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GLOBAL STABILITY OF PERIODIC
SOLUTION FOR A 3-SPECIES

NONAUTONOMOUS RATIO-DEPENDENT
DIFFUSIVE PREDATOR-PREY SYSTEM

Lili Jia1,2, Juan Huang1 and Changyou Wang3,†

Abstract A 3-species nonautonomous ratio-dependent diffusive predator-
prey system is considered in this article. Firstly, by utilizing a comparison
principle and fixed point theorem, the existence of solution which is space
homogenous strictly positive and periodic for the above system is obtained.
And the obtained conditions ensuring the existence of solution can be very
easily verified. At the same time, we develop some new analysis techniques
as a byproduct. Furthermore, with the help of the upper and lower solu-
tions (UALS) approach for the parabolic partial differential equations and
Lyapunov theory, we aim at the globally asymptotically stability problems of
the solutions, and some judgment criteria are achieved. Finally, we give some
numerical simulations results which validate the theoretical findings of this
article.
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ity, ratio-dependent.
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1. Introduction

More and more attention has been paid to stability analysis theory of predator-prey
models [2, 4, 13, 24, 26, 33, 40, 46, 48, 50] since 1920s when Lotka [22] and Volterra
[31] proposed the classical Lotka-Volterra predator-prey model. The “functional
response” is thought as the core question in these models, which describes the rate
at which predators consume prey. In 1989, Arditi and Ginzburg [2] incorporated
predator dependence into functional responses, where they regarded the response
function as a function of ratio. Then, in 1999, Conser et al. [5] showed that it’s
more appropriate to consider ratio-dependent terms into predator-prey model by
using some basic but different principles. In 2000, authors in [14] constructed a
kind of average Lyapunov function to study a food web model, combined with
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the knowledge of saturated equilibria, the problems of permanent coexistence and
extinction are studied of species. In 2009, M. Haque [10] considered a predator-
prey models with interacting populations and ratio-dependent, and obtained the
stability of the system. In 2013, Gao and Li [8] studied a predator-prey ratio-
dependent system which has a strong Allee effect in prey and has a Bogdanov-
Takens bifurcation related with a catastrophic crash of the predator population. In
2015, Agrawal and Saleem [1] considered a predator-prey system with three different
populations and ratio-dependent and proved that for the suitable parameters, the
model has chaotic attractors. In 2018, Mandal [23] researched a stochastically
forced predator-prey ratio-dependent system especially with Allee effect for prey
population and demonstrated that the model has the stable interior equilibrium
point or limit cycle for the coexistence of both species. In 2020, Jiang et al. [12]
considered a predator-prey model with ratio-dependent, the qualitative behaviors
are investigated. By utilizing he comparison principle, the global asymptotical
stability are studied for the boundary equilibrium, and some sufficient conditions
without delays and diffusion effect were obtained. More recently, in 2023, Yu et al.
[45] investigated a novel predator-prey ratio-dependent model which has additional
food supply and obtained rich dynamic properties of the system. It is noteworthy
that none of the above ratio-dependent predator-prey systems contain diffusion
terms. Due to the fact that animals always involuntarily gather towards food and
water sources, the new model obtained by adding diffusion terms to the above model
can more truly depict the objective laws of interactions between species. However,
the methods mentioned in the above literature cannot be directly used to study this
type of new models.

On the other hand, in mathematical ecology, the classic predator prey mod-
els only reveals the population changes caused by predation when the densities of
predators and prey are independent of space. It ignores the fact that populations
are generally not evenly distributed, as well as that prey and predator instinctively
find ways to survive. Prey species (herbivores) usually gather in areas with rich
water and grass, while predators (carnivores) typically lurk in areas where prey is
frequently found. Above factors are concerned with the diffusion process, which
may be fairly complex due to the different aggregation of predator and prey leading
to different species mobility. Such mobility can be affected by the aggregation of
the different species (cross diffusion) or that of same species (diffusion). There-
fore, studying reaction-diffusion population models has important theoretical and
practical significance. In recent years, predator-prey models with diffusion have
received widespread attention. In 2013, Ko and Ahn [17, 18] studied a reaction-
diffusion ratio-dependent system with two competing predator species and one prey
and achieved the global attractor and persistence of the equations. In 2015, Yang
et al. [44] studied a reaction-diffusive food chain model with homogeneous Robin
boundary conditions and obtained the existence and uniqueness for coexistence
states as well as the existence of the global attractor by using the fixed point index
theory. In 2017, Wang [38] investigated the dynamical behavior of a predator-prey
diffusive model and obtained some conditions ensuring the existence of non-constant
equilibrium solutions and periodic orbits with the help of coincidence degree theory
and bifurcation approach. In 2018, Wang and Zhang [39] investigated a reaction-
diffusive Leslie-Gower prey-predator model with double free boundaries and proved
the existence, uniqueness and regularity of global solution for the model. In 2020,
Wu and Zhao [41] studied the existence and stability of the equilibrium solution
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for predator-prey diffusive model by constructing generalized Jacobian matrix. In
2021, Tian ang Guo [28] studied a reaction-diffusive predator-prey model with Allee
effect and constant stocking rate for predator and obtained some sufficient condi-
tions ensuring the asymptotical stability of a spatially homogeneous steady-state
solution. In 2022, Yan and Zhang [43] studied a predator-prey diffusion system
with B-D response function and obtained some conditions to ensure the stability
and instability conditions of the positive equilibrium solutions for the model. It is
worth noting that the above systems are all autonomous. However, it is very diffi-
cult to study the reaction diffusion ecosystem of more than three species using the
eigenvalue methods mentioned in the above literature, and it is even more difficult
to research nonautonomous reaction diffusion model.

