, ζ)

− (‖u1‖qu1 − ‖u2‖qu2, ξ)− (‖v1‖qv1 − ‖v2‖qv2, ζ), (3.31)

and integrating over [0, T ], it leads to

2

∫ T

0

Em(t)dt− 2

∫ T

0

‖ξt‖2dt− 2

∫ T

0

‖ζt‖2dt+ (ξt, ξ)|T0 + (ζt, ζ)|T0
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+

∫ T

0

(D(t, ξt), ξ)dt+

∫ T

0

(D(t, ζt), ζ)dt

=−
∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)dt

+

∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)dt

−
∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξ)dt−
∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζ)dt. (3.32)

By using continuously embedding theorem and (2.1), we have

|(ξt, ξ)| ≤ ‖ξt‖‖ξ‖ ≤
1

2
(‖ξt‖2 + ‖ξ‖2) ≤ CEm(t), (3.33)

|(ζt, ζ)| ≤ ‖ζt‖‖ζ‖ ≤
1

2
(‖ζt‖2 + ‖ζ‖2) ≤ CEm(t). (3.34)

Therefore, we infer that

2

∫ T

0

Em(t)dt ≤C5(Em(T )− Em(0)) + 2

∫ T

0

‖ξt‖2dt+ 2

∫ T

0

‖ζt‖2dt

−
∫ T

0

(D(t, ξt), ξ)dt−
∫ T

0

(D(t, ζt), ζ)dt

−
∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)dt

+

∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)dt

−
∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξ)dt

−
∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζ)dt. (3.35)

Setting t = 0 in (3.30), we have

Em(0) =Em(T ) +

∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt

+

∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dt

−
∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dt

+

∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξt)dt+

∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζt)dt. (3.36)

Moreover, thanks to the monotonicity of D, integrating (3.30) from 0 to T given

TEm(T )−
∫ T

0

Em(t)dt ≤
∫ T

0

dt

∫ T

t

(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ
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+

∫ T

0

dt

∫ T

t

(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

+

∫ T

0

dt

∫ T

t

(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ

+

∫ T

0

dt

∫ T

t

(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ. (3.37)

According to |(u1−v1)+− (u2−v2)+| ≤ L|(u1−v1)− (u2−v2)| (L > 0 is a suitable
constant), ‖(u, ut, v, vt)‖H ≤ R and (2.1), we have

|(k2(u1 − v1)+ − k2(u2 − v2)+, ξ)|

≤Lk2‖(u1 − v1)− (u2 − v2)‖ · ‖ξ‖

=Lk2‖ξ − ζ‖ · ‖ξ‖ ≤ C(R)‖4ξ‖2. (3.38)

Similarly, then

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζ)| ≤ C(R)‖∇ζ‖2, (3.39)

|(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)| ≤ C(R)‖4ξ‖ · ‖ξt‖, (3.40)

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)| ≤ C(R)‖∇ζ‖ · ‖ζt‖. (3.41)

Hence, combining with (3.35)-(3.36), then (3.23) holds.
Now, we are ready to prove the main result of this section that the dynami-

cal system (H, S(t)) corresponding to (1.5)-(1.6) in the space H is asymptotically
smooth.

Theorem 3.3. The dynamical system (H, S(t)) generated by problem (1.5)-(1.6) is
asymptotically smooth in the space H.

Proof. By Theorem 3.1, we know that B0 is a bounded absorbing set of semigroup
S(t) related to (1.5)-(1.6) in the space H. By the definition of bounded absorbing
set there exists t0 ≥ 0 such that S(t)B0 ⊂ B0 for all t ≥ t0. Let B =

⋃
t≥t0 S(t)B0.

