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BOUNDARY VALUE PROBLEMS FOR AN
ITERATIVE DIFFERENTIAL EQUATION∗

Pingping Zhang1 and Wei Song2,†

Abstract This paper discusses the solutions of an iterative differential equa-
tion under general boundary value conditions. Using an auxiliary integral
equation without the help of Green’s functions usually being constructed in
higher order equations, we prove the existence and uniqueness of solutions by
the fixed point theorems of Schauder and Banach, respectively. Our theorems
generalize and revise the related results.
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1. Introduction

Let X be a Banach space equipped with a norm ‖ · ‖, the n-th iterate of
a self-mapping f : X → X is defined by fn(x) = f(fn−1(x)) and f0(x) = x
for all x ∈ X inductively. Iterative differential equations, a class of differential
equations with state-dependent delays, have attracted considerable attention in the
later 20th century (smoothness [11], convexity [12], analyticity [13,20], monotonicity
[14], equivariance [17], periodicity [22] and so on).

Most of known results on initial value problems for those equations were related
to the following equation or its special cases

x′(t) = f(t, x(t), x2(t), ..., xn(t)).

Among them, the works [3–5,7, 10,16] discussed on the initial value condition

x(t0) = t0,

called Return condition (the “fixed point” condition), and [1, 6, 18, 19] considered
the non-Return condition

x(t0) = x0
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and proved the existence of nonlocal solutions. There are several results on higher-
order iterative differential equations (periodicity [2, 8], Hyers-Ulam-Rassias stabil-
ity [15]). It is worth mentioning that Green’s function is an important tool for estab-
lishing the equivalent integral equations and localizing the solutions for higher-order
differential equations.

Using Green’s function, in 2018 E. R. Kaufmann [9] investigated the second
order equation involving 2-th iterates

x
′′
(t) = f(t, x(t), x2(t)), t ∈ [a, b]

associated with the boundary value conditions

x(a) = a, x(b) = b or x(a) = b, x(b) = a.

He gave the sufficient conditions for the existence and uniqueness of solutions by
fixed point theorems. However, no results on the general boundary value condition

x(a), x(b) ∈ (a, b)

was given yet in [9]. In this paper we study the equation involving n-th iterates,
together with the general boundary value condition, that is, the two-point boundary
value problems {

x
′′
(t) = f(t, x(t), x2(t), ..., xn(t)), t ∈ [a, b],

x(a) = x1, x(b) = x2
(1.1)

is discussed, where the different points x1, x2 ∈ [a, b]. Using an auxiliary integral
equation without the help of Green’s functions, we prove the existence and unique-
ness of solutions by the fixed point theorems of Schauder and Banach, respectively.
Our theorems generalize and revise the related results.

2. Lemmas

Let C([a, b],R) be the Banach space of all C0 mappings from a closed interval [a, b]
into R equipped with the norm ‖ · ‖, defined by

‖x‖ = max
t∈[a,b]

|x(t)|.

We have the following lemmas.

Lemma 2.1. ( [21]) Suppose that x, y : [a, b]→ [a, b] are two C0 mappings and

|x(t1)− x(t2)| ≤M |t1 − t2|

for M > 0. Then

‖xj − yj‖ ≤
j−1∑
i=0

M i‖x− y‖, j = 1, 2, ....
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Lemma 2.2. The boundary value problem (1.1) is equivalent to the C0 solution of
the integral equation

x(t) =
bx1 − ax2
b− a

+
a

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+
x2 − x1
b− a

· t− t

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+

∫ t

a

(t− s)f(s, x(s), x2(s), ..., xn(s))ds. (2.1)

Proof. By integrating the equation (1.1) twice, together with x(a) = x1 we have

x(t) = x1 + x
′
(a)(t− a) +

∫ t

a

(t− s)f(s, x(s), x2(s), ..., xn(s))ds. (2.2)

Note that x(b) = x2, from (2.2) we get

x
′
(a) =

x2 − x1
b− a

− 1

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds. (2.3)

It follows from (2.2) and (2.3) that

x(t) = x1 +

[
x2 − x1
b− a

− 1

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

]
(t− a)

+

∫ t

a

(t− s)f(s, x(s), x2(s), ..., xn(s))ds

=
bx1 − ax2
b− a

+
a

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+
x2 − x1
b− a

· t− t

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+

∫ t

a

(t− s)f(s, x(s), x2(s), ..., xn(s))ds.

