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Abstract In this paper, we explore the complete synchronization and quasi-
projective synchronization in a class of stochastic delayed quaternion-valued
neural networks, utilizing a state-feedback control scheme. The studied neural
networks into real-valued networks are short of known decomposing, by de-
signing a very general nonlinear controller, according to the quaternion form
Itô formula with a number of inequality techniques in the configuration of
quaternion domain, we obtained a quasi-projective synchronization criterion
for drive-response networks. Moreover, we estimate the error margin for quasi-
projective synchronization. At last, the theoretical results are confirmed by a
numerical simulation.
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1. Introduction

Stochastic neural networks (SNNs) is a class of neural network model that incor-
porates randomness into its structure or training process, which is set up by intro-
ducing random variations into the network, or by giving random transfer functions
to the neurons of the network, or giving them random weights. When simulating
the real nervous system and artificial neural networks, the presence of noise is in-
evitable, as highlighted in previous studies [1, 23, 24]. Hence, the exploration of
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SNNs holds significant practical importance [9, 10, 16, 20, 36, 39, 42]. Furthermore,
time delays are inevitably introduced in artificial neural networks and ecosystems
due to the limited switching rate of neurons and amplifiers.

A natural progression from the traditional neural networks, the complex-valued
neural networks (CNNs) and quaternion-valued neural networks (QVNNs) have
found extensive applications in various domains, including robotics, satellite atti-
tude control, image recognition, integrated control, and many other fields [12,21,29].
Currently, many researches highlight the greater versatility and practicality of non-
autonomous neural networks compared to autonomous ones. Nonetheless, there
remains an inadequate focus on the dynamic analysis of QVNNs with time de-
lay [3, 34, 38]. Furthermore, in the quaternion domain, processing information has
made more complex properties and resilient execution than complex-valued one.
Quaternion-valued model in neural networks has quite complicated competencies
as compared to the complex-valued neural networks(CVNNs) models since that can
be solved in QVNNs but cannot be solved for the CVNN models [14].

Since Pecora and Carroll proposed the idea of achieving synchronization be-
tween the driving and responding components in coupled chaos models [31], chaos
synchronization generates significant interest and attention. This is due to its wide-
ranging applications in fields such as automatic control, biosystems science, infor-
mation technology, and more [11, 22, 27]. So far, various classes of synchroniza-
tion like complete synchronization [6, 13, 30], phase synchronization [33, 37], phase
synchronization [40], lag synchronization [47], pinning synchronization and clus-
ters synchronization have been investigated [41]. Later, scholars also proposed the
concept of quasi-synchronization [26]. Besides, in contrast to the aforementioned
synchronization types, projective synchronization can achieve more faster and faster
communications due to its proportional feature [2, 7, 28]. Recently, projective syn-
chronization has been extended to quasi-projective synchronization in [17]. The
instability of dynamic neural network systems is often induced by random distur-
bances arising from environmental uncertainties. As a result, the synchronization
problem in stochastic neural network systems has garnered considerable research
attention for the past few years [8, 19, 46, 48]. Due to the difficulty in dealing
with random perturbations, and complex-valued neural network systems, there are
few results considering the quasi-synchronization issue of complex-valued stochastic
neural networks (CVSNNs) [18, 25]. In fact, complex-valued model in neural net-
works has quite complicated competencies as compared to the real valued stochastic
neural networks(RVSNNs) models since that can be solved in CVSNNs but cannot
be solved for the RVSNNs models.

Recently, scholars have been investigating synchronization in QVNNs [5, 15, 32,
43–45], as well as examining the stability of quaternion-valued stochastic neural
networks (QVSNNs) [4,35]. However, it is still an open challenge regarding how to
explore the quasi-projective synchronization of the stochastic delayed quaternion-
valued neural networks (SDQVNNs) using state-feedback control strategy. There-
fore, delving into the quasi-projective synchronization of SDQVNNs with state-
feedback control strategy holds significant value.

To address the above discussion, we utilize a non-decomposition approach to an-
alyze the synchronization dynamics of SDQVNNs through state feedback control.
All in all, the primary contributions of this dissertation are highlighted as follows.
Firstly, in this paper, the quasi-projective synchronization of the SDQVNNs with
state feedback control has been considered. Secondly, by incorporating the quater-
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nionic version of Itô formula, we derive a quasi-projective synchronization criterion
along with several specific scenarios. Furthermore, we assess the synchronization
error limit and elucidate its connection with the controller parameters. Thirdly,
without dividing the SDQVNNs model into four real-valued models, the exam-
ined SDQVNNs is implemented as a whole one. Finally, the proposed method can
be applied for investigating the quasi-projective synchronization of other sorts of
SDQVNNs with state-feedback control.