It is clear that B is a closed bounded forward invariant set for the dynamical system
(H, S(t)) in the space H. Therefore, for any bounded set B, we have S(t)B ⊂ B0 for
t ≥ t(B), i.e., for all t ≥ t0 + t(B), we have S(t)B ⊂ B, hence B is also an bounded
absorbing set for this system. Let (u1, v1) and (u2, v2) be two weak solution of
(1.5)-(1.6) corresponding to two different initical datas in the invariant set B, then(

u1(t), u1t(t), v1(t), v1t(t)
)

= S(t)y0,(
u2(t), u2t(t), v2(t), v2t(t)

)
= S(t)y1. (3.42)

Since all term of (2.13) are continuous with respect to the distance d given by the
energy norm ‖ · ‖E , it satisfies the condition of Theorem 2.3. Let T > 0, according
to the energy equality (2.4), we have∫ T

0

(D(u1), u1t)dt+

∫ T

0

(D(v1), v1t)dt+

∫ T

0

(D(u2), u2t)dt+

∫ T

0

(D(v2), v2t)dt
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+

∫ T

0

(‖u1‖qu1, u1t)dt+

∫ T

0

(‖v1‖qv1, v1t)dt+

∫ T

0

(‖u2‖qu2, u2t)dt

+

∫ T

0

(‖v2‖qv2, v2t)dt ≤ CB. (3.43)

Step 1. Energy reconstruction.
From (3.23), we define

ΦT (u1, v1, u2, v2)

=

∫ T

0

‖4ξ‖ · ‖ξt‖dt+

∫ T

0

‖∇ζ‖ · ‖ζt‖dt+

∫ T

0

‖4ξ‖2dt+

∫ T

0

‖∇ζ‖2dt

+

∫ T

0

dt

∫ T

t

‖4ξ‖ · ‖ξt‖dτ +

∫ T

0

dt

∫ T

t

‖∇ζ‖ · ‖ζt‖dτ

+
∣∣∣ ∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξ)dt
∣∣∣+
∣∣∣ ∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζ)dt
∣∣∣

+
∣∣∣ ∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξt)dt
∣∣∣+
∣∣∣ ∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζt)dt
∣∣∣

+
∣∣∣ ∫ T

0

dt

∫ T

t

(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ
∣∣∣

+
∣∣∣ ∫ T

0

dt

∫ T

t

(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ
∣∣∣, (3.44)

furthermore,

ΦT (u1, v1, u2, v2)

≤CT,B
{∫ T

0

‖4ξ‖ · ‖ξt‖dt+

∫ T

0

‖∇ζ‖ · ‖ζt‖dt+

∫ T

0

‖4ξ‖2dt+

∫ T

0

‖∇ζ‖2dt

+

∫ T

0

‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξ‖dt+

∫ T

0

‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζ‖dt

+

∫ T

0

‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξt‖dt+

∫ T

0

‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζt‖dt
}
.

By Cauchy inequality and compact embedding theorem, we arrive at∫ T

0

‖4ξ‖ · ‖ξt‖+

∫ T

0

‖4ξ‖2dt

≤Cκ
∫ T

0

‖4ξ‖2dt+
κ

2

∫ T

0

‖ξt‖2dt+

∫ T

0

‖4ξ‖2dt

≤CB,κ
∫ T

0

‖A1−αξ‖2dt+ κ

∫ T

0

Em(t)dt, (3.45)

and ∫ T

0

‖∇ζ‖ · ‖ζt‖dt+

∫ T

0

‖∇ζ‖2dt

≤Cκ
∫ T

0

‖∇ζ‖2dt+
κ

2

∫ T

0

‖ζt‖2dt+

∫ T

0

‖∇ζ‖2dt
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≤CB,κ
∫ T

0

‖A 1
2−βζ‖2dt+ κ

∫ T

0

Em(t)dt, (3.46)

where 0 < α < 1
2 , 0 < β < 1

4 .
According to the Sobolev and Hölder inequalities, it yields∣∣(‖u1‖qu1 − ‖u2‖qu2)

∣∣ =
∣∣(‖u1‖qu1 − ‖u1‖qu2 + ‖u1‖qu2 − ‖u2‖qu2)

∣∣
≤ ‖u1‖q|u1 − u2|+

∣∣‖u1‖q − ‖u2‖q
∣∣|u2|, (3.47)

then

‖(‖u1‖qu1 − ‖u2‖qu2)‖2 =

∫
Ω

∣∣(‖u1‖qu1 − ‖u2‖qu2)
∣∣2dx

≤
∫

Ω

∣∣‖u1‖q|u1 − u2|+
∣∣‖u1‖q − ‖u2‖q

∣∣|u2|
∣∣2dx

≤ 2(‖u1‖2q‖u1 − u2‖2 + ‖u2‖2
∣∣‖u1‖q − ‖u2‖q

∣∣2)