This proves (2.1).
Conversely, from (2.1) we get x(a) = x1, x(b) = x2 and the derivation

x
′
(t) =

x2 − x1
b− a

− 1

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+

∫ t

a

f(s, x(s), x2(s), ..., xn(s))ds

=
x2 − x1
b− a

+
1

b− a
·
∫ t

a

(s− a)f(s, x(s), x2(s), ..., xn(s))ds

− 1

b− a

∫ b

t

(b− s)f(s, x(s), x2(s), ..., xn(s))ds,

then

x
′′
(t) = f(t, x(t), x2(t), ..., xn(t))

and the proof is completed.
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3. Boundary value problems (1.1)

Theorem 3.1. Suppose that f : [a, b]
n+1 → R is a C0 function and satisfies

|f(t, u1, ..., un)− f(t, v1, ..., vn)| ≤
n∑

i=1

Li|ui − vi|

for some constants Li ≥ 0. If

L <
|x2 − x1|
(b− a)2

, (3.1)

where
L := ‖f‖[a,b]n+1 = max

(u0,u1,...,un)∈[a,b]n+1
|f(u0, u1, ..., un)|,

then the boundary value problem (1.1) has at least a solution x(t) on [a, b].

Proof. Consider the set

Θ := {x ∈ C([a, b], [a, b]) : x(a) = x1, x(b) = x2,

|x(t1)− x(t2)| ≤M |t1 − t2|, t1, t2 ∈ [a, b]},

where

M :=
|x2 − x1|
b− a

+ 2L · (b− a). (3.2)

Next, we apply the Schauder’s fixed point theorem to prove the existence of a C0

solution x ∈ Θ of (2.1).
Define the operator T : [a, b]→ R by

(T x)(t) :=
bx1 − ax2
b− a

+
a

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+
x2 − x1
b− a

· t− t

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xn(s))ds

+

∫ t

a

(t− s)f(s, x(s), x2(s), ..., xn(s))ds.

We first show that T x ∈ Θ for any x ∈ Θ. In fact, one can easily check that

(T x)(a) = x1, (T x)(b) = x2 (3.3)

and

(T x)
′
(t) =

x2 − x1
b− a

+
1

b− a
·
∫ t

a

(s− a)f(s, x(s), x2(s), ..., xn(s))ds

− 1

b− a

∫ b

t

(b− s)f(s, x(s), x2(s), ..., xn(s))ds.

Since

(T x)
′
(t) ≥ x2 − x1

b− a
− L

b− a
· (b− a)2

2
− L

b− a
· (b− a)2

2
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=
x2 − x1
b− a

− (b− a) · L

> 0 (3.4)

for x2 > x1 and

(T x)
′
(t) ≤ x2 − x1

b− a
+

L

b− a
· (b− a)2

2
+

L

b− a
· (b− a)2

2

=
x2 − x1
b− a

+ (b− a) · L

< 0 (3.5)

for x2 < x1, it follows from (3.3), (3.4) and (3.5) that

T x : [a, b]→ [a, b].

Moreover, for any t1, t2 ∈ [a, b], by calculation we have

|(T x)(t1)− (T x)(t2)|

=

∣∣∣∣∣x2 − x1b− a
· (t1 − t2)− t1 − t2

b− a
·
∫ b

a

(b− s)f(s, x(s), x2(s), ..., xm(s))ds

+

∫ t1

a

(t1 − s)f(s, x(s), x2(s), ..., xm(s))ds

−
∫ t2

a

(t2 − s)f(s, x(s), x2(s), ..., xm(s))ds

∣∣∣∣
≤ |x2 − x1|

b− a
· |t1 − t2|+

L

b− a
· (b− a)2

2
· |t1 − t2|

+

∣∣∣∣∫ t1

t2

(t1 − s)f(s, x(s), x2(s), ..., xm(s))ds

∣∣∣∣
+

∣∣∣∣∫ t2

a

(t1 − t2)f(s, x(s), x2(s), ..., xm(s))ds

∣∣∣∣
≤ |x2 − x1|

b− a
· |t1 − t2|+ L · b− a

2
· |t1 − t2|+ L · (t1 − t2)2

2
+ L · |t1 − t2| · |t2 − a|

≤ |x2 − x1|
b− a

· |t1 − t2|+ L · b− a
2
· |t1 − t2|+ L · b− a

2
· |t1 − t2|

+L · (b− a) · |t1 − t2|

=

(
|x2 − x1|
b− a

+ 2L · (b− a)

)
· |t1 − t2|

= M · |t1 − t2|.