Additionally, most natural environments (such as seasonal effects of weather,
food supplies, mating habits and so forth) are dynamically evolutional such that
the birth rate, death rate, and interaction of a population are not invariable and the
parameters in an real ecosystem model should be a function of time rather than a
constant. Therefore, studying nonautonomous ecosystems is more meaningful than
studying corresponding autonomous ecosystems. In 2015, Li and She [20] stud-
ied a nonautonomous density-dependent predator-prey model and obtained some
sufficient condition of the permanence for the model and the uniqueness of posi-
tive periodic solutions. In 2017, Jiang et al. [11] studied a nonautonomous food
web with B-D functional response and obtained the existence of positive periodic
solution for the model by using Leray-Schauder degree theory. In 2019, Wang et
al. [34] studied a nonautonomous predator-prey model with feedback controls and
prey diffusion and established some easily verifiable sufficient conditions which guar-
antee the permanence and globally stability of positive solution for the system by
using the delayed differential inequalities and Lyapunov stability theory. In 2020,
Tripathi et al. [29] studied a nonautonomous predator-prey model with Crowley-
Martin functional response and achieved some sufficient conditions to ensure the
permanence and globally attractivity of periodic solution for the system. In 2021,
Wu et al. [42] studied a nonautonomous predator-prey model with a prey refuge and
Holling type II schemes and obtained some sufficient conditions that ensure the per-
manence and global stability of the system by using the Lyapunov stability theory
and comparison theorem of differential equations. In 2022, Sk et al. [27] researched
a nonautonomous 3-species predator-prey system and obtained some sufficient con-
ditions that ensure the stability and instability of periodic solution for the model. In
2023, Guo and Ma [9] studied a nonautonomous periodic predator-prey model with
fear effect and general functional responses and achieved some sufficient conditions
to ensure the existence of positive periodic solutions for the model by employing the
coincidence degree theory. It is worth noting that the above systems are all nonau-
tonomous predator-prey model without diffusion. However, it is very difficult to
study the nonautonomous reaction-diffusion ecosystem using the methods obtained
in the above literature.

The analysis of ecosystem stability has always been an important topic that biol-
ogists and mathematicians are committed to researching. However, as we know, the
stability analysis for a nonautonomous predator-prey reaction-diffusion model with
multi-species and ratio-dependent functional responses is rather difficult because
the interaction in different species is more complex and diverse. Based on this, the
researches on this field are still open. More and more experts and scholars focus on
attention to reaction-diffusion models especially with 3-species recently, but their re-
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searches primarily concerned with the competition and mutualism systems without
or with delay (cf. [6, 7, 19, 25, 35, 47, 49]) as well as the prey-predator systems with-
out ratio-dependent functional responses (cf [16, 21, 30, 36]). As is well known, the
methods for studying reaction-diffusion competition and mutualism models are dif-
ficult to directly apply to studying predator-prey models, especially nonautonomous
multi-species reaction-diffusion predator-prey models. At the same time, the intro-
duction of ratio- dependence functions also greatly increases the difficulty of model
research.

Based on the above analysis and inspired by the previous works, in this work,
we focus on the following 3-species nonautonomous ratio-dependent predator-prey
reaction-diffusion model

∂u1(x, t)

∂t
− d1(t)∆u1(x, t)

= u1(x, t)[r1(t)− a11(t)u1(x, t)− a12(t)u2(x, t)

b12(t)u2(x, t) + u1(x, t)

− a13(t)u3(x, t)

b13(t)u3(x, t) + u1(x, t)
],

∂u2(x, t)

∂t
− d2(t)∆u2(x, t)

= u2(x, t)[−r2(t) +
a21(t)u1(x, t)

b12(t)u2(x, t) + u1(x, t)
− a23(t)u3(x, t)],

∂u3(x, t)

∂t
− d3(t)∆u3(x, t)

= u3(x, t)[−r3(t) +
a31(t)u1(x, t)

b13(t)u3(x, t) + u1(x, t)
− a32(t)u2(x, t)],

(1.1)

with the following boundary and initial conditions

∂ui(x, t)

∂n
= 0, (x, t) ∈ ∂Ω×R+, ui(x, 0) = ui0(x) > 0, x ∈ Ω, i = 1, 2, 3, (1.2)

where Ω is a bounded smooth domain in Rn with boundary ∂Ω, ∆ is a Laplace
operator on Ω, ∂

∂n is the outward normal derivation on ∂Ω, ui(x, t) denotes the
density of i-th populations at the time of t and point x = (x1, x2, · · · , xn). From
Table 1.1, it can be seen that the biological significance of the parameters in model
(1.1).

Table 1.1. The biological significance of the parameters in model (1.1)

Parameter Definition Parameter Definition

di(t), (i = 2, 3) The diffusivity rates a1i(t), (i = 2, 3) The capturing rates of the predators

r1(t) The intrinsic growth rate a11(t) The interaction within prey species

ri(t), (i = 2, 3) The death rates a23(t), a32(t) The interaction between two predator species

ai1(t), (i = 2, 3) The conversion rates b1i(t), (i = 2, 3) The interference within predator species

The coefficients of the reaction-diffusion predator-prey model (1.1) are posi-
tive, continuous and ω−periodic functions. The systems (1.1)-(1.2) describe the
interaction between predator and prey species which is based on ratio-dependent
functions. And it is an extended model of the famous Lotka-Volterra predator-prey
model which have one prey and two competing predators, whose reduction sys-
tems have been intensively investigated. Especially, Wang et al. [37] researched the
model (1.1) with feedback controls and without diffusion. In this paper, the strictly
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positive space homogenous periodic solution are studied, and the global asymptotic
stability of the new system are given in which we only need a set of easily verified
conditions. These results show the permanence of the nonautonomous predator-
prey ratio-dependent reaction-diffusion system, the instability of the semitrivial
solutions and trivial solutions.

The article organization are showed as follows. In Section 2, we will give some
preliminary results and definitions. In Section 3, we will investigate the existence
of the strictly positive space homogenous periodic solution of the predator-prey
model. In Section 4, we pay more attention to the globally asymptotically stability
of the strictly positive periodic solution. In Section 5, we will give some numerical
simulation to support the theoretical findings of this article. Lastly, we will give a
conclusion to summarize the important contributions of this article.

Remark 1.1. The innovations and achievements of this article are listed as follows:
(1) By introducing ratio-dependent functional responses and variable coefficient into
the known population models, a new Lotka-Volterra predator-prey model that can
more truly depict the interaction among populations is proposed. (2) By considering
of comparison principle and fixed point method, in this process, some new theories
and methods have been creatively developed, the existence of the strictly positive
space homogenous periodic solution of the new predator-prey system are obtained
in which only a set of simplify verified conditions are needed. (3) By constructing
a novel Lyapunov functions and utilizing the approach of UALS for the parabolic
partial differential equations, the globally asymptotically stability of the space ho-
mogenous strictly positive periodic solution are studied in which some sufficient
conditions are obtained. (4) Compared with the results in [17,18,37,38,41,43], the
results obtained in this article are more general, and provides more convenience for
the further long-term application of Lotka-Volterra predator-prey model.

2. Preliminary

Some definition and preliminary results are showed in this section.

