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THE SMOOTH SOLUTIONS OF A CLASS OF
COUPLED KDV EQUATIONS

Boling Guo1 and Qi Guo2,†

Abstract This paper is devoted to the study of the periodic initial boundary
value problem and Cauchy problem for the coupled KdV equations. By the
Galerkin method and sequential approximation, we get a series of a priori
estimates and establish the existence of classical local solution to the periodic
problem for the system. Then we obtain the existence and uniqueness of global
smooth solution when the coefficients of the system satisfy certain conditions
by energy method, conserved quantities and nonconservative quantity I(u, v).
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1. Introduction

In this paper, we consider a class of coupled KdV (Korteweg-de Vries) equations as
follows: {

ut + 2bux + auxxx = −2b (uv)x , x ∈ R, t > 0,

vt + bvx + bvvx + cvxxx = −b
(
|u|2
)
x
, x ∈ R, t > 0

(1.1)

where u(x, t) is a complex value function, and v(x, t) is real-valued, the coefficients
a, b, c are real constants which are not zero. Deconinck and Nguyen [3] derived
the system (1.1) in the process of deriving the NLS-KdV (nonlinear Schrödinger-
Korteweg-de Vries) system with the traditional ansatz used in [6] from a generic
system which has nonlinearities that are quadratic, cubic, etc. And in this paper, it
has been proved that the system (1.1) has at least the following conserved quantities.

H0(u) =

∫ ∞
−∞

u dx, H1(v) =

∫ ∞
−∞

v dx,

H2(u, v) =

∫ ∞
−∞

(
|u|2 + v2

)
dx,

H3(u, v) =

∫ ∞
−∞

(
a

2
|ux|2 +

c

2
v2
x −

b

6
v3 − b|u|2v − b|u|2 − b

2
v2

)
dx.

KdV equation

ut + 6uux + uxxx = 0,
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is a unidirectional shallow water partial differential equation discovered by Dutch
mathematicians Korteweg and De-Vries when they studied the small amplitude
long wave motion in shallow water, and they gave the solitary wave solution. Then,
Zabusky and Kruskal [25] considered the periodic boundary conditions for the KdV
equation, and simulated the initial and exact solutions, finally obtained some special
properties of the KdV isolated wave. The KdV equation is widely used in solid
state physics, plasma, quantum theory and so on [5, 7]. So far, various properties
of individual KdV equation, including infinite symmetry, infinite multiconserved
quantities, inverse scattering transformation, Painlevè property, Bäcklund property
and Darboux transformation have been well known [17, 26, 27]. In addition to the
individual KdV equation, researchers have recently discovered a series of different
forms of coupled KdV systems in the practical physics and mathematics fields, which
are commonly used to describe the near-resonance interaction between hierarchical
fluid internal waves [8], interstellar near-resonance wave interaction [9], etc. And
how to use the known theories to explore the various properties of these nonlinear
systems and their solutions has gradually become one of the attention topics of
researchers. Later, the first coupled KdV equation{

ut + 6αuux − 2bvvx + αuxxx = 0,

vt + 3βuvx + βvxxx = 0,
(1.2)

was proposed by Hirota, which were derived to model the interaction of water
waves. Here α, β, b are constants. And Hirota and Satsuma [14] obtained the
isolated subsolutions and three fundamental conserved quantities of the coupled
system (1.2). In [15], using the iterative Darboux transformation, the authors firstly
obtained the analytical solution and non-singular complex solution of the following
coupled system {

ut + 6vvx − 6uux + uxxx = 0,

vt − 6uvx − 6vux + vxxx = 0.

