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Abstract In this work, based on the principle of contraction mapping, we de-
duce sufficient conditions ensuring the existence of pseudo almost periodic so-
lutions of fractional-order Clifford-valued high-order Hopfield neural networks
(FCHHNNs). In addition, we employ a kind of Gronwall inequality to study
the finite-time stability of pseudo almost periodic solutions of FCHHNNs. The
results and methods of our paper are new. Finally, we give a numerical exam-
ple to illustrate the effectiveness of the results obtained.
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1. Introduction

Clifford-valued neural networks (CVNNs) have greater advantages in high-dimensio-
nal signal processing and storage capacity because they require fewer connection
weight functions compared to real-valued, complex-valued, and quaternion-valued
neural networks [5–7, 13]. In recent years, more and more scholars have devoted
themselves to the theoretical and practical application research of CVNN, and have
achieved many results [2,3,19,22,24,26,32,33]. Since the multiplication of Clifford
algebra does not satisfy the commutative law, many results have been obtained
by decomposing CVNNs into real-valued neural networks [4, 31–33]. However, the
results obtained by the decomposition method are essentially about the real-valued
system, which is not easy to be directly applied to the CVNN system under consid-
eration. Therefore, it is of great theoretical significance and potential application
value to further explore the direct method for studying the qualitative behavior of
CVNNs, namely, the non decomposition method.

†The corresponding author.
1Key Laboratory of Applied Mathematics and Mechanism of Artificial Intelli-
gence, Hefei University, Hefei 230601, China

2Department of Mathematics, Yunnan University, Kunming 650091, China
∗The authors were supported by National Natural Science Foundation of China
(Grant Nos. 12261098 and 11861072), Natural Science Foundation of Anhui
Province (Grant No. 2108085QA10), Natural Science Research Project of
Colleges and Universities in Anhui Province (Grant No. 2022AH051782) and
Talent Research Fund Project of Hefei University (Grant No. 20RC22).
Email: huonn@hfuu.edu.cn(N. Huo), yklie@ynu.edu.cn(Y. Li)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220447


Pseudo almost periodic solution 2489

In addition, it is well known that fractional order differential equation mod-
els can better describe some real processes with heredity, memory and nonlocality
than integer order differential equation models in many aspects. Therefore, in recent
decades, researchers have proposed a large number of fractional differential equa-
tion models, and the application fields of fractional differential equations are also
expanding. In particular, the study of fractional order neural networks has received
extensive attention and achieved some good results [1,8,18,20,28–30,34–39,41–43].
However, the research results on fractional order CVNNs are few. Especially, up to
now, no results of almost periodic oscillation of fractional-order CVNNs have been
published, but nevertheless, as is well known, almost periodic oscillations are one of
the crucial dynamics of neural networks [15, 16, 18, 20, 21, 26]. Therefore, the study
of almost periodic oscillations of fractional-order CVNNs has important theoretical
and practical implications.

Moreover, it is well known that high-order Hopfield neural networks (HHNNs)
have advantages over their corresponding low-order ones in approximation, conver-
gence speed, storage capacity and fault tolerance. Therefore, HHNNs have always
been the focus of research [9, 11, 12, 25]. In addition, time delay is ubiquitous and
inevitable in practical systems. Consequently, it is more reasonable to consider the
neural network systems with time delay.

Inspired by the above observations, and noted that in a certain sense, it is more
practical to consider the finite-time stability than the stability in Lyapunov’s sense.
Therefore, the main purpose of this paper is to study the existence and finite-time
stability of pseudo almost periodic solutions of FCHHNN with time-varying delays.

The contributions of this work are

(1) The result obtained in this paper is the first result regarding the pseudo almost
periodic solutions of fractional-order CVNN.

(2) The approaches used in the paper can be applied to study almost periodic
and almost automorphic solutions to other types of fractional-order CVNNs.

(3) Even when the network considered in this paper degenerates into a real-valued
one, the results of this paper still remain new.

The remaining part of the paper is structured in this way: in Sect. 2, we intro-
duce some concepts, notations and preliminary results, as well as the description of
the model. In Sect. 3, we discuss the existence and finite time stability of pseudo al-
most periodic solutions for the network under consideration. In Sect. 4, we present
a numerical example and computer simulation. Finally, we draw a brief conclusion
in Sect. 5.