≤ C(R)‖u1 − u2‖2

≤ C(R)‖A1−α̃ξ‖2, (3.48)

similarly, we have

‖(‖v1‖qv1 − ‖v2‖qv2)‖2 ≤ C(R)‖v1 − v2‖2 ≤ C(R)‖A 1
2−β̃ζ‖2. (3.49)

By Hölder inequality and compact embedding theorem, we infer to∫ T

0

‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξ‖dt+

∫ T

0

‖(‖u1‖qu1 − ‖u2‖qu2)‖ · ‖ξt‖dt

≤Cκ
∫ T

0

‖(‖u1‖qu1 − ‖u2‖qu2)‖2dt+ κ

∫ T

0

Em(t)dt

≤CB,κ
∫ T

0

‖A1−α̃ξ‖2dt+ κ

∫ T

0

Em(t)dt, (3.50)

similarly,∫ T

0

‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζ‖dt+

∫ T

0

‖(‖v1‖qv1 − ‖v2‖qv2)‖ · ‖ζt‖dt

≤CB,κ
∫ T

0

‖A 1
2−β̃ζ‖2dt+ κ

∫ T

0

Em(t)dt. (3.51)

Therefore, combining with (3.45)-(3.46) and (3.50)-(3.51), for any κ > 0, choosing
δ = min{α, α̃}, δ̃ = min{β, β̃}, we have

ΦT (u1, v1, u2, v2) ≤CB,κ(T )

∫ T

0

‖A1−δξ‖2dt+ CB,κ(T )

∫ T

0

‖A 1
2−δ̃ζ‖2dt

+ 4κ

∫ T

0

Em(t)dt. (3.52)

In line with Lemma 2.2, let H0(s) = C
− 2

p+2
p s

2
p+2 , p ≥ 0, it is a strictly increasing,

concave function, and H0 ∈ C(R+) with the property H0(0) = 0 such that

H0

(
(‖u+ v‖p(u+ v)− ‖u‖pu, v)

)
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≥H0(Cp‖v‖p+2) = ‖v‖2, ∀u, v ∈ V2 × V1. (3.53)

Hence, from Jensen inequality, it follows that∫ T

0

‖ξt‖2dt ≤
∫ T

0

H0(D(t, ξt), ξt)dt

≤ TH0

( 1

T

∫ T

0

(D(t, ξt), ξt)dt
)

= H0

(∫ T

0

(D(t, ξt), ξt)dt
)
, (3.54)

where H0(s) = TH0( sT ). Similarly, we have∫ T

0

‖ζt‖2dt ≤ H0

(∫ T

0

(D(t, ζt), ζt)dt
)
. (3.55)

By virtue of Cauchy’s inequality and Sobolev’s embedding theorem, there exists a
positive constant η with 0 < η < 1

2 such that

|(D(t, ξt), ξ)| ≤ ‖ξ‖
(∫

Ω

(‖u1t‖pu1t − ‖u2t‖pu2t)
2dx
) 1

2

≤ C‖ξ‖
(
‖u1t‖2pu2

1t − ‖u2t‖2pu2
2t)

2
) 1

2

≤ CB‖ξ‖ ≤ CB‖A1−ηξ‖. (3.56)

Similarly,

|(D(t, ζt), ζ)| ≤ CB‖A
1
2−η̃ζ‖, 0 < η̃ <

1

2
. (3.57)

Therefore, combining with (3.52)-(3.57) and Theorem 3.2, we have

TEm(T ) +
1

2

∫ T

0

Em(t)dt

≤CB
{

(H0 + I)
( ∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt
)

+

∫ T

0

‖A1−ηξ‖dt+

∫ T

0

‖A 1
2−η̃ζ‖dt

+ CB,T

∫ T

0

‖A1−δξ‖2dt+ CB,T

∫ T

0

‖A 1
2−δ̃ζ‖2dt

}
. (3.58)

Step 2. Handling of the damping.
Denote ω = min{η, δ}, ω̃ = min{η̃, δ̃}, from (3.58) we get that