Definition 2.1. Suppose that Ũ(x, t) ≡ (ũ1(x, t), ũ2(x, t), ũ3(x, t)), Û(x, t) = (û1(x,
t), û2(x, t), û3(x, t)), if Ũ(x, t) ≥ Û(x, t) and for (x, t) ∈ Ω×R+

∂ũ1(x, t)

∂t
− d1(t)∆ũ1(x, t)

≥ũ1(x, t)[r1(t)− a11(t)ũ1(x, t)

− a12(t)û2(x, t)

b12(t)û2(x, t) + ũ1(x, t)
− a13(t)û3(x, t)

b13(t)û3(x, t) + ũ1(x, t)
],

∂ũ2(x, t)

∂t
− d2(t)∆ũ2(x, t)

≥ũ2(x, t)[−r2(t) +
a21(t)ũ1(x, t)

b12(t)ũ2(x, t) + ũ1(x, t)
− a23(t)û3(x, t)],

∂ũ3(x, t)

∂t
− d3(t)∆ũ3(x, t)

≥ũ3(x, t)[−r3(t) +
a31(t)ũ1(x, t)

b13(t)ũ3(x, t) + ũ1(x, t)
− a32(t)û2(x, t)],
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∂û1(x, t)

∂t
− d1(t)∆û1(x, t)

≤û1(x, t)[r1(t)− a11(t)û1(x, t)− a12(t)ũ2(x, t)

b12(t)ũ2(x, t) + û1(x, t)

− a13(t)ũ3(x, t)

b13(t)ũ3(x, t) + û1(x, t)
],

∂û2(x, t)

∂t
− d2(t)∆û2(x, t)

≤û2(x, t)[−r2(t) +
a21(t)û1(x, t)

b12(t)û2(x, t) + û1(x, t)
− a23(t)ũ3(x, t)],

∂û3(x, t)

∂t
− d3(t)∆û3(x, t)

≤û3(x, t)[−r3(t) +
a31(t)û1(x, t)

b13(t)û3(x, t) + û1(x, t)
− a32(t)ũ2(x, t)],

and

∂ũi(x, t)

∂n
≥ 0,

∂ûi(x, t)

∂n
≤ 0, (x, t) ∈ ∂Ω×R+,

ũi(x, 0) ≥ ui0(x), ûi(x, 0) ≤ ui0(x), x ∈ Ω̄, i = 1, 2, 3,

then Ũ(x, t) and Û(x, t) are called a pair of ordered UALS for model (1.1)-(1.2).

Lemma 2.1. [32] If Ũ(x, t) and Û(x, t) are a pair of ordered UALS for models
(1.1)-(2.2), then models (1.1)-(1.2) have a unique solution U(x, t). Furthermore, it
follows that Ũ(x, t) ≥ U(x, t) ≥ Û(x, t).

Lemma 2.2. [15] Suppose that the function ϕ(x) : R+ → R is uniformly contin-
uous, and the limit lim

x→∞

∫ x

0
ϕ(s)ds exists and is finite, then lim

x→+∞
ϕ(x) = 0.

Lemma 2.3. [3] Suppose that V ⊂ Rn is compact and convex and the mapping
ϕ : V → V is continuous, then there exists x∗ ∈ V such that ϕ(x∗) = x∗.

3. Existence of the spatial homogeneity periodic so-
lution

Suppose that ϕ(x) is ω−periodic function in R+, we denote

ϕm = sup{ϕ(x), x ∈ R+}, ϕl = inf
{
ϕ(x), x ∈ R+

}
.

Next, we study the following ODE corresponding to model (1.1)

du1(t)

dt
= u1(t)[r1(t)− a11(t)u1(t)− a12(t)u2(t)

b12(t)u2(t) + u1(t)
− a13(t)u3(t)

b13(t)u3(t) + u1(t)
],

du2(t)

dt
= u2(t)[−r2(t) +

a21(t)u1(t)

b12(t)u2(t) + u1(t)
− a23(t)u3(t)],

du3(t)

dt
= u3(t)[−r3(t) +

a31(t)u1(t)

b13(t)u3(t) + u1(t)
− a32(t)u2(t)].

(3.1)
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For the ODE (3.1), we let

M∗1 =
rm1
al11

, m∗1 =
rl1b

l
12b

l
13 − am12b

l
13 − am13b

l
12

am11b
l
12b

l
13

,

M∗2 = M1
am21 − rl2
rl2b

l
12

, M∗3 = M1
am31 − rl3
rl3b

l
13

,

m∗2 =
m1(−am23M3 + al21 − rm2 )

rm2 b
m
12 + am23b

m
12M3

, m∗3 =
m1(−am32M2 + al31 − rm3 )

rm3 b
m
13 + am32b

m
13M2

.

Definition 3.1. Suppose that there exist seven positive real numbers Mi,mi, (i =
1, 2, 3) and T , such that Mi ≥ ui(t) ≥ mi, as t > T for each positive solution
(u1(t), u2(t), u3(t)) of the ODE (3.1) with the positive initials, then ODE (3.1) is
called permanent.

Theorem 3.1. If it holds that

(H1) rl1b
l
12b

l
13 − am12b

l
13 − am13b

l
12 > 0, (H2)al21 − am23M3 − rm2 > 0,

(H3) al31 − am32M2 − rm3 > 0.

Then the ODE (3.1) is permanent.

Proof. When the ODE (3.1) satisfies the conditions (H1) − (H3), we choose six
appropriate positive numbers Mi, mi, (i = 1, 2, 3) to satisfy the following inequality

Mi > M∗i > m∗i > mi > 0. (3.2)

According to the first equation of ODE (3.1), it follows that

du1(t)

dt
≤ u1(t)[r1(t)− a11(t)u1(t)]

≤ u1(t)[rm
1
− al

11
u1(t)]

= al
11
u1(t)[−u1(t) +

rm
1

al
11

]

= al
11
u1(t)[−u1(t) +M∗1 ]

< al
11
u1(t)[−u1(t) +M1].

Based on the comparison theorem of ODE, it follows that
(1) When M1 > u1(t0) > 0, if t ≥ t0, then M1 ≥ u1(t).
(2) When M1 ≤ u1(t0), for a enough large t, we have M1 ≥ u1(t). Otherwise, if

u1(t) > M1, then there is α > 0 such that u1(t) ≥M∗1 + α. Furthermore, one has

du1(t)

dt

∣∣
u1(t)>M1

≤ u1(t)[r1(t)− a11(t)u1(t)] ≤ al
11
u1(t)[M∗1 − u1(t)] < −al

11
αu1(t)

thus, it holds that

u1(t) < u1(t0) exp(−al11α t)→ 0 as t→ +∞.