In [1], Basakoǧlu and Gürel proved the existence and smoothness of a global attrac-
tor in the energy space of the following coupled system{

ut + auxxx + 3a(u2)x + β(v2)x = 0, x ∈ T,
vt + vxxx + 3uvx = 0,

by smoothing estimates, where a ∈ ( 1
4 , 1), β ∈ R. Similar works can also be referred

to [2, 16,19,20,23,24].
The literature proving the existence of solutions for the KdV equation or its

derived system by the Galerkin finite element method can be referred to [12,18,21].
In particular, Guo [11] researched the existence of periodic solution of the KdV
system as follows{

ut + f(u)x + uxxx = 0, x ∈ R, t > 0,

u(x, 0) = u(x, T ), u(x+ 2l, t) = u(x, t), l > 0

and obtained the weak solution space as L∞(0, T ;H4(−l, l)) ∩ C1(0, T ;L2(−l, l)),
where l > 0. By using the Galerkin finite element method and a priori estimation,



The smooth solutions of a class of coupled KdV equations 2507

Yang [22] studied the initial boundary value problem of a generalized KdV system
ut + f(u)x = αuxx + βuxxx, x ∈ R+, t > 0,

u(x, t)|t=0 = u0(x),

u(x, t)|x=0 = 0, u(x, t)→ 0 (x→∞)

and obtained the weak solution space as L∞(0, T ;H2
0 (R+)), where α ≥ 0, β < 0.

Ding and Wei [4] investigated the existence of the periodic solution for the coupled
system as follows

ut + αvvx + ασvx + β1uux + β2u
2ux + βuxxx = k1uxx, x ∈ R,

vt + δ(uv)x + εvvx + εσvx + δσux = k2vxx, x ∈ R,
u|t=0 = u0(x), v|t=0 = v0(x), 0 ≤ x ≤ 1,

u(x+ 1, t) = u(x, t), v(x+ 1, t) = v(x, t),

(1.3)

and obtained the weak solution space as L∞(0, T ;H3([0, 1])), where α, σ, β1, β2, β, δ,
ε are real constants. The unknown functions u, v are all real-valued functions. In
addition, we can prove the similar problems by other methods. By the conserved
quantities and priori estimates, Guo and Tan [10] researched the global existence
and uniqueness of smooth solution to the initial value problem of the following
coupled system {

ut = uxxx + 6uux + 2vvx,

vt = 2(uv)x.

In [13], He established the existence of smooth solution to the system of coupled
non-linear KdV equations{

ut = a(uxxx + 6uux) + 2bvvx,

vt = −vxxx − 3uvx,

where a and b are constants. His proof depended on the presence of dispersive terms
in both components and did not extend to the system of non-linear KdV equations
with a hyperbolic partial differential equations.

In this paper, we concern with the coupled system (1.1):{
ut + 2bux + auxxx = −2b(uv)x, x ∈ [−l, l], t > 0,

vt + bvx + bvvx + cvxxx = −b(|u|2)x, x ∈ [−l, l], t > 0
(1.4)

with the initial value conditions

u|t=0 = u0(x), v|t=0 = v0(x), x ∈ [−l, l] (1.5)

and the periodic conditions

u(x+ l, t) = u(x− l, t), v(x+ l, t) = v(x− l, t). l > 0. (1.6)

It can be seen that the system (1.4) − (1.6) is a dispersion system when k1 =
k2 = 0 in the system (1.3) and the unknown functions include a complex value
function, which leads that the highest derivative in the calculation process cannot be
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controlled by the lower derivatives, thus furtherly increasing the difficulty of proving
the existence of the global smooth solution. Firstly, we construct the existence of
classical local solution of the system (1.4) − (1.6) by the Galerkin finite element
method and sequential approximation. Next, through the conserved quantities and
nonconservative quantity I(u, v) of the system, we obtain a series of priori estimates
and then we achieve the existence of global smooth solution. Finally, we prove the
uniqueness of the smooth solution.

Now, we state our main results as follows:

Theorem 1.1. If the following conditions are met,

(i) ac > 0, c
a >

3
√

5−5
10 ;

(ii) u0, v0 ∈ Hm([−l, l]),m ≥ 4, and they are periodic functions with period 2l;

then the periodic initial value problem (1.4)− (1.6) admits a unique global periodic
smooth solution with u0(x), v0(x) as initial values, and there holds

u(x, t), v(x, t) ∈ L∞
(
R+;Hm ([−l, l])

)
.

If only the condition (ii) is met, then there exists a constant T0 > 0 such that the
system (1.4)− (1.6) admits a unique local periodic smooth solution with u0(x), v0(x)
as initial values, and there holds

u(x, t), v(x, t) ∈ L∞ (0, T0;Hm ([−l, l])) .