The primary contributions of this paper are structured as follows: Section 2
presents the problem formulation. In Section 3, we derive criteria to guarantee
quasi-projective synchronization in the networks under consideration. Section 4
offers a numerical example to validate our theoretical findings. We conclude with
discussions and outline future research directions in the last section.

2. Problem formulation

In the present work, we investigate the following SDQVNNs with time delays:

dyp(t) =

[
− ap(t)yp(t) +

m∑
q=1

bpq(t)fq
(
yq(t)

)
+

m∑
q=1

cpq(t)gq
(
yq(t− η(t))

)
+Up(t)

]
dt+

m∑
q=1

σpq
(
yq(t− η(t))

)
dwq(t), (2.1)

where p ∈ {1, 2, . . . ,m} := Λ, n denotes the number of neurons in each layer, while
other relevant variables and parameters of the neural networks (2.1) are explained
in Table 1.

Table 1. Parameters values for the SDQVNNs (2.1)

Symbols Meaning

yp(t) State of the p-th neuron at time t

ap(t) Self-feedback connection weight

bpq(t), cpq(t) The synaptic weights of delayed feedback

Up(t) External input on the p-th unit at time t

fq, gq The activation functions of signal transmission

w(t) =
(
w1(t), w2(t), . . . , wm(t)

)T m-dimensional Brownian motion

σpq Borel measurable function

σ = (σpq)m×m Diffusion coefficient matrix

η(t) Time-varying, satisfying 0 ≤ η(t) ≤ η, and η is a constant

(Ω,F , {Ft}t≥0,P) stand for the complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (that is, it is right continuous, and F0

contains all P-null sets), and E represents the expectation operator with respect
to probability space (Ω,F , {Ft}t≥0,P). CbF0

([−η, 0],Qm) denotes the family of all
bounded, F0-measurable, BC([−η, 0],Qm)-valued random variables φ.

We represent the skew field of quaternion number q as

Q := {q = qR + iqI + jqJ + kqK},

where qR, qI , qJ , qK ∈ R, i, j and k represent imaginary units, and the quaternion
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satisfies the following Hamilton rules:{
ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1,

∀y ∈ Q, let y∗ = yR − iyI − jyJ − kyK , and with the norm

‖y‖Q =
√
yy∗ =

√
(yR)2 + (yI)2 + (yJ)2 + (yK)2.

For every y = (y1, y2, . . . , ym)T ∈ Qm, endowed with the norm ‖y‖0 = max
p∈Λ
{‖yp‖Q}.

Set

ap = inf
t∈R
|ap(t)|, b̄pq = sup

t∈R
‖bpq(t)‖Q, c̄pq = sup

t∈R
‖cpq(t)‖Q, Ūp = sup

t∈R
‖Up(t)‖Q.

The initial values of the networks (2.1) are described by

yp(s) = φp(s), s ∈ [−η, 0], p ∈ Λ,

where φp(s) ∈ CbF0
([−η, 0],Q).

In this article, we make the following assumptions about activation functions.

(S1) fq(0) = gq(0) = σpq(0) = lq(0) = 0, ∀u, v ∈ Q and there exist positive
constants Lfq , Lgq , L

σ
pq and Llq such that∥∥fq(u)− fq(v)

∥∥
Q ≤ L

f
q

∥∥u− v∥∥Q , ∥∥gq(u)− gq(v)
∥∥
Q ≤ L

g
q

∥∥u− v∥∥Q,∥∥σpq(u)− σpq(v)
∥∥
Q ≤ L

σ
pq

∥∥u− v∥∥Q , ∥∥lq(u)− lq(v)
∥∥
Q ≤ L

l
q

∥∥u− v∥∥Q,
where p, q ∈ Λ.

3. Synchronization control of stochastic neural net-
works

In the present section, by considering a very general nonlinear state-feedback con-
troller, using stochastic analysis theory, Itô formula and the construction of appro-
priate Lyapunov functions. We will discuss the quasi-projective synchronization
problem for network (2.1).