The above inequality contradicts u1(t) > M1, so we can choose a adequacy large
T1 ≥ t0 ≥ 0 such that

M1 ≥ u1(t) when t > T1. (3.3)
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According to the second equation of ODE (3.1), and using (3.3), we can get

du2(t)

dt
≤u2(t)[−rl2 +

am21M1

b12(t)u2(t) +M1
]

=u2(t)[
−rl2(bl12u2(t) +M1) + am21M1

bl12u2(t) +M1
]

=u2(t)
rl2b

l
12

bl12u2(t) +M1
[−u2(t) +

M1(am21 − rl2)

rl2b
l
12

]

=u2(t)
rl2b

l
12

bl12u2(t) +M1
[−u2(t) +M∗2 ]

<u2(t)
rl2b

l
12

bl12u2(t) +M1
[−u2(t) +M2].

According to the same analysis method as above, one has
(3) When M2 > u2(t0) > 0, if t ≥ t0, then M2 ≥ u3(t),
(4) When M2 ≤ u2(t0), for a adequacy large t, we have M2 ≥ u2(t). Therefore,

we can choose a adequacy large T2 ≥ t0 ≥ 0 such that

M2 ≥ u2(t) when t > T2. (3.4)

Likewise, on the basis of the third equation of ODE (3.1), and using (3.3), it
follows that there is a adequacy large T3 ≥ t0 ≥ 0 such that

M3 ≥ u3(t) when t > T3. (3.5)

Next, we prove that u1(t), u2(t), u3(t) have positive lower bound. According to
the first equation of ODE (3.1), we can obtain that

du1(t)

dt
≥ u1(t)[r1

l − am11u1(t)− am12

bl12

− am13

bl13

]

= u1(t)am11[−u1(t) +
r1

lbl12b
l
13 − am12b

l
13 − am13b

l
12

am11b
l
12b

l
13

]

= u1(t)am11[−u1(t) +m∗1] > u1(t)am11[−u1(t) +m1].

Based on the comparison theorem of ODE, we can obtain that
(5) When u1(t0) > m1, if t ≥ t0, then u1(t) ≥ m1,
(6) When 0 < u1(t0) ≤ m1, for a enough large t, we have m1 ≤ u1(t). Otherwise,

if u1(t) < m1, then there exists β > 0 such that m∗1 − β ≥ u1(t). Furthermore, one
has

du1(t)

dt

∣∣
u1(t)<m1

≥ am11u1(t)[−u1(t) +m∗1] > am11βu1(t),

thus, it follows that u1(t) > u1(t0) exp(am11β t) → +∞ as t → +∞. The above
inequality contradicts u1(t) < m1, so we can choose a adequacy large T ′1 ≥ t0 ≥ 0
such that

m1 ≤ u1(t) when t > T ′1. (3.6)

According to the second equation of ODE (3.1), and invoking (3.5) and (3.6),
we can obtain that

du2(t)

dt
≥u2(t)[−rm2 +

al21m1

bm12u2(t) +m1
− am23M3]
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=u2(t)[
−(rm2 + am23M3)(bm12u2(t) +m1) + al21m1

bm12u2(t) +m1
]

=u2(t)
(rm2 + am23M3)bm12

bm12u2(t) +m1
[−u2(t) +

al21m1 − (rm2 + am23M3)m1

(rm2 + am23M3)bm12

]

=u2(t)
(rm2 + am23M3)bm12

bm12u2(t) +m1
[−u2(t) +m∗2]

>u2(t)
(rm2 + am23M3)bm12

bm12u2(t) +m1
[−u2(t) +m2].

By the similar analysis method above and the comparison theorem of ODE, it holds
that

(7) When u2(t0) > m2, if t ≥ t0, then u2(t) ≥ m2,
(8) When 0 < u2(t0) ≤ m2, if there exists a sufficiently large t, we have m2 ≤

u2(t). Therefore, we can choose a adequacy large T ′2 ≥ t0 ≥ 0 such that

m2 ≤ u2(t) when t > T ′2. (3.7)

Analogously, it follows that there is a adequacy large T ′3 ≥ t0 ≥ 0 such that

0 < m3 ≤ u3(t), m3 < m∗3 =
m1(−am32M2 + al31 − rm3 )

rm3 b
m
13 + am32b

m
13M2

when t > T ′3 . (3.8)

From (3.3)-(3.8), and set T = max
1≤i≤3

{Ti, T ′i}, then we have Mi ≥ ui(t) ≥ mi as

T < t for each positive solution (u1(t), u2(t), u3(t)) of ODE (3.1) with any positive
initial values. The proof of Theorem 3.1 is completed.

Theorem 3.2. If the model (1.1) satisfy the assumptions (H1) − (H3), there is a
strictly positive spatial homogeneity ω−periodic solution U(t) = (u∗1(t), u∗2(t), u∗3(t))
for the model (1.1).

Proof. Based on the existence and uniqueness theorem of solutions of ODE, we
can define a PoincaršŠ mapping ϕ : R3

+ → R3
+ in the following form

ϕ(U0) = U(t, ω, t0, U0),

where U(t, ω, t0, U0) = (u1(t), u2(t), u3(t)) be a positive solution of ODE (3.1) sub-
ject to the initial conditions U0 = (u1(t0), u2(t0), u3(t0)). And define

S =
{

(u1, u2, u3) ∈ R3
+ | mi ≤ ui ≤Mi, i = 1, 2, 3

}
,

then it is quite clear that that S ⊂ R3
+ is a convex and compact set. By the

Theorem 3.1 and the continuity of solution of ODE (3.1) with regard to the initial
values, it is not difficult to know that the mapping ϕ is a continuous mapping
from S to S. Furthermore, from Lemma 2.3 we can obtain that ODE (3.1) has a
positive ω−periodic solution (u∗1(t), u∗2(t), u∗3(t)), t ∈ R+. It is easy to know that
(u∗1(t), u∗2(t), u∗3(t)) is the spatial homogeneity ω−periodic solution for system (1.1).
This finishes the proof of Theorem 3.2.

4. Stability of the spatial homogeneity periodic so-
lution

In present section, we obtain the globally asymptotically stability of the spatial
homogeneity ω−periodic solution of model (1.1) by invoking the new method of



Global stability of periodic solution 2401

UALS for the parabolic partial differential equations and Lyapunov stability theory,
some easily verifiable sufficient conditions are given.