For the priori estimates of the solution to the system (1.4) are unconcerned with
the period parameter l, we can derive the global smooth solution as l → ∞, a.e.
x ∈ R. Theorem 1.1 is the global smooth solutions to the periodic initial boundary
value problem for the system (1.4) and Theorem 1.2 is the global smooth solition
for the Cauchy problem.

Theorem 1.2. Assumed that u0(x), v0(x) ∈ Hm(R),m ≥ 4, then there exists a
constant T0 > 0 such that the system (1.4) − (1.5) admits a unique local smooth
solution with u0(x), v0(x) as initial values, and there holds

u(x, t), v(x, t) ∈ L∞(0, T0;Hm(R)).

If ac > 0, c
a >

3
√

5−5
10 are satisfied on this basis , then there is a unique global smooth

solution of the problem (1.4)− (1.5) satisfying

u(x, t), v(x, t) ∈ L∞
(
R+;Hm(R)

)
.

Remark 1.1. We define the generalized solution of the coupled system (1.4)−(1.6)
as follows. Here we let Ω = [−l, l] or R.

Definition 1.1. The set of solution u(x, t), v(x, t) ∈ L∞ (R+;Hm(Ω)) ,m ≥ 2 is
called a generalized periodic solution of the coupled KdV system (1.4) − (1.6) or
(1.4)−(1.5) if for any test function ψ(x, t) ∈ Φ := {ψ : ψ ∈ C∞ ([0, T ]× Ω) , ψ(x, T )
≡ 0,∀T > 0}, there hold the following integral identities:∫ T

0

∫
Ω

(uψt + 2buψx + auxxψx + 2buvψx) dxdt+

∫
Ω

u0ψ(x, 0)dx = 0,∫ T

0

∫
Ω

(
vψt + bvψx +

b

2
v2ψx + cvxxψx + |u|2ψx

)
dxdt+

∫
Ω

v0ψ(x, 0)dx = 0,

with the periodic and initial conditions (1.5)− (1.6).
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Theorem 1.3. Assumed that ac > 0, c
a >

3
√

5−5
10 and u0, v0 ∈ Hm(Ω),m ≥ 2, then

there exists a unique generalized solution of the system (1.4)− (1.6) or (1.4)− (1.5)
satisfying

u(x, t), v(x, t) ∈ L∞(R+;Hm(Ω)).

Proof. Taking the sequences of the initial values {ui0}, {vi0} ∈ Hm(Ω),m ≥ 2,
when i → ∞, {ui0}, {vi0} are strongly converge in Hm(Ω) to u0 and v0. Then
we can prove that {ui(x, t)}, {vi(x, t)} are strongly converge to u(x, t) and v(x, t)
respectively in L∞(R+;Hm(Ω)). Thus u(x, t), v(x, t) ∈ L∞(R+;Hm(Ω)). From the
standard method, we can prove that u(x, t), v(x, t) is the unique generalized solution
of the system (1.4)− (1.6) or (1.4)− (1.5) satisfying the Definition 1.1, here we omit
the details.

Notations. Throughout the paper, C stands for a generic positive constant, which
may be different from line to line. We will use the notation A . B to denote the
relation A ≤ CB for conciseness.

This paper is organized as follows. In section 2, we present several function
spaces and symbols, which will be frequently used throughout the rest of the paper.
In section 3, we construct the approximate solutions by the Galerkin finite element
method and prove the existence of classical local solution by sequential approxima-
tion. In section 4, we give some priori estimates by the conserved quantities and
nonconservative quantity I(u, v), then we obtain the existence of global smooth
solution. The uniqueness of smooth solution will be proved in section 5.

2. Preliminaries

In this preliminaries section, we introduce some function spaces, symbols and a
lemma which play an important role in our proofs.

Ck ([−l, l]) denotes a complex valued function space which is continuously dif-
ferentiable k times on the interval [−l, l].

Lp ([−l, l]) denotes that the Lebesque measurable complex valued function f(x)
on the interval [−l, l] has a pth-integrable space, and its norm is expressed as

‖f‖p =

(∫ l

−l
|f |p dx

)1/p

.