For this purpose, we consider the network (2.1) as a driver one, and the corre-
sponding response network as follows:

dzp(t) =

[
− ap(t)zp(t) +

m∑
q=1

bpq(t)fq
(
zq(t)

)
+

m∑
q=1

cpq(t)gq
(
zq(t− η(t))

)
+Up(t) + Ep(t)

]
dt+

m∑
q=1

σpq
(
zq(t− η(t))

)
dwq(t), (3.1)

where p ∈ Λ, zp(t) ∈ Q indicates the state of the response network, and Ep(t) ∈ Q
is a state-feedback controller, the other symbols are the same as network (2.1).
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The initial values of network (3.1) are described by

zp(s) = ψp(s), s ∈ [−η, 0], p ∈ Λ,

where ψp(s) ∈ CbF0

(
[−η, 0],Q

)
. Through feedback control, the controller Ep can be

described as

Ep(t) = −θp(t)hp(t) +

m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
, (3.2)

where θp ∈ C(R,R+), dpq ∈ C(R,Q), lq : Q→ Q, p, q ∈ Λ.
Let hp(t) = zp(t) − λyp(t) define as synchronization error, in which λ denoted

by projective parameters, then the error network between (2.1) and (3.1) can be
expressed as

dhp(t) =

[
−
(
ap(t) + θp(t)

)
hp(t) +

m∑
q=1

bpq(t)
(
fq
(
zq(t)

)
− λfq

(
yq(t)

))
+

n∑
q=1

bpq(t)
(
gq
(
zq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
zq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+ (1− λ)Up(t)

]
dt

+

m∑
q=1

(
σpq
(
zq(t− η(t))

)
− λσpq

(
yq(t− η(t))

))
dwq(t)

=

[
−
(
ap(t) + θp(t)

)
hp(t) +

m∑
q=1

bpq(t)fq
(
hq(t)

)
+

m∑
q=1

cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

bpq(t)
(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))
+

m∑
q=1

cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)

]
dt+

m∑
q=1

σpq
(
hq(t− η(t))

)
dwq(t)

+

m∑
q=1

(
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

))
dwq(t), (3.3)

where

fq
(
hq(t)

)
:= fq

(
zq(t)

)
− fq

(
λyq(t)

)
,
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gq
(
hq(t− η(t))

)
:= gq

(
zq(t− η(t))

)
− gq(λyq(t− η(t))),

lq
(
hq(t− η(t))

)
:= lq

(
zq(t− η(t))

)
− lq

(
λyq(t− η(t))

)
,

σpq
(
hq(t− η(t))

)
:= σpq

(
zq(t− η(t))

)
− σpq

(
λyq(t− η(t))

)
.

Definition 3.1. [4] Consider an m-dimensional quaternion-valued stochastic dif-
ferential equation:

dH(t) = F
(
t,H(t), H(t− η(t))

)
dt+ G

(
t,H(t), H(t− η(t))

)
dW (t),

where H(t) = (H1(t), H2(t), . . . ,Hm(t))T ∈ Qm. For V (t,H) : R+ × Qm → R+(in
reality, we can represent V (t,H) = V (t,H,H∗), R-derivative of V can be defined
as

∂V (t,H)

∂H

∣∣∣∣
H∗=const

=

(
∂V (t,H(t))

∂H1
, . . . ,

∂V (t,H(t))

∂Hm

)∣∣∣∣
H∗=const

and

∂V (t,H)

∂H∗

∣∣∣∣
H=const

=

(
∂V (t,H(t))

∂H∗1
, . . . ,

∂V (t,H(t))

∂H∗m

)∣∣∣∣
H=const

,

where const is the constant. Denote by C1,2(R+×Qm,R+) the family of all nonneg-
ative functions V (t,H) on R+×Qm, which are once continuously differentiable in t
and twice differentiable in H and H∗. Thus, for V ∈ C1,2(R+×Qm,R+), according
to Itô’s formula, the quaternion form is as follows:

dV (t,H) =
∂V (t,H)

∂t
dt+

∂V (t,H)

∂H
dH +

∂V (t,H)

∂H∗
dH∗

+
1

2

m∑
p,q=1

∂2V (t,H)

∂Hp∂Hq
dHpdHq +

1

2

m∑
p,q=1

∂2V (t,H)

∂H∗p∂H
∗
q

dH∗pdH∗q

+

m∑
p,q=1

∂2V (t,H)