Theorem 4.1. Suppose that the ω−periodic model (1.1) satisfies assumptions (H1)−
(H3) and the following assumptions

(H4)al11 −
(am12 + bm12a

m
21)M2

(bl12m2 +m1)
2 − (am13 + bm13a

m
31)M3

(bl13m3 +m1)
2 > 0,

(H5)− am32 −
am12M1

(bl12m2 +m1)
2 +

al21b
l
12m1

(bm12M2 +M1)
2 > 0,

(H6)− am23 −
am13M1

(bl13m3 +m1)
2 +

al31b
l
13m1

(bm13M3 +M1)
2 > 0,

then there is a spatial homogeneity strictly positive and globally asymptotically stable
ω−periodic solution (u∗1(t), u∗2(t), u∗3(t)). To be precise, the solution of models (1.1)-
(1.2) with any initial values fulfills

lim
t→∞

(ui(x, t)− u∗i (t)) = 0, uniformly for x ∈ Ω̄, i = 1, 2, 3. (4.1)

Proof. By means of Theorem 3.2, we have obtained the existence results, next we
pay more attention to the stability. Let li = min

x∈Ω̄
ui0(x), ri = max

x∈Ω̄
ui0(x), i = 1, 2, 3,

then 0 < li ≤ ui0(x) ≤ ri. Let (ũ1(t), ũ2(t), ũ3(t)) and (û1(t), û2(t), û3(t)) are the
solutions for ODE (3.1) subject to initial values (ũ1(0), ũ2(0), ũ3(0)) = (r1, r2, r3)
and (û1(0), û2(0), û3(0)) = (l1, l2, l3) respectively, then there exist a pair of ordered
UALS (ũ1(t), ũ2(t), ũ3(t)) and (û1(t), û2(t), û3(t)) for (1.1)-(1.2). Therefore, from
Lemma 2.1 systems (1.1)-(1.2) have a unique solution (u1(x, t), u2(x, t), u3(x, t)),
(x, t) ∈ Ω̄×R+, which satisfies

(û1(t), û2(t), û3(t)) ≤ (u1(x, t), u2(x, t), u3(x, t)) ≤ (ũ1(t), ũ2(t), ũ3(t)).

If we can prove

lim
t→∞

(ũi(t)− u∗i (t)) = lim
t→∞

(ûi(t)− u∗i (t)) = 0, (i = 1, 2, 3), (4.2)

then (4.1) is hold. So, if we want to achieve (4.2), we have to prove the solution
(u1(t), u2(t), u3(t)) for ODE (3.1) with any positive initial value (u1(0), u2(0), u3(0))
= (u10, u20, u30) satisfies

lim
t→∞

(ui(t)− u∗i (t)) = 0, i = 1, 2, 3. (4.3)

By means of Theorem 3.1, there exist seven positive real numbers Mi, mi and
T such that

mi ≤ ui(t) ≤Mi when t > T .

Set Lyapunov function

V (t) =

3∑
i=1

|lnui(t)− lnu∗i(t)|, t > 0.
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Suppose that D+V (t) is the right derivation on function V (t), it follows that

D+V (t)

=

3∑
i=1

sgn{ui(t)− u∗i (t)}( 1

ui(t)

dui(t)

dt
− 1

u∗i (t)

du∗i (t)

dt
)

=sgn{u1(t)− u∗1(t)}[−a11(t)(u1(t)− u∗1(t))− a12(t)(
u2(t)

(b12(t)u2(t) + u1(t))

− u∗2(t)

(b12(t)u∗2(t) + u∗1(t))
)− a13(t)(

u3(t)

(b13(t)u3(t) + u1(t))
− u∗3(t)

(b13(t)u∗3(t) + u∗1(t))
)]

+ sgn{u2(t)− u∗2(t)}[−a23(t)(u3(t)− u∗3(t))

+ a21(t)(
u1(t)

b12(t)u2(t) + u1(t)
− u∗1(t)

b12(t)u∗2(t) + u∗1(t)
)] + sgn{u3(t)− u∗3(t)}

[−a32(u2(t)− u∗2(t)) + a31(t)(
u1(t)

b13(t)u3(t) + u1(t)
− u∗1(t)

b13(t)u∗3(t) + u∗1(t)
)]

=sgn{u1(t)− u∗1(t)}[−a11(t)(u1(t)− u∗1(t))

− a12(t)
u∗1(t)(u2(t)− u∗2(t))− u∗2(t)(u1(t)− u∗1(t))

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))

− a13(t)
u∗1(t)(u3(t)− u∗3(t))− u∗3(t)(u1(t)− u∗1(t))

(b13(t)u3(t) + u1(t))(b13(t)u∗3(t) + u1(t))
]

+ sgn{u2(t)− u∗2(t)}[a21(t)b12(t)
u∗2(t)(u1(t)− u∗1(t))− u∗1(t)(u2(t)− u∗2(t))

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))

− a23(t)(u3(t)− u∗3(t))]

+ sgn{u3(t)− u∗3(t)}[a31(t)b13(t)
u∗3(t)(u1(t)− u∗1(t))− u∗1(t)(u3(t)− u∗3(t))

(b13(t)u3(t) + u1(t))(b13(t)u∗3(t) + u∗1(t))

− a32(t)(u2(t)− u∗2(t))]

≤ |u1(t)− u∗1(t)| [−a11(t) +
(a12(t) + a21(t)b12(t))u∗2(t)

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))

+
(a13(t) + a31(t)b13(t))u∗3(t)

(b13(t)u3(t) + u1(t))(b13(t)u∗3(t) + u∗1(t))
]

+ |u2(t)− u∗2(t)| [a32(t) +
(a12(t)− a21(t)b12(t))u∗1(t)

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))
]

+ |u3(t)− u∗3(t)| [a23(t) +
(a13(t)− a31(t)b13(t))u∗1(t)

(b13(t)u2(t) + u1(t))(b13(t)u∗2(t) + u∗1(t))
]

= |u1(t)− u∗1(t)| [−a11(t) +
(a12(t) + a21(t)b12(t))u∗2(t)

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))

+
(a13(t) + a31(t)b13(t))u∗3(t)

(b13(t)u3(t) + u1(t))(b13(t)u∗3(t) + u∗1(t))
]

+ |u2(t)− u∗2(t)| [a32(t) +
a12(t)u∗1(t)

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))
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− a21(t)b12(t)u∗1(t)

(b12(t)u2(t) + u1(t))(b12(t)u∗2(t) + u∗1(t))
]

+ |u3(t)− u∗3(t)| [a23(t) +
a13(t)u∗1(t)

(b13(t)u2(t) + u1(t))(b13(t)u∗2(t) + u∗1(t))
]

− a31(t)b13(t)u∗1(t)

(b13(t)u2(t) + u1(t))(b13(t)u∗2(t) + u∗1(t))
]

≤− |u1(t)− u∗1(t)| [al11 −
(am12 + am21b

m
12)M2

(bl12m2 +m1)
2 − (am13 + am31b

m
13)M3

(bl13m3 +m1)
2 ]

− |u2(t)− u∗2(t)| [−am32 −
am12M1

(bl12m2 +m1)
2 +

al21b
l
12m1

(bm12M2 +M1)
2 ]

− |u3(t)− u∗3(t)| [−am23 −
am13M1

(bl13m3 +m1)
2 +

al31b
l
13m1

(bm13M3 +M1)
2 ].