2. Preliminaries and model description

Let A =

{ ∑
A∈P

aAeA, a
A ∈ R

}
be a real Clifford algebra over Rm (see [14]), where

P = {∅, 1, 2, . . . , A, . . . , 12 · · ·m} and eA = eh1
eh2
· · · ehν , A ∈ P, e∅ = e0 = 1 and

eh, h = 1, 2, . . . ,m are its generators and satisfy e2i = 1, i = 1, 2, . . . , s, e2i = −1, i =
s+ 1, s+ 2, . . . ,m, eiej + ejei = 0, i 6= j, where i, j = 1, 2, . . . ,m.

For x =
∑
A∈P x

AeA ∈ A, define |x|A =
√∑

A∈P(xA)2 and for y = (y1, y2, . . . ,

yn) ∈ An, define ‖y‖An = max
1≤p≤n

{|yp|A}. Obviously, (A, | · |A) and (An, | · |An) are
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Banach spaces, respectively.

Definition 2.1. [27] The fractional integral of order α for a function f ∈
L1([a, b],R) is defined as

aI
α
t f(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t ∈ [a, b],

where α > 0 and Γ is the Gamma function, a and b may take −∞ and +∞ as their
values.

Definition 2.2. [27] The Caputo derivative of order α for a function f ∈
Cn−1([a, b],R) and f (n) ∈ L1([a, b],R) is defined by

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

fn(s)

(t− s)α+1−n ds, t ∈ [a, b],

where n is a nature number such that n− 1 < α < n and Γ is the Gamma function,
a and b may take −∞ and +∞ as their values.

Definition 2.3. The fractional integral with fractional order α > 0 of function
f =

∑
A∈P

fAeA ∈ L1([a, b]),A) is defined as aI
α
t (t)f(t) =

∑
A∈P

aI
α
t f

A(t)eA and the

Caputo fractional-order derivative of order α for function f ∈ Cn−1([a, b],A) and
f (n) ∈ L1([a, b],A) is defined as aD

α
t f(t) =

∑
A∈P

aD
α
t f

A(t)eA, where n is a nature

number such that n− 1 < α < n.

Let BC(R,Al) be the set of bounded continuous functions from R to Al, where
l is a positive integer. Then (BC(R,Al), ‖ · ‖∞) is a Banach space, where ‖f‖∞ :=
sup
t∈R
‖f(t)‖Al for f ∈ BC(R,Al).

Definition 2.4. [10] Function f ∈ BC(R,Al) is called to be almost periodic if
for every ε > 0, there is a positive number l = l(ε) such that in each interval with
length l, there is a τ satisfying

‖f(t+ τ)− f(t)‖Al < ε for all t ∈ R.

The space of all such functions will be denoted by AP (R,Al).

Define

PAP0(R,Al) :=

{
f ∈ BC(R,Al) : lim

L→∞

1

2L

∫ L

−L
‖f(s)‖Alds = 0

}
.

Definition 2.5. [10] Let f ∈ BC(R,Al), then f is called pseudo almost periodic
if there exist f1 ∈ AP (R,Al) and f2 ∈ PAP0(R,Al) such that f = f1 + f2. The
collection of all such functions will be denoted by PAP (R,Al).

Lemma 2.1. [10] The set PAP (R,A) with the supremum norm is a Banach space.

Lemma 2.2. [10] Let α ∈ R, f , g ∈ PAP (R,A), then αf , f+g, f ·g ∈ PAP (R,A).

Lemma 2.3. Let f ∈ PAP (R,A), τ ∈ AP (R,R+)∩C1(R,R) with inf
t∈R
|1−τ̇(t)| > 0,

then f(· − τ(·)) ∈ PAP (R,A).
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Proof. In view of Definition 2.5, f can be expressed as f = f1 + f0, in which
f1 ∈ AP (R,An) and f0 ∈ PAP0(R,An) ⊂ BC(R,An), then one has

f(t− τ(t)) = f1(t− τ(t)) + f0(t− τ(t)).

