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RESONANCE FOR P -LAPLACIAN AND
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Abstract In the present paper, we aim to investigate the existence of solu-
tions for the quasilinear boundary value problem involving fractional operators
in the ψ-fractional space Hα

p ([0, T ],R) with asymmetric nonlinearities.
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1. Introduction and motivation

The researches on the existence of weak solutions for the resonance problem to
p-Laplacian can also be found in the other papers, such as [9] and the references
therein. The resonance problems involving p-Laplacian in RN , have great relevance
in the field of partial and ordinary differential equations. What has been noticed
during the last two decades is the attention to problems involving resonance, both
in the classical approach and in the fractional approach [2, 6, 9, 12,15,24].

In 1997 Arcoya and Orsina [1], investigated the existence of a solution to the
problem −∆pu = λ1|u|p−2 + f(x, u)− h, in Λ,

u ∈W 1,p
0 (Λ)

(1.1)

where Λ is a bounded open subset of RN , N ≥ 1, p > 1, f : Ω×R→ R is a bounded
Caratheodory function. On the other hand, in 1998, Cuesta et al. [7] carried out a
work addressing p-Laplacian on W 1,p

0 (Λ) defined by−∆pu = α(u+)p−1 − β(u−)p−1, in Λ,

u = 0, on ∂Λ
(1.2)

where −∆p = div(|∇u|p−2∇u) is the p-Laplacian.
In 2000, Bouchala and Drabek [4], investigated the existence of the weak solu-

tions of the boundary value problem−∆pu = λ1|u|p−2u+ g(u)− h(x), in Ω ⊂ RN ,

u = 0, on ∂Ω
(1.3)
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with N ≥ 1, p > 1, g : R → R is a continuous function, h ∈ Lp′(Ω)
(
p′ = p

p−1

)
.

See also the interesting work carried out in 2001 by Dancer and Perera [8], where
he investigated the existence of positive solutions to the p-Laplacian problem.

On the other hand, the theory of fractional differential equations currently occu-
pies a prominent role in the general theory of differential equations, with intense re-
search, problems of its own, relevant results and a wide range of applications [13,17].
One front that has recently gained attention are problems involving fractional dif-
ferential equations and p-Laplacian, in order to discuss existence, non-existence
and multiplicity of solutions using variational methods [10,11,16,19,21–23] and the
references therein.

Before presenting the main problem to be addressed in this paper, we will make
some considerations.

Let J = [0, T ] be a finite or infinite interval of the real line R and α > 0. The
Riemann-Liouville fractional integral (left-sided and right-sided) of a function φ on
J is defined by [13,18,20,25]

Iα0+φ (ξ) =
1

Γ (α)

∫ ξ

0

(ξ − s)α−1
φ (s) ds (1.4)

and

Iα0−φ (ξ) =
1

Γ (α)

∫ 0

ξ

(s− ξ)α−1
φ (s) ds. (1.5)

On the other hand, let 1
p < α ≤ 1, with n ∈ N and φ ∈ Cn(J,R). The Caputo

fractional derivative left-sided and right-sided denoted by cDα
0+(·) (resp. cDα

0−(·))
of a function f of order α, is defined by [13,18,20,25]

cDα
0+φ(ξ) = I1−α

0+ φ′(ξ) and cDα
0−φ(ξ) = I1−α

0− φ′(ξ) (1.6)

where Iα0+(·) and Iα0−(·) there are defined in Eq.(1.4) and Eq.(1.5), respectively. A
natural consequence of the definition (1.6), is that in the limit of α → 1, we have

the classical derivative (integer order), given by cD1
0+φ(ξ) =

dφ(ξ)

dξ
.

Let 1
p < α ≤ 1 and 1 < p < ∞. The ψ-fractional derivative space Hαp :=

Hαp ([0, T ] ,R) is defined by the closure of C∞0 ([0, T ] ,R), and is given by

Hαp ([0, T ],R) =
{
φ(·) ∈ L p([0, T ],R) :

∣∣cDα
0+φ(·)

∣∣ ∈ L p([0, T ],R)
}
. (1.7)

The space (1.7), is reflexive, uniform convex Banach and separable space [21–23].
In addition, it is equipped with norm

‖φ‖ = ‖φ‖L p +
∥∥cDα

0+φ
∥∥

L p , for all φ ∈ Hαp ([0, T ],R).