Em(T ) ≤CB,T (H0 + I)
(∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt
)

+ CB,T

∫ T

0

‖A1−ωξ‖dt+ CB,T

∫ T

0

‖A 1
2−ω̃ζ‖dt
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≤CB,T (H0 + I)
(∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt
)

+ CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A 1
2−ω̃ζ(t)‖

)
. (3.59)

Let Q0(s) = (H0 + I)−1
(

s
2CB,T

)
be a strictly increasing, convex function and (H0 +

I)−1(s) ≤ s for any s ≥ 0. By (3.58) we infer that

Q0(Em(T )) =(H0 + I)−1
(Em(T )

2CB,T

)
≤(H0 + I)−1

{1

2
(H0 + I)

( ∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt
)

+
1

2

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A 1
2−ω̃ζ(t)‖

)}
≤1

2

{∫ T

0

(D(t, ξt), ξt)dt+

∫ T

0

(D(t, ζt), ζt)dt
}

+
1

2

{
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A 1
2−ω̃ζ(t)‖

}
. (3.60)

Setting t = 0 in (3.30), and combining with (3.40)-(3.41) and (3.48)-(3.49), we
achieve∫ T

0

(D(t, ξt), ξt)dτ +

∫ T

0

(D(t, ζt), ζt)dτ

=Em(0)− Em(T )−
∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ξt)dτ

+

∫ T

0

(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)dτ

−
∫ T

0

(‖u1‖qu1 − ‖u2‖qu2, ξt)dτ −
∫ T

0

(‖v1‖qv1 − ‖v2‖qv2, ζt)dτ

≤Em(0)− Em(T ) + CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A 1
2−ω̃ζ(t)‖

)
, (3.61)

then

Em(T ) + 2Q0(Em(T ))

≤Em(0)− Em(T ) + CB,T

(
sup
t∈[0,T ]

‖A1−ωξ(t)‖+ sup
t∈[0,T ]

‖A 1
2−ω̃ζ(t)‖

)
. (3.62)

Since ξ(t) ∈ D(A), ζ(t) ∈ D(A
1
2 ) are uniformly bounded, and the embedding

D(A) ↪→ D(A1−ω) ↪→ V0, D(A
1
2 ) ↪→ D(A

1
2−ω̃) ↪→ V0 are compact. Thus, exploiting

the interpolation inequality we obtain

‖A1−ωξ(t)‖ ≤ ‖ξ(t)‖η1D(A) · ‖ξ(t)‖
1−η1 ≤ CR‖ξ(t)‖1−η1 , 0 < η1 < 1, (3.63)

and

‖A 1
2−ω̃ζ(t)‖ ≤ ‖ζ(t)‖η2

D(A
1
2 )
· ‖ζ(t)‖1−η2 ≤ CR‖ζ(t)‖1−η2 , 0 < η2 < 1. (3.64)
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Therefore

Em(T ) + 2Q0(Em(T ))

≤Em(0) + CB,T

(
sup
t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς
)
, (3.65)

for any ς ∈ (0, 1]. This implies that

‖S(T )y1 − S(T )y2‖2H

≤2[I + 2Q0]−1
{1

2
‖y1 − y2‖2 + CB,T

(
sup
t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς
)}

≤2[I + 2Q0]−1
{1

2

(
‖y1 − y2‖+ CB,T ( sup

t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς) 1
2

)2}
. (3.66)

Choosing ς
′ ∈ (0, 1

2 ], we have

‖S(T )y1 − S(T )y2‖H

≤
√

2

[
[I + 2Q0]−1

{1

2

(
‖y1 − y2‖+ CB,T ( sup

t∈[0,T ]

‖ξ(t)‖ς
′

+ sup
t∈[0,T ]

‖ζ(t)‖ς
′

)
)2}] 1

2

.