Those relations imply that T x ∈ Θ, i.e., T is a self-mapping.
For any x1, x2 ∈ Θ, using Lemma 2.1 we have

‖T x1 − T x2‖

= max
t∈[a,b]

∣∣∣∣∣a− tb− a
·
∫ b

a

(b− s)(f(s, x1(s), x21(s), ..., xn1 (s)

−f(s, x2(s), x22(s), ..., xn2 (s))ds
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+

∫ t

a

(t− s)(f(s, x1(s), x21(s), ..., xn1 (s)− f(s, x2(s), x22(s), ..., xn2 (s))ds

∣∣∣∣
≤ max

t∈[a,b]

∣∣∣∣∣
∫ b

a

(b− s)(f(s, x1(s), x21(s), ..., xn1 (s)− f(s, x2(s), x22(s), ..., xn2 (s))ds

∣∣∣∣∣
+ max

t∈[a,b]

∣∣∣∣∫ t

a

(t− s)(f(s, x1(s), x21(s), ..., xn1 (s)− f(s, x2(s), x22(s), ..., xn2 (s))ds

∣∣∣∣
≤ (b− a)2 · max

t∈[a,b]

∣∣f(t, x1(t), x21(t), ..., xn1 (t)− f(t, x2(t), x22(t), ..., xn2 (t))
∣∣

≤ (b− a)2 ·
n∑

i=1

Li · (
i−1∑
j=0

M j) · ‖x1 − x2‖, (3.6)

implying T is continuous.
In view that

‖x‖ ≤ max{|a|, |b|} and |x(t1)− x(t2)| ≤M |t1 − t2|,

Θ is uniformly bounded and equicontinuous and is relatively compact by the Arzelà-
Ascoli theorem.

Therefore, Θ is a closed, convex and relatively compact subset of the Banach
space C([a, b],R) and T is a continuous operator. By Schauder’s fixed point theorem
T has a fixed point x ∈ Θ, which is a solution x ∈ Θ of (1.1) and the proof is
completed.

Remark 3.1. Let n = 2 and x1 = a, x2 = b (resp. x1 = b, x2 = a), our Theorem
3.1 is reduced to Theorem 3.1 (resp. Theorem 3.2) of [9], in which (3.1) is reduced
to the main condition (H1) in [9]. Thus, their results are improved in our Theorem
3.1.

Theorem 3.2. Suppose that all conditions of Theorem 3.1 hold. If

(b− a)2 ·
n∑

i=1

Li · (
i−1∑
j=0

M j) < 1, (3.7)

where M is defined by (3.2). Then the boundary value problem (1.1) has a unique
solution x(t) on [a, b].

Proof. It is known from (3.6) and (3.7) that T is a contractive operator, and the
remainder is same as that of Theorem 3.1. Then, the problem (1.1) has a unique
solution x ∈ Θ from Banach fixed point theorem and the proof is completed.

Remark 3.2. From the assumption

|f(t, u1, v1)− f(t, u2, v2)| ≤ L1|u1 − u2|+ L2|v1 − v2|,

we can get

|f(s, x1(s), x1
2(s))− f(s, x2(s), x2

2(s))|
≤ L1|x1(s)− x2(s)|+ L2|x12(s)− x22(s)|
≤ L1|x1(s)− x2(s)|+ L2(|x12(s)− x1 ◦ x2(s)|+ |x1 ◦ x2(s)− x22(s)|)
≤ L1‖x1 − x2‖+ L2|x12(s)− x1 ◦ x2(s)|+ L2‖x1 − x2‖
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≤ L1‖x1 − x2‖+ L2‖x12 − x1 ◦ x2‖+ L2‖x1 − x2‖
≤ L1‖x1 − x2‖+ L1L2‖x1 − x2‖+ L2‖x1 − x2‖
= L1‖x1 − x2‖+ (L1 + 1)L2‖x1 − x2‖,