In this sense, motivated by the problems (1.1)-(1.3) and Caputo fractional
derivatives, in this paper, we consider the fractional quasilinear boundary value
problem

cDα
T

(
|cDα

0+φ|p−2 cDα
0+ φ

)
=θ+(ξ)(φ+)p−1 − θ−(ξ)(φ−)p−1 + f(ξ, φ), φ ∈ Hαp ([0, T ],R) (1.8)

where cDα
T (·) and cDα

0+(·) are Caputo fractional derivatives of order 1
p < α ≤ 1,

[0, T ] is a bounded domain in R, 1 < p <∞, φ± = max {±φ, 0}, θ± ∈ L∞([0, T ],R)
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and f is a Caratheodory (that is, f(ξ, φ) is a measurable with respect to ξ in
Ω = [0, T ] for every φ in R, and continuous with respect to φ in R for almost every
ξ ∈ Ω) function on [0, T ]× R satisfying a growth condition

|f(ξ, φ)| ≤ qM1(ξ)p−q|s|q−1 +M2(ξ)p−1 (1.9)

with 1 ≤ q < p and M1,M2 ∈ L p([0, T ],R). Furthermore, we assume that

λ1 ≤ θ ± (ξ) ≤ λ2 − ε (1.10)

or
λ1 + ε ≤ θ ± (ξ) ≤ λ2 (1.11)

for two consecutive variational eigenvalues λ1 < λ2 of cDα
T

(
|cDα

0+(·)|p−2 cDα
0+ (·)

)
on Hαp ([0, T ],R). During the paper, we condition by Σ the set of solutions of

cDα
T

(
|cDα

0+φ|p−2 cDα
0+ φ

)
= θ+(ξ)(φ+)p−1 − θ−(ξ)(φ−)p−1 (1.12)

and set

Θ(ξ, s) :

∫ s

0

f(ξ, t)dt and Ψ(ξ, s) := pΘ(ξ, s)− sΘ(ξ, s). (1.13)

The main results of this paper is to investigate the following result:

Theorem 1.1. Problem (1.8) has a solution when:

1. Eq.(1.10) holds and

∫ T

0

Ψ(ξ, φj)dξ → +∞.

2. Eq.(1.11) holds and

∫ T

0

Ψ(ξ, φj)dξ → −∞ for every sequence (φj) in

Hαp ([0, T ],R) such that ||φj || → ∞ and
φj
|φj |

converges to some element of

Σ. In particular, (1.8) is solvable when (1.10) or (1.11) holds and Σ is empty.

Below we highlight some comments on the difficulties of working with problems
of the type (1.8) and consequences of the results obtained in the paper:

1. In general, when dealing with resonance problems, a difficulty and often prob-
lematic is the lack of compactness of the variational functional associated with
the problem. However, it is possible to overcome this difficulty by constructing
an approximation sequence of non-resonance problems, to obtain approximate
solutions via min-max arguments and passing to the limit.

2. A natural consequence of the result investigated in this work is that in the
limit of α → 1, the integer case is obtained, i.e., the problem (1.8), becomes
the following problem(
|φ′|p−2 φ′

)′
= θ+(ξ)(φ+)p−1 − θ−(ξ)(φ−)p−1 + f(ξ, φ), φ ∈ H1

p([0, T ],R).
(1.14)

3. Consequently, the result Theorem 1.1, is valid for the problem (1.14). On the
other hand, taking p = 2 in the problem (1.8), we have

φ′′ = θ+(ξ)φ+ − θ−(ξ)φ− + f(ξ, φ), φ ∈ H1
2([0, T ],R).
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4. Note that when α = 1, θ+(ξ) = θ−(ξ) = λ1 and q = 1 we have some special
cases that can be found in the literature, namely: Arcoya and Orsina [1],
Bouchala and Drabek [4], and Drabek and Robinson [9].

In the rest, the paper is divided into two sections, namely: Section 2, we present
some corollaries. In section 3, we investigate the main result of this paper, i.e., the
Theorem 1.1.

2. Some results

This section is intended to discuss the existence of a solution to the Problem (1.8)
via some corollaries.