Similar to the proof of Lemma 5 in [17], one can easily get f1(·−τ(·)) ∈ AP (R,An).
In addition, noting that

lim
T→+∞

1

2T

∫ T

−T
‖f0(t− τ(t))‖Andt

≤ lim
T→+∞

1

inf
t∈R
|1− τ̇(t)|

1

2T

∣∣∣∣ ∫ T−τ(T )

−T−τ(−T )

‖f0(s)‖Ands
∣∣∣∣

= lim
T→+∞

1

inf
t∈R
|1− τ̇(t)|

1

2T

∣∣∣∣( ∫ −T+τ(T )

−T−τ(−T )

+

∫ T−τ(T )

−T+τ(T )

)
‖f0(s)‖Ands

∣∣∣∣
= lim
T→+∞

1

inf
t∈R
|1− τ̇(t)|

T − τ(T )

T

1

2(T − τ(T ))

∫ T−τ(T )

−T+τ(T )

‖f0(s)‖Ands

=0,

we arrive at f0(· − τ(·)) ∈ PAP0(R,An). Thus, f(· − τ(·)) ∈ PAP (R,An). This
completes the proof.

The model we are concerned in this paper is the following Caputo FCHHNN
with time-varying delays:

t0D
α
t xp(t) =− apxp(t) +

n∑
q=1

apq(t)fq(xq(t− τpq(t)))

+

n∑
q=1

n∑
l=1

bpql(t)gq(xq(t− σpql(t)))

× gl(xl(t− νpql(t))) + Ip(t), t > t0, p = 1, 2, . . . , n, (2.1)

where 0 < α < 1 is a constant, n denotes the number of units in the network;
xp(t) ∈ A is the state of the pth unit at time t; ap ≥ 0 is the self feedback connection
weight; apq(t) ∈ A and bpql(t) ∈ A are connection weights of the network; τpq(t) ≥ 0,
σpql(t) ≥ 0 and νpql(t) ≥ 0 are transmission delays at time t; Ip(t) ∈ A represents
the external inputs at time t; fq, gq : A → A are activation functions of signal
transmission.

We will use the following notations:

τ̂ = max
1≤p,q≤n

{
sup
t∈R

τpq(t)
}
, σ̂ = max

1≤p,q,l≤n

{
sup
t∈R

σpql(t)
}
, ν̂ = max

1≤p,q,l≤n

{
sup
t∈R

νpql(t)
}
,

ρ = max{τ̂ , σ̂, ν̂}, âpq = sup
t∈R
|apq(t)|A, b̂pql = sup

t∈R
|bpql(t)|A, Îp = sup

t∈R
|Ip(t)|A.

System (2.1) is supplemented with the initial values:

xp(s) = ψp(s), s ∈ [t0 − ρ, t0], p = 1, 2, . . . , n,
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where ψp ∈ C([t0 − ρ, t0],A).
In the next section, in order to get our main results, we need the following

conditions:

(S1) For p, q, l = 1, . . . , n, apq, bpql, Ip ∈ PAP (R,A), τpq, σpql, νpql ∈ AP (R,R+) ∩
C1(R,R) satisfying inf

t∈R
|1−τpq(t)| > 0, inf

t∈R
|1−σpql(t)| > 0, inf

t∈R
|1−νpql(t)| > 0.

(S2) There exist positive numbers Lfq , L
g
q ,M

g
q such that, for all x, y ∈ A, q =

1, . . . , n,

|fq(x)−fq(y)|A ≤ Lfq |x−y|A, |gq(x)−gq(y)|A ≤ Lgq |x−y|A, |gq(x)|A ≤Mg
q ,

fq, hq ∈ C(A,A); in addition, fq(0) = gq(0) = 0.

(S3)

max
1≤p≤n

{
Cp
ap

+
Îp
ap

}
≤ r, ξ = max

1≤p≤n

{
Dp

ap

}
< 1,

where for p = 1, 2, . . . , n,

Cp =
( n∑
q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pqlL
g
qM

g
l

)
r,

Dp =

n∑
q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pql

(
LgqM

g
l + LglM

g
q

)
.