but not

|f(s, x1(s), x21(s))− f(s, x2(s), x22(s))|
≤ L1|x1(s)− x2(s)|+ L2|x12(s)− x22(s)|
≤ L1‖x1 − x2‖+ L2‖x1 − x2‖

appeared in [9, 15]. Hence, their condition

1

6
(L1 + L2)(b− a)2 < 1

should be replaced by (3.7) with n = 2.

4. Examples

We give examples to illustrate our main results.

Example 4.1. Consider the problem{
x

′′
(t) = kcos(c1x(t) + c2x

2(t) + c3x
3(t)),

x(0) = x1, x(π) = x2,
(4.1)

where k, ci (i = 1, 2, 3) ∈ R and x1, x2 ∈ [0, π].
For

f(t, x(t), x2(t), x3(t)) := kcos(c1x(t) + c2x
2(t) + c3x

3(t)),

note that ‖f‖ ≤ |k| and

|f(t, x1(t), x2(t), x3(t))− f(t, y1(t), y2(t), y3(t))|
≤ |c1k| · |x1(t)− y1(t)|+ |c2k| · |x2(t)− y2(t)|+ |c3k| · |x3(t)− y3(t)|,

we say from Theorem 3.1 that the problem (4.1) has at least a solution x(t) defined
on [0, π] if

k <
|x2 − x1|

π2
.

Clearly, when

x1 = 0, x2 = π, c1 = 0, c2 = 1, c3 = 0, (4.2)

then example 4.1 is reduced to Example 3.3 of [9], i.e.,{
x

′′
(t) = kcos(x2(t)), t ∈ [0, π],

x(0) = 0, x(π) = π.
(4.3)
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Example 4.2. Consider the problem (4.1) again.
From the left side of (3.7) we have

(b− a)2 ·
3∑

i=1

Li · (
i−1∑
j=0

M j)

= (b− a)2 · (L1 + L2(1 +M) + L3(1 +M +M2))

= π2 · (|c1k|+ |c2k|(1 +M) + |c3k|(1 +M +M2))

= π2 · |k| ·
3∑

i=1

|ci|(
i−1∑
j=0

M j),

where

M :=
|x2 − x1|
b− a

+ 2L · (b− a) =
|x2 − x1|

π
+ 2|k| · π =

|x2 − x1|+ 2|k|π2

π
.

By using Theorem 3.2, we know that the problem (4.1) has a unique solution x(t)
on [0, π] if

π2 · |k| ·
3∑

i=1

|ci|(
i−1∑
j=0

M j) < 1. (4.4)

For instance, choose

k = − 1

10
, c1 = −c2 = c3 =

1

3π2
, x1 = 0, x2 = π,

note that

π2 · |k| ·
3∑

i=1

|ci|(
i−1∑
j=0

M j)

=
1

10
[1 + π · 2

3π2
(π + 2 · 1

10
· π2) +

1

3π2
(π + 2 · 1

10
· π2)2]

=
1

10
[1 + ·2

3
(1 +

π

5
) +

1

3
(1 +

π

5
)2]

<
1

10
[1 + ·2

3
· 2 +

1

3
· 4]

=
11

30
< 1,

so the problem x
′′
(t) = − 1

10
cos

1

3π2
(x(t)− x2(t) + x3(t)),

x(0) = 0, x(π) = π

has a unique solution x(t) on [0, π].
Next, we choose the data (4.2). Since

π2 · |k| ·
3∑

i=1

|ci|(
i−1∑
j=0

M j) = 2|k|π2(1 + |k|π) < 1
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if

|k| < −π +
√
π2 + 2π

2π2
. (4.5)

Thus, the problem (4.3) has a unique solution x(t) on [0, π], which is the Example
3.6 in [9] and our condition (4.5) replaces the main condition

|k| < 6

π2
.

Applying our Theorem 3.1 and Theorem 3.2, the examples in [15] can also be
easily settled.
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