∂Hp∂H∗q
dHpdH

∗
q

= LV (t,H)dt+

[
∂V (t,H)

∂H
G(t) +

∂V (t,H)

∂H∗
G∗(t)

]
dW (t),

where

F(t) = F(t,H(t), H(t− η(t))), G(t) = G(t,H(t), H(t− η(t))),

∂2V (t,H)

∂H2
=

(
∂2V (t,H)

∂Hp∂Hq

)
m×m

,
∂2V (t,H)

∂(H∗)2
=

(
∂2V (t,H)

∂H∗p∂H
∗
q

)
m×m

,

∂2V (t,H)

∂H∂H∗
=

(
∂2V (t,H)

∂Hp∂H∗q

)
m×m

, dW (t)dW (t) = dt,

dW (t)dt = dtdW (t) = dtdt = 0,

and operator LV (t,H) are described by

LV (t,H) =
∂V (t,H)

∂t
+
∂V (t,H)

∂Y
F(t) +

∂V (t,H)

∂Y ∗
F∗(t)

+
1

2
GT (t)

∂2V (t,H)

∂(H)2
G(t) +

1

2
(G∗(t))T ∂

2V (t,H)

∂(H∗)2
G∗(t)

+GT (t)
∂2V (t,H)

∂H∂H∗
G∗(t).
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Definition 3.2. [8] LetW represent the area where the network (2.1) shows chaotic
behavior. Drive-response networks (2.1) and (3.1) can achieve quasi-projective syn-
chronization in mean square via an error bound κ > 0, if lim

t→∞
E‖z(t)−λy(t)‖20 ≤ κ is

satisfied for any initial conditions, in which λ is stand for the projective parameters.
Especially, networks (2.1) and (3.1) can achieve quasi-synchronized in mean square
if λ = 1. Moreover, networks (2.1) and (3.1) can achieve complete synchronization
if lim
t→∞

E‖z(t)− y(t)‖20 = 0.

Lemma 3.1. [8] Supposing that function h(t) : [t0 − η,+∞) → R is continuous
and the following condition hold.

dh(t)

dt
≤ −ρh(t) + %h(t− η(t)) + ϑ

for t ≥ t0, where ρ > % > 0, ϑ > 0, η(t) ≤ η, it gains

h(t) ≤ sup
s∈[−η,0]

h(s)e−ξt +
ϑ

ξ
,

where ξ > 0 is the unique solution to algebra equation ρ− %eξη − ξ = 0.

Theorem 3.1. Assumption (S1) holds, network (2.1) is quasi-projectively synchro-
nized with (3.1) in mean square under the linear controller (3.2), if there exist
constants ρ, % > 0, such that

ρ = min
p∈Λ

{
2ap + 2θp − 7−

m∑
q=1

(
b̄qpL

f
q

)2}
> 0,

% = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσqp
)2}

> 0

and ρ − % > 0. Simultaneously, the stochastic synchronization error networks con-
verges exponentially in mean square to the following region

W =

{
h(t) ∈ Qm

∣∣∣E‖h(t)‖20 ≤
ϑ

ξ

}
,

where

ϑ = max
p∈Λ

{
(1− λ)∗(1− λ)

(
Ūp
)2

+
m∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσpq
)2]}

> 0

and ξ > 0 is the unique solution to algebra equation ρ− %eξη − ξ = 0.

Proof. Set σ(t) = (σpq(t))m×m, where σpq(t) = σpq(hq(t − η(t))). Choose the
following Lyapunov function:

V (t, h(t)) = max
p∈Λ

{
h∗p(t)hp(t)

}
.

According to Itô formula, next we will consider the following stochastic differential:

dV (t, h(t)) = LV (t, h(t))dt+ Vh(t, h(t))σ(t)dw(t), (3.4)
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where V (t, h(t)) =
(∂V (t,h(t))

∂h1
, . . . , ∂V (t,h(t))

∂hm

)
, L is the differential operator, then

according to Definition 3.1, we have

∂2V (t, h(t))

∂h(t)h∗(t)
= 1,

∂2V (t, h(t))

∂h(t)2
=
∂2V (t, h(t))

∂(h∗(t))2
= 0.