3. Main results

Based on Definition 2.3 and Clifford algebra’s multiplication rule as well as Defini-
tion 3.1 in [23] of solutions for real-valued equations, we can introduce the following
definition:

Definition 3.1. A function x = (x1, x2, · · · , xn)T ∈ C([t0 − ρ,+∞),An) is called
a mild solution of system (2.1), if it meets

xp(t) =Up(t− t0)x0 +

∫ t

t0

(t− s)α−1ϕp(t− s)[Θp(s, x) + Ip(s)]ds, t > t0,

xp(t) =ψp(t), t ∈ [t0 − ρ, t0],

(3.1)

where

Θp(s, x) =

n∑
q=1

[
apq(s)fq(xq(s− τpq(s)))

+

n∑
l=1

bpql(s)gq(xq(s− σpql(s)))gl(xl(s− νpql(s)))
]
,

xp(t0) = ψp(t0) = x0, %α(γ) =
1

α
γ−1−

1
αϑα(γ

−1
α ),

Up(t) =

∫ +∞

0

%α(γ)e−apt
αγdγ, ϕp(t) = α

∫ +∞

0

γ%α(γ)e−apt
αγdγ,
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ϑα(γ) =
1

π

∞∑
n=1

(−1)n−1γ−nα−1
Γ(nα+ 1)

n!
sin(nπα), γ ∈ (0,+∞),

and %α satisfies

%α(γ) ≥ 0, γ ∈ (0,+∞),

∫ +∞

0

%α(γ)dγ = 1,

∫ +∞

0

γ%α(γ)dγ =
1

Γ(α+ 1)
.

Letting t0 −→ −∞, we gain

xp(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)[Θp(s, x) + Ip(s)]ds,

which is a solution of system (2.1).

Let B = {x = (x1, x2, . . . , xn)T ∈ BC(R,An) : xp ∈ PAP (R,A), p = 1, 2,
. . . , n}, then (B, ‖ · ‖∞) is a Banach space.

Theorem 3.1. Let (S1)-(S3) be fulfilled, then system (2.1) possesses unique one
pseudo almost periodic mild solution in Br = {x | x ∈ B, ‖x‖∞ ≤ r}.

Proof. Define a mapping Φ : B→ BC(R,An) as follow:

Φx = ((Φx)1, (Φx)2, · · · , (Φx)n)T ,

where for p = 1, 2, . . . , n, t ∈ R,

(Φx)p(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)(Θp(s, x) + Ip(s))ds.

Firstly, we will show that Φ : B → B. For every x = (x1, x2, . . . , xn)T ∈ Br, from
(S1)-(S3) it follows that fq, gq, τpq, σpql, νpql meet all the conditions of Lemma 2.3,
and hence, by Lemmas 2.2 and 2.3, we can derive that

φp(·) = Θp(·, x) + Ip(·) ∈ PAP (R,A).

So, there are φ1p ∈ AP (R,A) and φ0p ∈ PAP0(R,A) such that φp = φ1p + φ0p where
p = 1, 2, . . . , n. Consequently, we have

(Φx)p(t) =

∫ t

−∞
(t− s)α−1ϕp(t− s)φp(s)ds

=

∫ t

−∞
(t− s)α−1ϕp(t− s)φ1p(s)ds+

∫ t

−∞
(t− s)α−1ϕp(t− s)φ0p(s)ds

:=(Φx)1p(t) + (Φx)0p(t), p = 1, 2, . . . , n. (3.2)

We will prove that (Φx)1p ∈ AP (R,A) and (Φx)0p ∈ PAP0(R,A), for p = 1, 2, . . . , n.
Since φ1p ∈ AP (R,A), for given ε > 0, there corresponds an l = l(ε) > 0 such

that every interval of length l contains a point ζ ∈ (a, a+ l) such that

|φ1p(t+ ζ)− φ1p(t)|A < ε, t ∈ R, p = 1, 2, . . . , n.