Corollary 2.1. Problem (1.8) has a solution when:

1. Eq.(1.10) holds, Ψ(ξ, s)→ +∞, a.e. as |s| → ∞, and Ψ(ξ, s) ≥ −ε(ξ).
2. Eq.(1.11) holds, Ψ(ξ, s)→ −∞, a.e., as |s| → ∞ and Ψ(ξ, s) ≤ ε(ξ) for some

ε ∈ L 1([0, T ],R).

Proof. If (1) holds, then Ψ(ξ, φj(ξ)) = Ψ(ξ, ρjνj(ξ)) → +∞ for some a.e. ξ such
that M1(ξ) 6= 0 and Ψ(ξ, φj(ξ)) ≥ −ε(ξ). Using the Fatou’s lemma, follows that∫ T

0

Ψ(ξ, φj(ξ))dξ ≥
∫
v 6=0

Ψ(ξ, φj(ξ))dξ −
∫
v=0

ε(ξ)dξ → +∞. (2.1)

Similarly, follows that

∫ T

0

Ψ(ξ, φj(ξ))dξ → −∞ if (2) holds.

Since (1) and (2) hold on subsets of {ξ ∈ Λ;M1(ξ) 6= 0} with positive measure,
the ideas discussed above are maintained. Consider w = ν± in∫ T

0

∣∣cDα
0+ν

∣∣p−2 cDα
0+ν

cDα
0+w dξ =

∫ T

0

(θ+(ξ)(ν+)p−1 − θ−(ξ)(ν−)p−1)w dξ

(2.2)
gives

||ν±||p =

∫ T

0

θ±(ξ)(ν±)pdξ ≤ ||θ±||∞||ν±||pp+αµ(Λ±)p ≤ ||θ±||∞S−1||ν±||pµ(Λ±)p

(2.3)
where Λ± = {ξ ∈ Λ = [0, T ];M1(ξ) ≥ 0}, S is the best constant for the trace em-
bedding Hαp ([0, T ],R) ↪→ L∞([0, T ],R) and, µ is the Lebesgue measure in R. Thus

µ (Λ±) ≥
(
S||θ±||−1

∞
)1/p

(2.4)

and so

µ ({ξ ∈ [0, T ];M1(ξ) = 0}) ≤ µ([0, T ],R)− S1/p
(
||θ+||−1/p

∞ + ||θ−||−1/p
∞

)
. (2.5)

In this sense, we have the following result.

Corollary 2.2. Problem (1.8) has a solution when:

1. Eq.(1.10) holds, Ψ(ξ, s)→∞ in Λ′ = [0, T ] as |s| → ∞, and Ψ(ξ, s) ≥ −ε(ξ)
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2. Eq.(1.11) holds, Ψ(ξ, s) → −∞ in Λ′ as |s| → ∞ and Ψ(ξ, s) ≤ ε(ξ) for

some Λ′ ⊂ Λ with µ(Λ′) > µ([0, T ],R) − S1/p
(
||θ+||−1/p

∞ + ||θ−||−1/p
∞

)
and

ε ∈ L 1([0, T ],R).

Next, note that

Ψ+(ξ)(ν+(ξ))q + Ψ−(ξ)(ν−(ξ))q ≤ lim inf
Ψ(ξ, φj(ξ))

ρqj

≤ lim sup
Ψ(ξ, φj(ξ))

ρqj

≤ Ψ+(ξ)(ν+(ξ))q + Ψ−(ξ)(ν−(ξ))q. (2.6)

Moreover,

Ψ(ξ, φj(ξ))

ρqj
≤ (p+ q)M1(ξ)p−q|νj(ξ)|q + (p+ 1)

M2(ξ)p−q|νj(ξ)|
ρq−1
j

(2.7)

by (1.9), so it follows that

∫ T

0

(
Ψ+(ν+)q + Ψ−(ν−)q

)
dξ ≤ lim inf

∫ T

0

Ψ(ξ, φj)dξ

ρqj

≤ lim sup

∫ T

0

Ψ(ξ, φj)dξ

ρqj

≤
∫ T

0

(Ψ+(ν+)q + Ψ−(ν−)q)dξ. (2.8)

Thus, we have the following corollary.

Corollary 2.3. Problem (1.8) has a solution when:

1. Eq.(1.10) holds and

∫ T

0

Ψ+(ν+)q + Ψ−(ν−)q > 0 for all ν ∈ Σ.