Again from Definition 3.1, based on the differential operator L, we have

LV (t, h(t))

= max
p∈Λ

{
hp(t)

[(
− ap(t)− θp(t)

)
h∗p(t) +

m∑
q=1

[
bpq(t)fq

(
hq(t)

)]∗
+

m∑
q=1

[
cpq(t)gq

(
hq(t− η(t))

)]∗
+

m∑
q=1

[
dpq(t)lq

(
hq(t− η(t))

)]∗
+

m∑
q=1

[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗
+

m∑
q=1

[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
+

m∑
q=1

[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
+(1− λ)U∗p (t)

]
+ h∗p(t)

[(
− ap(t)− θp(t)

)
hp(t) +

m∑
q=1

bpq(t)fq
(
hq(t)

)
+

m∑
q=1

cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

bpq(t)
(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))
+

m∑
q=1

cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)

]
+

m∑
q=1

[
σpq
(
hq(t− η(t))

)]∗[
σpq
(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
= max

p∈Λ

{[(
− ap(t)− θp(t)

)
h∗p(t)hp(t) +

m∑
q=1

hp(t)
[
bpq(t)fq

(
hq(t)

)]∗
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+

m∑
q=1

hp(t)
[
cpq(t)gq

(
hq(t− η(t))

)]∗
+

m∑
q=1

hp(t)
[
dpq(t)lq

(
hq(t− η(t))

)]∗
+

m∑
q=1

hp(t)
[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗
+

m∑
q=1

hp(t)
[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
+

m∑
q=1

hp(t)
[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
+(1− λ)∗U∗p (t)hp(t)

]
+

[(
− ap(t)− θp(t)

)
h∗p(t)hp(t)

+

m∑
q=1

h∗p(t)bpq(t)fq
(
hq(t)

)
+

m∑
q=1

h∗p(t)cpq(t)gq
(
hq(t− η(t))

)
+

m∑
q=1

h∗p(t)dpq(t)lq
(
hq(t− η(t))

)
+

m∑
q=1

h∗p(t)bpq(t)
(
fq
(
λyq(t)

)
−λfq

(
yq(t)

))
+

m∑
q=1

h∗p(t)cpq(t)
(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))
+

m∑
q=1

h∗p(t)dpq(t)
(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))
+(1− λ)Up(t)h

∗
p(t)

]
+

m∑
q=1

[
σpq
(
hq(t− η(t))

)]∗[
σpq
(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
≤ max

p∈Λ

{(
− 2ap(t)− 2θp(t) + 6

)
h∗p(t)hp(t) +

m∑
q=1

[
bpq(t)fq

(
hq(t)

)]∗
×
[
bpq(t)fq

(
hq(t)

)]
+

m∑
q=1

[
cpq(t)gq

(
hq(t− η(t))

)]∗
×
[
cpq(t)gq

(
hq(t− η(t))

)]
+

m∑
q=1

[
dpq(t)lq

(
hq(t− η(t))

)]∗
×
[
dpq(t)lq

(
hq(t− η(t))

)]
+
[
h∗p(t)hp(t) + (1− λ)∗(1− λ)U∗p (t)Up(t)

]
+

m∑
q=1

[
bpq(t)

(
fq
(
λyq(t)

)
− λfq

(
yq(t)

))]∗[
bpq(t)

(
fq
(
λyq(t)

)
−λfq

(
yq(t)

))]
+

m∑
q=1

[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]∗
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×
[
cpq(t)

(
gq
(
λyq(t− η(t))

)
− λgq

(
yq(t− η(t))

))]
+

m∑
q=1

[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]∗
×
[
dpq(t)

(
lq
(
λyq(t− η(t))

)
− λlq

(
yq(t− η(t))

))]
+

m∑
q=1

[
σpq
(
hq(t− η(t))

)]∗[
σpq
(
hq(t− η(t))

)]
+

m∑
q=1

[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]∗
×
[
σpq
(
λyq(t− η(t))

)
− λσpq

(
yq(t− η(t))

)]}
≤ max

p∈Λ

{(
− 2ap(t)− 2θp(t) + 7

)
h∗p(t)hp(t) +

m∑
q=1

(
b̄pqL

f
q

)2
×
(
hq(t)

)∗(
hq(t)

)
+

m∑
q=1

(
c̄pqL

g
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

(
d̄pqL

l
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+ (1− λ)∗(1− λ)

×U∗p (t)Up(t) +

m∑
q=1

(
Lσpq
)2(

hq(t− η(t))
)∗(

hq(t− η(t))
)

+

m∑
q=1

2
(
b̄pq
)2[(

fq
(
λyq(t)

))∗(
fq
(
λyq(t)