From this and (3.2) it follows that

|(Φx)1p(t+ ζ)− (Φx)1p(t)|A =

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)φ1p(s+ ζ)ds
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−
∫ t

−∞
(t− s)α−1ϕp(t− s)φ1p(s)ds

∣∣∣∣
A

≤ sup
t∈R

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)(φ1p(s+ ζ)− φ1p(s))ds

∣∣∣∣
A

≤ε
∫ t

−∞
(t− s)α−1α

∫ +∞

0

γ%α(γ)e−ap(t−s)
αγdγds

≤ε
∫ +∞

0

∫ +∞

0

αγ%ασ
α−1e−apσ

αγdσdγ

=
ε

ap
, t ∈ R,

which implies (Φx)1p ∈ AP (R,A) for p = 1, 2, . . . , n.
Noting that

lim
L→∞

1

2L

∫ L

−L

∣∣∣∣ ∫ t

−∞
(t− s)α−1ϕp(t− s)φ0p(s)ds

∣∣∣∣
A
dt

= lim
L→∞

1

2L

∫ L

−L

∣∣∣∣ ∫ ∞
0

σα−1ϕp(σ)φ0p(t− σ)dσ

∣∣∣∣
A
dt

≤ 1

ap
lim
L→∞

1

2L

∫ L

−L
|φ0p(t− σ)|Adt

=0, p = 1, 2, . . . , n,

we have (Φx)0p ∈ PAP0(R,A). Hence, for p = 1, 2, . . . , n, (Φx)p ∈ PAP (R,A), this
yields that Φ : B→ B.

Next, we show that Φ : Br → Br.
For any x ∈ Br, we have

|Θp(t, x)|A ≤
n∑
q=1

âpq
(
|fq(xq(t− τpq(t)))− fq(0)|A + |fq(0)|A

)

+

n∑
q=1

n∑
l=1

b̂pql(|gq(xq(t− σpql(t)))− gq(0)|A + |gq(0)|A)Mg
l

≤
( n∑
q=1

âpqL
f
q +

n∑
q=1

n∑
l=1

b̂pqlL
g
qM

g
l

)
‖x‖∞

≤Cp, p = 1, 2, . . . , n, (3.3)

which combined with (3.3) and (S3) leads to

|(Φx)p(t)|A ≤
∫ t

−∞
(t− s)α−1ϕp(t− s)

(
Cp + Îp

)
ds

≤Cp
ap

+
Îp
ap
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≤r, p = 1, 2, . . . , n.

Hence,

‖Φx‖∞ = sup
t∈R
{‖(Φx)(t)‖An} ≤ r,

that is, Φx ∈ Br. Therefore, Φ : Br → Br.
Finally, we prove that Φ is a contraction mapping. For any x, y ∈ Br, we find

|(Φx)p(t)− (Φy)p(t)|A

≤‖x− y‖∞
∫ t

−∞
(t− s)α−1ϕp(t− s)

n∑
q=1

[
âpqL

f
q +

n∑
l=1

b̂pql

(
LgqM

g
l + LglM

g
q

)]
ds

≤Dp

ap
‖x− y‖∞

≤ξ‖x− y‖∞, p = 1, 2, . . . , n,

which implies that Φ is a contraction.

Consequently, Φ possesses a unique fixed point in Br. The proof is completed.

Remark 3.1. From the proof process of Theorem 3.1, it is easy to see that the
proof method of Theorem 3.1 is also applicable to studying the existence of pseudo
almost automorphic solutions for system (2.1).

In the following, we take the initial moment t0 = 0 to discuss the finite-time
stability of system (2.1), that is, we consider system (2.1) supplemented with the
following initial condition:

xp(θ) = ψp(θ), θ ∈ [−ρ, 0], p = 1, 2, . . . , n,

where ψp ∈ C([−ρ, 0],A).

Definition 3.2. A mild solution x∗ of system (2.1) with initial value ψ∗ is called
finite-time stable with respect to {δ, ε, T}, here 0 < δ < ε and T > 0, if every mild
solution x of system (2.1) with initial value ψ satisfies that if ‖ψ − ψ∗‖ ≤ δ, then,
for t ∈ [0, T ],

‖x(t)− x∗(t)‖An ≤ ε,

where ‖ψ − ψ∗‖ρ = sup
t∈[−ρ,0]

‖ψ(t)− ψ∗(t)‖An .