2. Eq.(1.11) holds and

∫ T

0

Ψ+(ν+)q + Ψ−(ν−)q < 0 for all ν ∈ Σ.

3. Main results

Note that the eigenvalues of cDα
T

(∣∣cDα
0+(·)

∣∣p−2 cDα
0+ (·)

)
on Hαp ([0, T ],R) corre-

spond to the critical values of

Eα(φ) =

∫ T

0

∣∣cDα
0+φ

∣∣p dξ (3.1)

with φ ∈ M =
{
φ ∈ Hαp ([0, T ],R); ||φ||p = 1

}
. Moreover, Eα satisfies the Palais-

Smale condition, i.e., if {φn} ⊂ Hαp (Ω) such that {Eα({φn})} is bounded and

Eα({φn})→ 0 in
(
Hαp (Ω)

)∗
, then {φn} has a subsequence that converges in Hαp (Ω).
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Consider the unbounded sequence of eigenvalues given by

λ1 := inf
A∈H1

max
φ∈A

Eα(φ) (3.2)

where
H1 = {A ⊂ I : ∃ a continuous add subjection h : I → A} (3.3)

and I is an interval in R.

Lemma 3.1. λ1 is an eigenvalue of cDα
T

(∣∣cDα
0+(·)

∣∣p−2 cDα
0+ (·)

)
and λ1 →∞.

Proof. Suppose that λ1 is a regular value of Eα, so there exists an ε > 0 and
η : M →M (homeomorphism) such that η(Eλ1+ε

α ) ⊂ Eλ1+ε
α , see [3]. On the other

hand, taking A ∈ H1 with max Eα(A) ≤ λ1 + ε and setting A = η(A), we have a set
in H1 for which max Eα(A) ≤ λ1 − ε, which contradicts λ1 (see Eq.(3.2)). Finally,
let µ1 →∞ eigenvalues, follows that λ1 ≥ µ1 since the genus of each A in H1 is 1,
so λ1 →∞.

Let us now discuss the main result of this paper.

Proof of Theorem 1.1. Let’s just do the proof of (1), the case (2) is similarly.
Then consider

θj±(ξ) =


θ±(ξ), if θ±(ξ) ≥ λ1 +

1

j
,

λ1 +
1

j
, if θ±(ξ) < λ1 +

1

j

(3.4)

so that

λ1 +
1

j
≤ θj± ≤ λ2 − ε, |θj±(ξ)− θ±(ξ)| ≤ 1

j
(3.5)

and let

Φj(φ) =

∫ T

0

|cDα
0+φ|p − θ

j
+(ξ)(φ+)p − θj−(φ−)p − pΘ(ξ, φ)dξ, φ ∈ Hαp ([0, T ],R).

(3.6)

First, we show that there is a φj ∈ Hαp ([0, T ],R), such that

||φj || ||Φ′j(φj)|| → 0, inf Φj(φj) > −∞. (3.7)

Using (3.2), there exists an A ∈ H1, such that

Eα(φ) ≤ λ1 +
1

2j
, φ ∈ A. (3.8)

For φ ∈ A, and R > 0, one has

Φj(Rφ) =

∫ T

0

∣∣cDα
0+Rφ

∣∣p − θj+(ξ)(Rφ+)p − θj−(ξ)(Rφ−)p − pΘ(ξ,Rφ)dξ

= Rp
{∫ T

0

(∣∣cDα
0+φ

∣∣p − θj+(ξ)(φ+)p − θj−(ξ)(φ−)p − pΘ(ξ, φ)
)
dξ

}
(3.9)

≤ −R
p

2j
+ p

(
||M1||p−qp Rq + ||M2||p−1

p R
)
.



Resonance for p-Laplacian and asymmetric nonlinearities 2365

Using (1.9), (3.5) and (3.8), so

max
φ∈A

Φj(Rφ)→ −∞, as R →∞. (3.10)

Next let,

E =

{
φ ∈ Hαp ([0, T ],R) :

∫ T

0

∣∣cDα
0+rφ

∣∣p dξ ≥ λ2

∫ T

0

|φ|pdξ

}
. (3.11)

For φ ∈ E and (3.6), yields

Φj(φ) ≥ ε||φ||pp − p
(
||M1||p−qp ||φ||qp + ||M2||p−1

p ||φ||p
)
. (3.12)