))
+ λ∗λ

(
fq
(
yq(t)

))∗(
fq
(
yq(t)

))]
+

m∑
q=1

2
(
c̄pq
)2[(

gq
(
λyq(t− η(t))

))∗(
gq
(
λyq(t− η(t))

))
+λ∗λ

(
gq
(
yq(t− η(t))

))∗(
gq
(
yq(t− η(t))

))]
+

m∑
q=1

2
(
d̄pq
)2[(

lq
(
λyq(t− η(t))

))∗(
lq
(
λyq(t− η(t))

))
+λ∗λ

(
lq
(
yq(t− η(t))

))∗(
lq
(
yq(t− η(t))

))]
+

m∑
q=1

2
[(
σpq
(
λyq(t− η(t))

))∗(
σpq
(
λyq(t− η(t))

))
+λ∗λ

(
σpq
(
yq(t− η(t))

))∗(
σpq
(
yq(t− η(t))

))]
≤ max

p∈Λ

{
−
[
2ap + 2θp − 7

]
h∗p(t)hp(t) +

m∑
q=1

(
b̄pqL

f
q

)2(
hq(t)

)∗(
hq(t)

)
+

m∑
q=1

(
c̄pqL

g
q

)2(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+

m∑
q=1

(
d̄pqL

l
q

)2
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×
(
hq(t− η(t))

)∗(
hq(t− η(t))

)
+ (1− λ)∗(1− λ)

(
Ūp
)2

+

m∑
q=1

(
Lσpq
)2(

hq(t− η(t))
)∗(

hq(t− η(t))
)

+

m∑
q=1

2
(
b̄pq
)2(

Lfq
)2[

1 + λ∗λ
]

+

m∑
q=1

2
(
c̄pq
)2(

Lgq
)2[

1 + λ∗λ
]

+

m∑
q=1

2
(
d̄pq
)2(

Llq
)2[

1 + λ∗λ
]

+

m∑
q=1

2
(
Lσpq
)2[

1 + λ∗λ
]}

≤ max
p∈Λ

{
−
[
2ap + 2θp − 7−

n∑
q=1

(
b̄qpL

f
q

)2]
h∗p(t)hp(t)

+

[ n∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσqp
)2]

h∗p(t− η(t))hp(t− η(t))

+(1− λ)∗(1− λ)
(
Ūp
)2

+
m∑
q=1

2
[
1 + λ∗λ

][(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσpq
)2]}

≤ −ρV (t, h(t)) + %V (t, h(t− η(t))) + ϑ, (3.5)

where

ρ = min
p∈Λ

{
2ap + 2θp − 7−

m∑
q=1

(
b̄qpL

f
q

)2}
,

% = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσqp
)2}

,

ϑ = max
p∈Λ

{
(1− λ)∗(1− λ)

(
Ūp
)2

+

m∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσpq
)2]}

.

Next, choosing the mathematical expectation of both sides of (3.4), we get

dEV (t, h(t))

dt
= −ρEV (t, h(t)) + %EV (t, h(t− η(t))) + ϑ. (3.6)

Since ρ− % > 0, by Lemma 3.1, it yields

EV (t, h(t)) = sup
s∈[−η,0]

EV (s, h(s))e−ξt +
ϑ

ξ
,

if ρ− %eξη − ξ = 0, the unique solution is ξ > 0, which implies that

E‖h(t)‖20 = sup
s∈[−η,0]

EV (s, h(s))e−ξt +
ϑ

ξ
.
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Hence, we have that the solution of system (3.4) converges to the region W ={
h(t)

∣∣E‖h(t)‖20 ≤ ϑ
ξ

}
in mean square. Therfore, from Definition 3.2, we get that

quasi-projective synchronization in mean square of networks (2.1) and (3.1). This
completes the proof.

Remark 3.1. In fact, when λ = 1, we have ϑ = 0, then the problem to consider
becomes the mean square synchronization between the networks (2.1) and (3.1).

Corollary 3.1. suppose (S1) is correct for the drive network (2.1) and response
network (3.1) are synchronized in mean square through the linear controller (3.2),
if there exist two constants ρ, % > 0, such that

ρ = min
p∈Λ

{
2ap + 2θp − 3−

m∑
q=1

(
b̄qpL

f
q

)2}
> 0,

% = max
p∈Λ

{ m∑
q=1

(
c̄qpL

g
q

)2
+

m∑
q=1

(
d̄qpL

l
q

)2
+

m∑
q=1

(
Lσqp
)2}

> 0

and ρ− % > 0.