In view of conditions (H4)− (H6), one has

α = min{al11 −
(am12 + am21b

m
12)M2

(bl12m2 +m1)
2 − (am13 + am31b

m
13)M3

(bl13m3 +m1)
2

− am32 −
am12M1

(bl12m2 +m1)
2 +

al21b
l
12m1

(bm12M2 +M1)
2 ,

− am23 −
am13M1

(bl13m3 +m1)
2 +

al31b
l
13m1

(bm13M3 +M1)
2 }

>0.

Thus,

D+V (t) ≤ −α
3∑

i=1

|ui(t)− u∗i (t)| . (4.4)

Integrating (4.4) from T to t, t0 ≤ T , we have

V (t) + α

∫ t

T

(

3∑
i=1

|ui(t)− u∗i (t)|)ds ≤ V (T ) < +∞.

Therefore, ∫ t

T

(

3∑
i=1

|ui(t)− u∗i (t)|)ds ≤ V (T )

α
< +∞. (4.5)

By (4.5), we have
3∑

i=1

|ui(t)− u∗i (t)| ∈ L1(T,+∞).

Because of the permanence of ODE (3.1),
3∑

i=1

|ui(t)− u∗i (t)| is uniformity continu-

ous. With help of Lemma 2.2, it follows that

lim
t→+∞

|ui(t)− u∗i (t)| = 0, (i = 1, 2, 3).

This ends the proof of Theorem 4.1.
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5. Numerical example

An example is given to validate the results achieved in this article. To prove the
correctness of the Theorem 4.1, we choose the 2-periodic function as the coefficients
of ODE (1.1) and discuss the following 3-species reaction-diffusion 2-periodic model
with ratio-dependent functions. Based on the assumptions (H1)− (H6) of Theorem
4.1, with the help of some calculations we choose some special values of parame-
ters shown in models (5.1)-(5.2). It should be noted that, the selection of above
parameters is not unique.

∂u1(x, t)

∂t
− ∂2u1(x, t)

∂x2
= u1(x, t)[(21 + cosπt)− (13 + sinπt)u1(x, t)

− (0.075 + 0.025 sinπt)u2(x, t)

(0.95 + 0.05 sinπt)u2(x, t) + u1(x, t)

− (0.065 + 0.035 sinπt)u3(x, t)

(0.97 + 0.07 sinπt)u3(x, t) + u1(x, t)
],

t > 0, x ∈ (0, 2π),

∂u2(x, t)

∂t
− ∂2u2(x, t)

∂x2
= u2(x, t)[−(3.25 + 0.25 cosπt)

+
(4.9 + 0.1 sinπt)u1(x, t)

(0.95 + 0.05 sinπt)u2(x, t) + u1(x, t)

−(0.12 + 0.1 sinπt)u3(x, t)], t > 0, x ∈ (0, 2π),

∂u3(x, t)

∂t
− ∂2u3(x, t)

∂x2
= u3(x, t)[−(3.1 + 0.1 cosπt)

+
(4.8 + 0.1 sinπt)u1(x, t)

(0.97 + 0.07 sinπt)u3(x, t) + u1(x, t)

−(0.13 + 0.1 sinπt)u2(x, t)], t > 0, x ∈ (0, 2π),

(5.1)

with the following initial values and Neumman boundary conditions

u1(x, 0) = 1.6, u2(x, 0) = 0.8, u3(x, 0) = 0.85, x ∈ (0, 2π),

∂u1

∂n
=
∂u2

∂n
=
∂u3

∂n
= 0, t > 0, x = 0, 2π.

(5.2)

By calculating, we have

M∗1 ≈ 1.8333,M1 = 1.8334,m∗1 ≈ 1.4127,m1 = 1.4126,

M∗2 ≈ 1.3581,M2 = 1.3582,M∗3 ≈ 1.2902,M3 = 1.2903,

m∗2 ≈ 0.3794,m2 = 0.3793,m∗3 ≈ 0.4593,m3 = 0.4592,

rl1b
l
12b

l
13 − am12b

l
13 − am13b

l
12 = 16.02,

al21 − am23M3 − rm2 ≈ 1.0161, al31 − am32M2 − rm3 ≈ 1.1876,

al11 −
(am12 + bm12a

m
21)M2

(bl12m2 +m1)
2 − (am13 + bm13a

m
31)M3

(bl13m3 +m1)
2 ≈ 7.7374,

−am32 −
am12M1

(bl12m2 +m1)
2 +

al21b
l
12m1

(bm12M2 +M1)
2 ≈ 0.3095,

−am23 −
am13M1

(bl13m3 +m1)
2 +

al31b
l
13m1

(bm13M3 +M1)
2 ≈ 0.3176.
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It is quite clear that that models (5.1)-(5.2) satisfy the assumptions of Theorem
4.1. From Theorem 4.1 it is easy to know that the system (5.1) has a spatial
homogeneity strictly positive 2-periodic solution (u∗1(t), u∗2(t), u∗3(t)). Moreover, the
solution (u1(x, t), u2(x, t), u3(x, t)) of models (5.1)-(5.2) fulfills

lim
t→∞

(ui(x, t)− u∗i (t)) = 0, uniformly for x ∈ (0, 2π), i = 1, 2, 3.

By employing the finite differences method and the MATLAB 7.1 software package,
we can obtain some numerical solutions for the systems (5.1)-(5.2) which are shown
in Figure 5.1 to Figure 5.3. From Figures 5.1-5.3, it is not difficult to find that the
systems (5.1)-(5.2) have a strictly positive globally asymptotically stable spatial
homogeneity periodic solution.