Hence

inf
φ∈E

Φj(φ) ≥ ε := min
r≥0

[
εrp − p

(
||M1||p−qp rq + ||M2||p−1

p r
)]
> −∞. (3.13)

Using (3.10), follows that

max Φj(RA) < ε (3.14)

where RA = {Rφ : φ ∈ A} for R > 0 fix and large. Since A ∈ H1, there exists a
continuous add subjection h : I → A. Consider

Γ =
{
ϕ ∈ C(D,Hαp ([0, T ],R)) : ϕ|I = Rh

}
(3.15)

where D is the interval in R with boundary I.
Affirmation 1: ϕ(D) ∩ E 6= ∅, ∀ϕ ∈ Γ.
The proof will be divided into two parts. The first part is to investigate when

0 ∈ ϕ(D). Consider π the radial projection. For M, A := π(ϕ(D) ∪ −π(ϕ(D))) ∈
H1, yields

max
φ∈π(ϕ(D))

Eα(φ) = max
φ∈A

Eα(φ) ≥ λ2 (3.16)

then π(ϕ(D)) ∩ E 6= ∅. Consequently, follow that ϕ(D) ∩ E 6= ∅.
Note that, there exists a φj such that

||φj || ||Φ′j(φj)|| → 0, |Φ′j(φj)− cj | → 0 (3.17)

where
εj := inf

ϕ∈Γ
max
φ∈ϕ(D)

Φj(φ) ≥ ε. (3.18)

Thus, we get (3.7). Obtaining Eq.(3.17), follows the deformation argument [5]. In
this sense, we finish the proof of first part.

Affirmation 2: A subsequence of (φj) converges to a solution of (1.8).
Note that, if (φj) so bounded, hence suppose that ρ := ||φj || → ∞. Consider

νj :=
φj
ρj

. Without loss of generality , we may assume that νj → ν weakly in

Hαp ([0, T ],R), strongly in L p([0, T ],R), and a.e in Λ. So, we obtain∫ T

0

∣∣cDα
0+φ

∣∣p−2 cDα
0+νj

cDα
0+(νj − ν)dξ (3.19)
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=
(Φ′(φj)νj − ν)

pρp−1
j

+

∫ T

0

(
(θj+)(ξ)(ν+

j )p−1 − θj−(ξ)(ν−j )p−1 +
f(ξ, φj)

ρp−1
j

)
(νj − ν)dξ

converge to 0.
In this sense, follows that νj → ν strongly in Hαp ([0, T ],R). In particular,

||M1|| = 1, then ν 6= 0. Moreover, for each w ∈ Hαp ([0, T ],R), yields

(Φ′(φj)νj − ν)

pρp−1
j

=

∫ T

0

∣∣cDα
0+φ

∣∣p−2 cDα
0+νj

cDα
0+wdξ

−

[
θj+(ξ)(ν+

j )p−1 − θj−(ξ)(ν−j )p−1 +
f(ξ, φj)

ρp−1
j

]
w (3.20)

gives that∫ T

0

∣∣cDα
0+φ

∣∣p−2 cDα
0+ν

cDα
0+w dξ −

[
θ+(ξ)(ν+)p−1 − θ−(ξ)(ν−)p−1

]
w = 0

so ν ∈ Σ. Thus,

(Φ′j(φj), φj)

p
− Φj(φj) =

∫ T

0

Ψ(ξ, φj)dξ →∞

contradicting (3.7). Thus, we complete the proof of the theorem.

4. Conclusion and future work

The present paper is a natural motivation for the works [1, 4, 7] as discussed in the
introduction. The objective of investigating the existence of a solution for a new
class of fractional quasilinear boundary value problem was only possible once we
circumvented the compactness problem as presented in the course of the work via
variational methods. Although we were able to achieve the objective, we were left
with some questions that arose during the discussion of the results, and are better
described as follows:

• Would it be possible to investigate the nonresonance of the problem (1.8)?
What conditions would be necessary? And discuss the Fucık spectrum for the
problem (1.8)?

• Finally, would it be possible to extend the results here to a double-phase p-
Laplacian? What conditions must be imposed for the results to still be valid?

In this sense, we believe that the present work allowed to contribute with new
results for the theory of fractional differential equations and raise some interesting
questions about the problem (1.8), allowing a natural continuation of this present
paper.
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