Let r(s) =
√

2
(

(I + 2Q0)−1( s
2

2 )
) 1

2

, and

%TB
(
{S(τ)y1}, {S(τ)y2}

)
= CB,T ( sup

t∈[0,T ]

‖u1(t)− u2(t)‖ς
′

+ sup
t∈[0,T ]

‖v1(t)− v2(t)‖ς
′

),

so we conclude that

‖S(T )y1 − S(T )y2‖H ≤ r
(
‖y1 − y2‖+ %TB({S(τ)y1}, {S(τ)y2})

)
. (3.67)

It is clear that the function r satisfies all the requirements of Theorem 2.3. Finally,
according to the similar proof in [24] we get that the pseudometric %TB of all solution
for (1.5)-(1.6) is precompact in the interval [0, T ]. Hence, the dynamical system
(H, S(t)) is asymptotically smooth.

Thanks to Theorem 3.1 and Theorem 3.3, we deduce the main result of this
section as the following theorem.

Theorem 3.4. The dynamical system (H, S(t)) generated by problem (1.5)-(1.6)
possesses a compact global attractor A in the space H.

4. Fractal dimension and generalized exponential
attractor

In this section, we mainly prove the quasi-stability of the dynamical system (H, S(t))
associated to (1.5)-(1.6) to give the finite fractal dimension of attractors, and further
obtain the existence of the generalized exponential attractor Aexp with finite fractal
dimension in a larger space H̃ ⊇ H. Firstly, we are going to prove that the dynamical
system (H, S(t)) is quasi-stable on any bounded positively invariant set in H.
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Lemma 4.1. The dynamical system (H, S(t)) generated by problem (1.5)-(1.6) is
quasi-stable in a bounded positively invariant set B ⊂ H.

Proof. According to Definition 2.5, we only need to verify inequalities (2.13) and
(2.14). From (3.29), we have

d

dt
Em(t) + (D(t, ξt), ξt) + (D(t, ζt), ζt)

=− (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)− (‖u1‖qu1 − ‖u2‖qu2, ξt)

+ (k2(u1 − v1)+ − k2(u2 − v2)+, ζt)− (‖v1‖qv1 − ‖v2‖qv2, ζt), (4.1)

where ξ(t) = u1(t)−u2(t), ζ(t) = v1(t)−v2(t), by virtue of (3.40)-(3.41), we achieve
at

| − (k2(u1 − v1)+ − k2(u2 − v2)+, ξt)|

≤C(R)‖4ξ‖‖ξt‖ ≤ C(R)(
1

2
‖4ξ‖2 +

1

2
‖ξt‖2)

≤C(R)Em(t), (4.2)

similarly, we have

|(k2(u1 − v1)+ − k2(u2 − v2)+, ζt)| ≤ C(R)Em(t). (4.3)

According to (2.3), it follows that

(D(t, ξt), ξt) + (D(t, ζt), ζt) ≥ Cp‖ξt‖P+2 + Cp‖ζt‖P+2 ≥ 0, (4.4)

using Hölder inequality, the embedding V2 ↪→ L2(q+1)(Ω) and V2 ↪→ Lp+2(Ω), it
yields

| − (‖u1‖qu1 − ‖u2‖qu2, ξt)|

=(q + 1)

∫
Ω

|θu1 + (1− θ)u2|q|ξ||ξt|dx

≤(q + 1)22q(‖u1‖q2(q+1) + ‖u2‖q2(q+1))‖ξ‖2(q+1)‖ξt‖

≤CB‖ξ‖2(q+1)‖ξt‖p+2 ≤ CB(‖ξ‖22(q+1) + ‖ξt‖2p+2)

≤CB,REm(t), (4.5)

similarly,

| − (‖v1‖qv1 − ‖v2‖qv2, ζt)| ≤ CB,REm(t). (4.6)

Together with (4.1)-(4.6), we conclude that

d

dt
Em(t) ≤ 2C(R)Em(t) + 2CB,REm(t) ≤ C(R,B)Em(t), (4.7)

in line with the Gronwall lemma, we get that

Em(t) ≤ eC(R,B)tEm(0), (4.8)
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in addition, we see that (2.13) holds with a(t) = eC(R,B)t, where a(t) is locally
bounded on [0,∞] because of the boundedness of B ⊂ H. On the other hand, by
virtue of the proof of the Theorem 3.3, we claim from (3.66) that

‖S(T )y1 − S(T )y2‖2H

≤2[I + 2Q0]−1
{1

2
‖y1 − y2‖2 + CB,T ( sup

t∈[0,T ]

‖ξ(t)‖ς + sup
t∈[0,T ]