Studying the conditions under which ecosystems are in equilibrium and how to
artificially control them has always been an important topic worthy of in-depth
research. From theoretical results (Theorem 4.1) and numerical simulations (Fig-
ures 5.1-5.3) obtained in this paper, it can be found that the 3-species reaction-
diffusion nonautonomous system (1.1)-(1.2) can be in equilibrium when the prey
grows rapidly enough and the two predator’s capture rates are high enough. To
be precise, in models (5.1)-(5.2), the densities of prey and predator will oscillate
periodically with a period of 2 and distribute homogeneously in space when the
time is long enough.

Figure 5.1. Evolution process of the density for the species u1(x, t) of systems (5.1)-(5.2.

Figure 5.3. Evolution process of the density for the species u3(x, t) of systems (5.1)-(5.2).
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Figure 5.2. Evolution process of the density for the species u2(x, t) of systems (5.1)-(5.2).

6. Conclusion

This article shows the great strength of UALS approach for nonlinear nonau-
tonomous reaction- diffusion equations. It’s widely used for solving the problems for
nonlinear differential equations in chemistry, engineering and mathematical physics
etc. The technique constructing Lyapunov function and a pair of ordered UALS
provides a novel approach for reference to deal with the nonlinear differential equa-
tion.

The problem of periodic solution for a 3-species nonautonomous reaction-diffusion
predator-prey system which have ratio-dependent functional responses is studied.
The existence and stability of the space homogenous strictly positive periodic solu-
tion are obtained for the nonautonomous nonlinear reaction-diffusion equations only
for some easily verifiable criterions. These criterions improve and generalize some
previous results. It is especially worth mention that it’s flexible for applications
due to the sufficient conditions obtained in this article are very simple. It should be
noted that in this study, we do not considered the delays in the model. However, in
ecosystems, time delays are widespread and can affect the stability of the system.
Consequently, our next goal is to study the multi-species nonautonomous diffusion
ecosystem with time delays.

Acknowledgements

This work is supported by the Yunnan Provincial Key Program of Curriculum Ide-
ology and Politics (Research on the ideological and political teaching system of
college mathematics curriculum integrated with the educational concept of “San
Quan Yu Ren”), the General Projects of Local Science and Technology Devel-
opment Funds Guided by the Central Government (Grant nos. 2022ZYD0005,
2022ZYD0009), the Scientific Research Fund Project of Education Department of
Yunnan Province (Grant no. 2023J1308), the National Science Foundation of China
(Grant no. 12171343), and the Youth Science Technology Innovation Team Project
of Sichuan Province (Grant no. 2022JDTD0019).



Global stability of periodic solution 2407

Authors’ contributions

L. Jia, J. Huang and C. Wang contributed equally to each part of this article.

References

[1] T. Agrawal and M. Saleem, Complex dynamics in a ratio-dependent two-
predator one-prey model, Computational & Applied Mathematics, 2015, 34(1),
265–274.

[2] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-
dependence, Journal of Theoretical Biology, 1989, 139(3), 311–326.

[3] W. Basener, Topology and its Applications, Hoboken, NJ: John Wiley & Sons,
2006.

[4] M. Belabbas, A. Ouahab and F. Souna, Rich dynamics in a stochastic predator-
prey model with protection zone for the prey and multiplicative noise applied
on both species, Nonlinear Dynamics, 2021, 106(3), 2761–2780.

[5] C. Conser, D. L. Angelis, J. S. Ault and D. B. Olson, Effects of spatial grouping
on the functional response of predators, Theoretical Population Biology, 1999,
56(1), 65–75.

[6] E. Cruz, M. Negreanu and J. I. Tello, Asymptotic behavior and global existence
of solutions to a two-species chemotaxis system with two chemicals, Zeitschrift
für angewandte Mathematik und Physik, 2018, 64(4), ID: 107.

[7] S. M. Fu and S. B. Cui, Persistence in a periodic competitor-competitor-
mutualist diffusion system, Journal of Mathematical Analysis and Applications,
2001, 263, 234–245.

[8] Y. J. Gao and B. T. Li, Dynamics of a ratio-dependent predator-prey system
with a strong Allee effect, Discrete and Continuous Dynamical Systems-Series
B, 2013, 18(9), 2283–2313.

[9] K. Guo and W. B. Ma, Existence of positive periodic solutions for a periodic
predator-prey model with fear effect and general functional responses, Advances
in Continuous and Discrete Models, 2023, 2023, Article ID: 22.

[10] M. Haque, Ratio-dependent predator-prey models of interacting populations,
Bulletin of Mathematical Biology, 2009, 71(2), 430–452.

[11] X. Jiang, G. Meng and Z. K. She, Existence of periodic solutions in a nonau-
tonomous food web with Beddington-DeAngelis functional response, Applied
Mathematics Letters, 2017, 71, 59–66.

[12] X. Jiang, R. Zhang and Z. K. She, Dynamics of a diffusive predator-prey system
with ratio- dependent functional response and time delay, International Journal
of Biomathematics, 2020, 13(6), Article ID: 2050036.

[13] C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-
dependent predator-prey models, Bulletin of Mathematical Biology, 1999, 61(1),
19–32.

[14] D. Kesh, A. K. Sarkar and A. B. Roy, Persistence of two prey-one predator
system with ratio- dependent predator influence, Mathematical Methods in the
Applied Sciences, 2000, 23(4), 347–356.



2408 L. Jia, J. Huang & C. Wang

[15] H. H. Khalil, Nonlinear Systems, 3rd ed, Englewood Cliffs, NJ: Prentice Hall,
2002.

[16] K. I. Kim and Z. Lin, Blowup in a three-species cooperating model, Applied
Mathematics Letters, 2004, 17, 89–94.

[17] W. Ko and I. Ahn, A diffusive one-prey and two-competing-predator system
with a ratio- dependent functional response: I, long time behavior and stability
of equilibria, Journal of Mathematical Analysis and Applications, 2013, 397(1),
9–28.

[18] W. Ko and I. Ahn, A diffusive one-prey and two-competing-predator system
with a ratio- dependent functional response: II stationary pattern formation,
Journal of Mathematical Analysis and Applications, 2013, 397(1), 29–45.

[19] A. Leung, A study of 3-species prey-predator reaction-diffusions by monotone
schemes, Journal of Mathematical Analysis and Applications, 1984, 100, 583–
604.

[20] H. Y. Li, Z. K. She, Uniqueness of periodic solutions of a nonautonomous
density-dependent predator-prey system, Journal of Mathematical Analysis and
Applications, 2015, 422, 886–905.

[21] L. Li, Z. Jin and J. Li, Periodic solutions in a herbivore-plant system with time
delay and spatial diffusion, Applied Mathematical Modelling, 2016, 40(7–8),
4765–4777.