Denote the inner product as follows:

(f, g) =

∫ l

−l
f(x, t)g(x, t) dx,

where g(x, t) represents the complex conjugate of g(x, t), then L2 ([−l, l]) is a com-
plete complex Hilbert space.

L∞ ([−l, l]) denotes a space where Lebesgue measurable function f(x) is almost
bounded on the interval [−l, l], and its norm is expressed as

‖f‖∞ = esssup
x∈[−l,l]

|f(x)| .
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Hs ([−l, l]) denotes a complex valued function space with generalized derivatives
Dku (|k| ≤ s) ∈ L2([−l, l]), and its norm is expressed as

‖u‖2Hs =
∑
|k|≤s

∥∥Dku
∥∥2

2
.

Hs
0 ([−l, l]) denotes the closure of an infinitely differentiable function with com-

pact support C∞0 ([−l, l]) in the norm sense of Hs on the interval [−l, l].
Wm

p ([−l, l]) represents the function space composed of Dku(|k| ≤ m) ∈
Lp([−l, l]), where Dku is the weak partial derivative of u, and its norm is expressed
as

‖u‖pWm
p

=
∑
|k|≤m

∥∥Dku
∥∥p
p
.

L∞ (0, T ;Hs) indicates that the complex valued function u(x, t) belongs to the
Hs space as a function of x, and there holds

sup
0≤t≤T

‖u(·, t)‖Hs <∞.

Lemma 2.1 (Sobolev inequality). Given ε > 0, n, there exist a constant C which
depends on ε and n, such that∥∥∥∥∂ku∂xk

∥∥∥∥
∞
≤ C‖u‖2 + ε

∥∥∥∥∂nu∂xn

∥∥∥∥
2

, k < n,∥∥∥∥∂ku∂xk

∥∥∥∥
2

≤ C‖u‖2 + ε

∥∥∥∥∂nu∂xn

∥∥∥∥
2

, k < n.

3. Existence of local solutions

In this section, we prove that (1.4)−(1.6) admits at least one classical local solution
by using the Galerkin finite element method and sequential approximation. Firstly,
we construct the Galerkin finite element solution.

Choosing {wj(x)} is the basis function of N-dimensional space S4 ⊂ H4(R),
where S4 = {p(x), x ∈ [−l, l]; p(x) periodically expand to C3(R), p(x) is the quintic
polynomial on the interval [ih, (i+ 1)h] , i = −m, 1−m, · · · , 0, 1, · · · ,m− 1, mh =
l,R is the real axis }, and the basis function {wj(x)} is a characteristic function
class of the ordinary differential equation y′′ = −λy with the boundary conditions
y(−l) = y(l). Let the approximate solutions be:

uh(x, t) =

m−1∑
j=−m

ηj(t)wj(x), vh(x, t) =

m−1∑
j=−m

ζj(t)wj(x),

and the coefficient functions ηj(t), ζj(t) satisfy the periodic problems of nonlinear
ordinary differential equations(j = −m, 1−m, · · · ,m− 1):

(uht , wj) + 2b(uhx, wj) + a(uhxxx, wj) + 2b
(
(uhvh)x, wj

)
= 0, (3.1)

(vht , wj) + b(vhx , wj) + b(vhvhx , wj) + c(vhxxx, wj) + b
((
|uh|2

)
x
, wj

)
= 0, (3.2)

uh(x, 0) =

m−1∑
j=−m

ηj(0)wj(x) = uh0 (x), vh(x, 0) =

m−1∑
j=−m

ζj(0)wj(x) = vh0 (x), (3.3)
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where {ηj(t)} are complex value functions,while {ζj(t)} are real-valued functions.
Because of the linear independency for {wj(x)} and the denseness of {wj(x)} ∈
H4(R) ⊂ H1(R), there exists a complex constant cj and a real constant dj such
that

uh0 (x)
H1(R)−→ u0(x), vh0 (x)

H1(R)−→ v0(x), (3.4)

ηj(0) = cj , ζj(0) = dj . (3.5)

If uh(x, t) and vh(x, t) satisfy (3.1)− (3.5), then uh(x, t), vh(x, t) are a set of finite
element solutions of the problem (1.4).