Remark 3.2. So far, there are few studies on quasi-projective synchronization
of QVNNs with time delays and state-feedback control scheme. Therefore, our
theoretical results are an extension and supplement to the study of QVSNNs with
time delays and state-feedback control. Moreover, considering similar networks (2.1)
and (3.1), but no stochastic perturbations, we can analyze it in the same way. The
proof is omitted here.

4. Illustrative example

In this section, we present a numerical example to validate the practicality of the
main results derived for the stochastic quaternion-valued neural network with time
delays and state-feedback control, as discussed in previous sections of this paper.

Example 4.1. Setm = 2, let us consider the following stochastic quaternion-valued
neural network with time delays:

dyp(t) =

[
− ap(t)yp(t) +

2∑
q=1

bpq(t)fq
(
yq(t)

)
+

2∑
q=1

cpq(t)gq
(
yq(t− η(t))

)
+Up(t)

]
dt+

2∑
q=1

σpq
(
yq(t− η(t))

)
dwq(t), (4.1)

the given response network corresponds to

dzp(t) =

[
− ap(t)zp(t) +

2∑
q=1

bpq(t)fq
(
zq(t)

)
+

2∑
q=1

cpq(t)gq
(
zq(t− η(t))

)
+Up(t) + Ep(t)

]
dt+

2∑
q=1

σpq
(
zq(t− η(t))

)
dwq(t), (4.2)
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and the state-feedback controller is as follow:

Ep(t) = −θp(t)hp(t) +

2∑
q=1

dpq(t)lq
(
hq(t− η(t))

)
, (4.3)

in which p = 1, 2, and select the network parameters:

fq(yq) =
1

4
sin yRq + i

1

5
sin yIq + j

1

4
tanh yJq + k

1

8
sin yKq ,

gq(yq) =
1

10
tanh yRq + i

1

5

∣∣yIq ∣∣+ j
1

8
sin yJq + k

1

5
sin yKq ,

σpq(yq) =
1

20

∣∣yRq ∣∣+ i
1

10
sin yIq + j

1

5

∣∣yJq ∣∣+ k
1

25
arctan yKq ,

lq(hq) =
1

10
arctanhRq + i

1

5
tanhhIq + j

1

20
sinhJq + k

1

10

∣∣hKq ∣∣,
a1(t) = 3 + | sin(

√
3t)|, a2(t) = 6− 2.5 cos(

√
5t), η(t) =

1

2
| cos t|,

b11(t) = b12(t) = 0.2 sin(
√

2t) + i0.2 cos(3t) + j0.4 cos(
√

3t) + k0.3 cos(3t),

b21(t) = b22(t) = 0.4 cos(3t) + i0.2 cos(3t) + j0.5 sin(
√

2t) + k0.5 sin(
√

2t),

c11(t) = c12(t) = 0.1 cos(
√

3t) + i0.3 cos(2t) + j0.2 sin(2t) + k0.1 sin(3t),

c21(t) = c22(t) = 0.2 sin t+ i0.4 cos(3t) + j0.5 cos t+ k0.3 sin(
√

3t),

θ1(t) = 1 + | sin(
√

3t)|, θ2(t) = 2− 0.5 sin(
√

3t),

d11(t) = d21(t) = 0.5 sin(3t) + i0.2 cos t+ j0.3 sin(
√

3t) + k0.2 cos(
√

3t),

d12(t) = d22(t) = 0.3 cos t+ i0.5 sin t+ j0.4 sin(
√

3t) + 0.45k cos t,

U1(t) = 0.25 cos(
√

2t) + i0.45 sin(3t) + j0.35 cos(
√

2t) + k0.35 sin(
√

2t),

U2(t) = 0.35 sin(
√

3t) + i0.45 cos(
√

3t) + j0.55 sin t+ k0.25 cos(
√

5t).

In this case, by a relative simplify calculation, one has

a1 = 3, a2 = 4, θ1 = 1, θ2 = 1.5, η(t) ≤ 1

2
,

Lfq ≤ 0.425, Lgq ≤ 0.325, Lσpq ≤ 0.2326, Llq ≤ 0.25,

b̄11 = b̄12 ≤ 0.5745, b̄21 = b̄22 ≤ 0.8367,

c̄11 = c̄12 ≤ 0.3873, c̄21 = c̄22 ≤ 0.7348,

d̄11 = d̄21 ≤ 0.6481, d̄12 = d̄22 ≤ 0.8124,

Ū1 ≤ 0.6164, Ū2 ≤ 0.7348.