[22] A. J. Lotka, Elements of Physical Biology, New York: Williams and Wilkins,
1925.

[23] P. S. Mandal, Noise-induced extinction for a ratio-dependent predator-prey
model with strong Allee effect in prey, Physica A: Statistical Mechanics and
its Applications, 2018, 496, 40–52.

[24] P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species
predator-prey model, Journal of Differential Equations, 2004, 200(2), 245–273.

[25] C. V. Pao, Global asymptotic stability of Lotka-Volterra 3-species reaction-
diffusion systems with time delays, Journal of Mathematical Analysis and Ap-
plications, 2003, 281, 86–204.

[26] C. V. Pao and Y. M. Wang, Numerical solutions of a three-competition Lotka-
Volterra system, Applied Mathematics and Computation, 2008, 204, 423–440.

[27] N. Sk, P. K. Tiwari and S. Pal, A delay nonautonomous model for the impacts
of fear and refuge in a three species food chain model with hunting cooperation,
Mathematics and Computers in Simulation, 2022, 192, 136–166.

[28] X. Tian and S. J. Guo, Spatio-temporal patterns of predator-prey model with
Allee effect and constant stocking rate for predator, International Journal of
Bifurcation and Chaos, 2021, 31(16), Article ID: 2150249.

[29] J. P. Tripathi, S. Bugalia, V. Tiwari and Y. Kang, A predator-prey model
with Crowley-Martin functional response: A nonautonomous study, Natural
Resource Modelling, 2020, 33, e12287.

[30] C. Vargas-De-Leon, Global stability of nonhomogeneous coexisting equilibrium
state for the multispecies Lotka-Volterra mutualism models with diffusion,
Mathematical Methods in the Applied Sciences, 2022, 45(4), 2123–2130.



Global stability of periodic solution 2409

[31] V. Volterra, Variazionie fluttuazioni del numero d’individui in specie animali
conviventi, Memorie deU’Accademia del Lincei, 1926, 2, 31–113.

[32] C. Y. Wang, Existence and stability of periodic solutions for parabolic systems
with time delays, Journal of Mathematical Analysis and Application, 2008,
339(2), 1354–1361.

[33] C. Y. Wang, L. R. Li, Y. Q. Zhou and R. Li, On a delay ratio-dependent
predator-prey system with feedback controls and shelter for the prey, Interna-
tional Journal of Biomathematics, 2018, 11(7), Article ID:1850095.

[34] C. Y. Wang, N. Li, Y. Q. Zhou, X. C. Pu and R. Li, On a multi-delay Lotka-
Volterra predator-prey model with feedback controls and prey diffusion, Acta
Mathematica Scientia, Series B, 2019, 39(2), 429–448.

[35] C. Y. Wang, S. Wang and L. R. Li, Periodic solution and almost periodic
solution of a nonmonotone reaction-diffusion system with time delay, Acta
Mathematica Scientia, 2010, 30A, 517–524. (in Chinese).

[36] C. Y. Wang, S. Wang, F. P. Yang and L. R. Li, Global asymptotic stability of
positive equilibrium of three-species Lotka-Volterra mutualism models with dif-
fusion and delay effects, Applied Mathematical Modelling, 2010, 34(12), 4278–
4288.

[37] C. Y. Wang, Y. Q. Zhou, Y. H. Li and R. Li, Well-posedness of a ratio-
dependent Lotka-Volterra system with feedback control, Boundary Value Prob-
lems, 2018, 2018, Article ID: 117.

[38] J. F. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey
system with Holling type III functional response, Journal of Dynamics and
Differential Equations, 2017, 29, 1383–1409.

[39] M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model
with double free boundaries, Discrete and Continuous Dynamical Systems -A,
2018, 38(5), 2591–2591.

[40] F. R. Wei, C. H. Wang and S. L. Yuan, Spatial dynamics of a diffusive predator-
prey model with Leslie-Gower functional response and strong Allee effect, Jour-
nal of Nonlinear Modeling and Analysis, 2020, 2(2), 267–285.

[41] D. Y. Wu and H. Y. Zhao, Spatiotemporal dynamics of a diffusive predator-prey
system with Allee effect and threshold hunting, Journal of Nonlinear Science,
2020, 30, 1015–1054.

[42] Y. M. Wu, F. D. Chen and C. F. Du, Dynamic behaviors of a nonautonomous
predator-prey system with Holling type II schemes and a prey refuge, Advances
in Difference Equations, 2021, 2021, Article ID: 62.

[43] X. P. Yan and C. H. Zhang, Spatiotemporal dynamics in a diffusive predator-
prey system with Beddington-DeAngelis functional response, Qualitative The-
ory of Dynamical Systems, 2022, 21(4), Article ID: 166.

[44] W. B. Yang, Y. L. Li, J. H. Wu and H. X. Li, Dynamics of a food chain model
with ratio-dependent and modified Leslie-Gower functional responses, Discrete
and Continuous Dynamical Systems-B, 2015, 20(7), 2269–2290.

[45] T. Yu, Q. L. Wang and S. Q. Zhai, Exploration on dynamics in a ratio-
dependent predator-prey bioeconomic model with time delay and additional food
supply, Mathematical Biosciences and Engineering, 2023, 20(8), 15094–15119.



2410 L. Jia, J. Huang & C. Wang

[46] G. Zhang, W. Wang and X. Wang, Coexistence states for a diffusive one-prey
and two-predators model with B-D functional response, Journal of Mathemati-
cal Analysis and Applications, 2012, 387(2), 931–948.

[47] L. Zhang and X. X. Bao, Propagation dynamics of a three-species nonlocal
competitive- cooperative system, Nonlinear Analysis: Real World Applications,
2021, 58, ID: 103230.

[48] X. Zhao and R. Z. Yang, Dynamical property analysis of a delayed diffusive
predator-prey model with fear effect, Journal of Nonlinear Modeling and Anal-
ysis, 2023, 5(1), 1–23.

[49] S. Zheng, A reaction-diffusion system of a competitor-competitor-mutualist
model, Journal of Mathematical Analysis and Applications, 1993, 124, 254–
280.

[50] J. Zhou and C. G. Kim, Positive solutions for a Lotka-Volterra prey-predator
model with cross- diffusion and Holling type-II functional response, Science
China-Mathematics, 2014, 57(5), 991–1010.


	Introduction
	Preliminary
	Existence of the spatial homogeneity periodic solution
	Stability of the spatial homogeneity periodic solution
	Numerical example
	Conclusion