Theorem 3.2. Assume (S1)-(S3) hold. If

δEα
(
MTα

)
≤ ε, (3.4)

where M = max
1≤p≤n

{Dp} and Eα(·) is the Mittag-Leffler function of one parameter,

then system (2.1) possesses exactly one pseudo almost periodic mild solution that is
finite-time stable with respect to {δ, ε, T}.
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Proof. Denote by x∗ the pseudo almost periodic mild solution of system (2.1)
with initial value ψ∗ and let x be any mild solution to system (2.1) with initial
value ψ. Set z = x− x∗, invoking (3.1), one gets

zp(t) =Up(t)(ψp(0)− ψ∗p(0)) +

∫ t

0

(t− s)α−1ϕp(t− s)
[ n∑
q=1

apq(s)

×
(
fq(xq(s− τpq(s)))− fq(x∗q(s− τpq(s))

)
+

n∑
q=1

n∑
l=1

bpql(s)
(
gq(xq(s− σpql(s)))

× gl(xl(s− νpql(s)))− gq(x∗q(s− σpql(s)))gl(x∗l (s− νpql(s)))
)]
ds, t ≥ 0

and

|Up(t)(ψp(0)− ψ∗p(0))|A ≤
∫ +∞

0

%α(γ)e−a
−
p (t)αγdγ|ψp(0)− ψ∗p(0)|A

≤
∫ +∞

0

%α(γ)dγ|ψp − ψ∗p |A

≤|ψp − ψ∗p|A.

Denote λ(t) = max
1≤p≤n

sup
s∈[−ρ,t]

|zp(s)|A, then for t ∈ [0, T ] and p = 1, 2, . . . , n, we find

|zp(t)|A ≤‖ψ − ψ∗‖ρ +

∫ t

0

(t− s)α−1ϕp(t− s)
[ n∑
q=1

âpqL
f
q

+

n∑
q=1

n∑
l=1

b̂pql

(
Mg
l L

g
q +Mg

q L
g
l

)]
λ(s)ds

≤‖ψ − ψ∗‖ρ +M

∫ t

0

(t− s)α−1α
∫ +∞

0

γ%α(γ)e−ap(t−s)
αγdγλ(s)ds

≤‖ψ − ψ∗‖ρ +
αM

Γ(α+ 1)

∫ t

0

(t− s)α−1λ(s)ds

≤‖ψ − ψ∗‖ρ +
M

Γ(α)

∫ t

0

(t− s)α−1λ(s)ds,

which combined with the fact that |zp(s)|A ≤ ‖ψ − ψ∗‖ρ for s ∈ [−ρ, 0] yields

λ(t) ≤ ‖ψ − ψ∗‖ρ +
M

Γ(α)

∫ t

0

(t− s)α−1λ(s)ds,

for t ∈ [0, T ] and p = 1, 2, . . . , n.
Further, invoking Corollary 2 in [40], we infer that

λ(t) ≤ ‖ψ − ψ∗‖ρEα(Mtα), t ∈ [0, T ].
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Since the function Eα(θ) is nondecreasing for θ ∈ R+, we conclude that

|zp(t)|A ≤ λ(t) ≤ ‖ψ − ψ∗‖ρEα(MTα), t ∈ [0, T ].

By (3.4), for all t ∈ [0, T ], one has

‖x(t)− x∗(t)‖ < ε,

which gives the conclusion of the theorem. The proof is complete.

4. An example

Our example is as follows.

Example 4.1. In system (2.1), take n = m = 2, and for p = 1, 2, let

xp(t) = e0x
0
p(t) + e1x

1
p(t) + e2x

2
p(t) + e12x

12
p (t) ∈ A, a1 = 12, a2 = 8,

a11(t) = a12(t) = e0
1

80
cos t+ e2

1

80
sin t,

a21(t) = a22(t) = e0
3

400
sin t+ e1

1

80
cos t+ e2

1

80
sin t+ e12

3

400
cos t,

b111(t) = b112(t) = b121(t) = b122(t) = e0
1

100
+ e2

7

400
sin t+ e12

7

400
cos t,

b211(t) = b212(t) = b221(t) = b222(t) = e0
1

80
+ e1

3

200
cos
√

2t+ e2
3

200
sin
√

2t,

fp(x) = e00.5 sinx0 + e10.5 sinx1 + e10.5 sinx2 + e120.5 sinx12,

gp(x) = e0
1

3
| sinx0|+ e1

1

4
| sinx1|+ e2

1

5
| sinx2|+ e12

1

6
| sinx12|,

τpq(t) = 0.1 sin 3t+ 0.3, σpql(t) = 0.1 sin2 t, νpql(t) = 0.3 sin 3t+ 0.5,

Ip(t) = e0
√

20.01 cos
√

5t+ e12
√

20.01 sin
√

5t+
1

1 + t2
.