Then we have

ρ = min
p=1,2

{
2ap + 2θp − 7−

2∑
q=1

(
b̄qpL

f
q

)2} ≈ 0.8139 > 0,

% = max
p=1,2

{ 2∑
q=1

[(
c̄qpL

g
q

)2
+
(
d̄qpL

l
q

)2
+
(
Lσqp
)2]} ≈ 0.2486 > 0

and ρ− % = 0.5653 > 0.
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Here, choose λ = 0.2 + 0.3i+ 0.1j + 0.4k, then

ϑ = max
p=1,2

{
(1− λ)∗(1− λ)

(
Ūp
)2

+

n∑
q=1

2
[
1 + λ∗λ

]
×
[(
b̄pqL

f
q

)2
+
(
c̄pqL

g
q

)2
+
(
d̄pqL

l
q

)2
+
(
Lσpq
)2]} ≈ 2.6729 > 0

and ξ ≈ 0.4954 > 0 is the unique solution of algebra equation ρ − %eξη − ξ = 0.
So, the conditions of Theorem 3.1 all holds. Therefore, according to Theorem 3.1,
networks (4.1) and (4.2) is quasi-projectively synchronization by convergence region

W =

{
h(t) ∈ Qm

∣∣E‖h(t)‖20 ≤
2.6729

0.4954
≈ 5.3954

}
,

which is verified by Fig. 6. Figs. 1 and 2 show the phase trajectories of four
parts of network (4.1) with initial condition (yR1 (0), yR2 (0))T = (0.19,−0.19)T ,
(0.15,−0.05)T , (yI1(0), yI2(0))T = (−0.25, 0.35)T , (0.15,−0.15)T , (yJ1 (0), yJ2 (0))T =
(−0.05,−0.25)T , (0.35, 0.15)T , (yK1 (0), yK2 (0))T = (0.35,−0.15)T , (−0.35, 0.05)T .
Figs. 3 and 4 show the phase trajectories of four parts of netwrok (4.2) with ini-
tial condition (zR1 (0), zR2 (0))T = (0.25,−0.25)T , (0.15,−0.05)T , (zI1(0), zI2(0))T =
(−0.25, 0.35)T , (0.15,−0.15)T , (zJ1 (0), zJ2 (0))T = (−0.05,−0.25)T , (0.35, 0.15)T ,
(zK1 (0), zK2 (0))T = (0.35,−0.15)T , (−0.35, 0.05)T . Fig. 5 illustrates the progression
of synchronization error without a controller, demonstrating the failure to achieve
quasi-projection synchronization.
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Figure 1. The trajectories of drive system states yRp and yIp, p = 1, 2.

5. Conclusions and future works

In this article, the quasi-projective synchronization in QVSNNs, with the consider-
ation of time delays and a state-feedback control scheme, has been examined. By
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Figure 2. The trajectories of drive system states yJp and yKp , p = 1, 2.
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Figure 3. The trajectories of response system states zRp and zIp, p = 1, 2.

employing the quaternionic form of the Itô formula, along with several inequality
techniques within the quaternionic range framework, a criterion for quasi-projective
synchronization in the error network has been established. Finally, we provide an
example and conduct computer simulations to demonstrate the practicality and va-
lidity of our research results. These results are not only applicable for addressing
quasi-projective synchronization in QVNNs with time-varying delays but also pro-
vide an enhancement over several previous outcomes. The state-feedback control
methods are still valid for designing the quasi-projective synchronization of Clifford-
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Figure 4. The trajectories of response system states zJp and zKp , p = 1, 2.
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Figure 5. The evolution curves of quasi-projective synchronization error h(t) without controller Ep(t).

valued neural networks with time delays. This is something we will continue to
explore and study in our future work, and we will concentrate on addressing quasi-
projective synchronization challenges in delayed fractional-order stochastic QVNNs,
considering a state-feedback control scheme, and exploring alternative synchroniza-
tion control techniques. Further investigations of quasi-projective synchronization
in the real applications of image recognition.
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Figure 6. The evolution curves of quasi-projective synchronization error h(t) with state-feedback
controller Ep(t).
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