‖ζ(t)‖ς)
}

≤[I + 2Q0]−1‖y1 − y2‖2 + 2[I + 2Q0]−1CB,T max
t∈[0,T ]

(‖ξ(t)‖ς + ‖ζ(t)‖ς), (4.9)

where ς ∈ (0, 1], Q0 is defined in the previous section. Thus, we define the semi-
norm as follows

nH(ξ, ζ) = ‖ξ(t)‖ς + ‖ζ(t)‖ς . (4.10)

By using the compact embedding V2 ↪→↪→ V0 and V1 ↪→↪→ V0, we conclude that nH
is a compact semi-norm on H. Then (2.14) holds with

b(t) = [I + 2Q0]−1, c(t) = 2[I + 2Q0]−1CB,T ,

it is easy to check that

b(t) ∈ L1(R+), lim
t→∞

b(t) = 0.

Since B ⊂ H is bounded, so c(t) is locally bounded on [0,∞]. Then we conclude that
the dynamical system (H, S(t)) is quasi-stable in a bounded positively invariant set
B ⊂ H by Definition 2.5. Therefore the proof of the lemma is complete.

From the above Lemma 4.1 we know that the dynamical system (H, S(t)) is
quasi-stable on the compact global attractor A, which is a bounded positively in-
variant set of H, and Theorem 3.4 ensures that (H, S(t)) has a compact global
attractor in H. Thus we can immediately conclude the following results by Theo-
rem 2.4.

Theorem 4.1. The compact global attractor A of the dynamical system (H, S(t))
has finite fractal dimension.

Now, we will prove the existence of the generalized exponential attractor Aexp
and it has finite fractal dimension in a larger space H̃ ⊇ H.

Theorem 4.2. The dynamical system (H, S(t)) generated by problem (1.5)-(1.6)
possesses a generalized exponential attractor Aexp with finite fractal dimension on
the space H̃ = L2(Ω)×H−2(Ω)× L2(Ω)×H−1(Ω) ⊇ H.

Proof. It is easy to see that the dynamical system (H, S(t)) is quasi-stable in a
bounded positively invariant set B ⊂ H by Lemma 4.1, thus we only need to prove
that the mapping t→ S(t)y is Hölder continuous on the space H̃. Indeed, we know
that S(t)y = (u(t), ut(t), v(t), vt(t)) = φ(t) for every y = φ(0) = (u0, u1, v0, v1) ∈ B.
By virtue of Theorem 3.1, there exists R > 0 such that ‖ut‖2V2

+ ‖utt‖2 + ‖vt‖2V1
+

‖vtt‖2 ≤ R2, and then

‖φt(t)‖2H̃ = ‖ut‖2 + ‖utt‖2V−2
+ ‖vt‖2 + ‖vtt‖2V−1

≤ C(‖ut‖2V2
+ ‖utt‖2 + ‖vt‖2V1

+ ‖vtt‖2)
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≤ CB. (4.11)

Hence, for any 0 ≤ t1 ≤ t2 ≤ T , it follows that

‖S(t1)y − S(t2)y‖H̃ ≤
∫ t2

t1

‖φt(s)‖H̃ds ≤ CB|t1 − t2|. (4.12)

In view of Theorem 2.5, choosing τ = 1, therefore we conclude that the dynamical
system (H, S(t)) has a generalized exponential attractorAexp ⊂ H̃ with finite fractal
dimension.

Remark 4.1. Since the problem (1.5)-(1.6) is in one-dimensional space, and H1
0 (Ω)

⊂ Lq(Ω)(1 ≤ q ≤ ∞), the nonlocal term ‖u‖qu and ‖v‖qv don’t bring any difficulty.

Remark 4.2. If the nonlocal functions ‖u‖qu and ‖v‖qv turn into the polynomial
functions |u|qu and |v|qv(q ≥ 0), then all results in this paper still hold because of
H1

0 (Ω) ⊂ Lq(Ω)(1 ≤ q ≤ ∞) in one-dimensional space.

Remark 4.3. When the dimension of space is bigger than 2, the exponential q of
polynomial functions |u|qu and |v|qv(q ≥ 0) in the equation is required to satisfy
some certain condition, see [24] for details.
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