It is easy to get that

Lfq = 0.5, Lgq =
1

3
, Mf

q = 1, Mg
q = 0.5, â11 = â12 = 0.0125,

â21 = â22 = 0.0146, b̂111 = b̂112 = b̂121 = b̂122 = 0.0216,

b̂211 = b̂212 = b̂221 = b̂222 = 0.0195, Î1 = Î2 = 4.5837.

Let r = 10, δ = 0.1, ε = 0.5, t0 = 0. Choose α = 0.3, 0.5 and 0.7, T = 10, one

has max
1≤p≤2

{
Cp
ap

+
Îp
ap

}
= 0.6075 < 10 = r, ξ = max

1≤p≤2

{
Dp
ap

}
= 0.0051 < 1 and

M = max
1≤p≤2

Dp = 0.0406. Using the MATLAB program, to compute the Mittag-

Leffler function, we obtain

E0.3(MT 0.3) = E0.3(0.081) ≈ 1.0982,
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Figure 1. Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.3, l = 0, 1, 2, 12.
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Figure 2. Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.5, l = 0, 1, 2, 12.

E0.5(MT 0.5) = E0.5(0.1284) ≈ 1.1631,

E0.7(MT 0.7) = E0.7(0.2035) ≈ 1.2615,

then δE0.3(MT 0.3) = 0.10982 < ε, δE0.5(MT 0.5) = 0.11631 < ε and δE0.7(MT 0.7)
= 0.12615 < ε.

Therefore, according to Theorem 3.2, system (2.1) possesses a unique pseudo
almost periodic mild solution, which is finite-time stable (see Figures 1-9).

5. Conclusions

In this paper, we have obtained the existence and finite-time stability of the pseudo
almost periodic mild solutions of FCHHNN (2.1). This is the first article to investi-
gate the almost periodic mild solutions of fractional-order Clifford-valued differential
equations via direct approach. The results and methods of this paper are new. And
the methods used in this paper can be applied to study the existence of almost
periodic or almost automorphic mild solutions to other types of fractional-order
neural networks. The research on almost periodic synchronization and almost au-
tomorphic synchronization of fractional-order complex neural network systems is
our future direction.
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Figure 3. Curves of xl1(t) and xl2(t) of system (2.1) for α = 0.7, l = 0, 1, 2, 12.

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

10 (t)

x
1

l
(s)=0.1 x

1

l
(s)=0.3 x

1

l
(s)=-0.6 x

1

l
(s)=-0.9, s∈[-0.8,0], l=0,1,2,12

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

12 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

11 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

112
(t)

Figure 4. Finite-time stability of x0
1(t), x

1
1(t), x

2
1(t) and x12

1 (t) of system (2.1) for α = 0.3.

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

20 (t)

x
2

l
(s)=-0.2 x

2

l
(s)=-0.4 x

2

l
(s)=0.7 x

2

l
(s)=0.9, s∈[-0.8,0],l=0,1,2,12

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

22 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

21 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.3
, x

212
(t)

Figure 5. Finite-time stability of x0
2(t), x

1
2(t), x

2
2(t) and x12

2 (t) of system (2.1) for α = 0.3.



2500 N. Huo & Y. Li

0 10 20 30 40 50

t

-1

0

1

α
=0

.5
, x

10 (t)

x
1

l
(s)=0.5 x

1

l
(s)=0.7 x

1

l
(s)=-0.8 x

1

l
(s)=-0.9, s∈[-0.8,0],l=0,1,2,12

0 10 20 30 40 50

t

-1

0

1

α
=0

.5
, x

12 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.5
, x

11 (t)

0 10 20 30 40 50

t

-1

0

1

α
=0

.5
, x

112
(t)

Figure 6. Finite-time stability of x0
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Abbreviations

FCHHNN fractional-order Clifford-valued high-order Hopfield neural network

CVNN Clifford valued neural network

HHNN high-order Hopfield neural network
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