The solutions of Cauchy problem of nonlinear ordinary differential equations
(3.1)− (3.5) exist, for(

∂uh

∂t
, wj

)
=

(
∂

∂t

m−1∑
k=−m

ηkwk, wj

)
=

m−1∑
k=−m

η′k(t) (wk, wj) ,

(
∂vh

∂t
, wj

)
=

(
∂

∂t

m−1∑
k=−m

ζkwk, wj

)
=

m−1∑
k=−m

ζ ′k(t)(wk, wj).

Since the basis functions {wj(x)} are linearly independent, det(wk, wj) 6= 0. And
from the priori estimation of uh and vh by the following lemmas, we can know that
the solutions ηj(t), ζj(t) of the problem (3.1)− (3.5) exist.

Lemma 3.1. Let uh0 (x), vh0 (x) ∈ L2 ([−l, l]), then there exists a constant C > 0
such that ∥∥uh∥∥2

2
+
∥∥vh∥∥2

2
≤ C,

where the constant C is only related to
∥∥uh0∥∥2

,
∥∥vh0∥∥2

.

Proof. Multipling ηj(t) by (3.1), and summing about j we get

(uht , u
h) + 2b(uhx, u

h) + a(uhxxx, u
h) + 2b

(
(uhvh)x, u

h
)

= 0, (3.6)

where

Re(uht , u
h) =

1

2

d

dt
‖uh‖22, Re(2buhx, u

h) = Re(auhxxx, u
h) = 0,

2b
(
(uhvh)x, u

h
)

= −2b(uhvh, uhx).

Multipling ζj(t) by (3.2), and summing about j we arrive at

(vht , v
h) + b(vhx , v

h) + b(vhvhx , v
h) + c(vhxxx, v

h) + b
((
|uh|2

)
x
, vh
)

= 0, (3.7)

where

(vht , v
h) =

1

2

d

dt
‖vh‖22, b(vhx , v

h) = b(vhvhx , v
h) = c(vhxxx, v

h) = 0,

b
((
|uh|2

)
x
, vh
)

= b
(
uhxv

h, uh
)

+ b
(
uhvh, uhx

)
.

Combining (3.6) and (3.7) and taking the real part we have

d

dt

(
‖uh‖22 + ‖vh‖22

)
= 0.
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Integrating the above equality with respect to t ∈ [0, T ], one gets∥∥uh(T )
∥∥2

2
+
∥∥vh(T )

∥∥2

2
=
∥∥uh(0)

∥∥2

2
+
∥∥vh(0)

∥∥2

2
≤ C.

Lemma 3.2. Under the conditions in Lemma 3.1, and uh0 (x), vh0 (x) ∈ H2 ([−l, l]),
then there exists a constant T0 > 0 such that for any t ∈ [0, T0], there holds∥∥uhx∥∥2

2
+
∥∥vhx∥∥2

2
+
∥∥uhxx∥∥2

2
+
∥∥vhxx∥∥2

2
≤ C.

Proof. Multiplying ηj(t) by
(
uht + 2buhx + auhxxx + 2b(uhvh)x,−λwj

)
= 0 and

summing about j we arrive at(
uht + 2buhx + auhxxx + 2b(uhvh)x, u

h
xx

)
= 0, (3.8)

where

Re(uht , u
h
xx) = −1

2

d

dt

∥∥uhx∥∥2

2
, Re(2buhx + auhxxx, u

h
xx) = 0,

and in the above relations we have used w′′j (x) = −λwj .

Multiplying ζj(t) by
(
vht + bvhx + bvhvhx + cvhxxx + b

(
|uh|2

)
x
,−λwj

)
= 0 and

summing about j we obtain(
vht + bvhx + bvhvhx + cvhxxx + b

(
|uh|2

)
x
, vhxx

)
= 0, (3.9)

where

(vht , v
h
xx) = −1

2

d

dt
‖vhx‖22, (bvhx + cvhxxx, v

h
xx) = 0,

(
bvhvhx , v

h
xx

)
= − b

2

∫ l

−l

(
vhx
)3
dx.

Combining (3.8) and (3.9) and taking the real part we have

d

dt

∥∥uhx∥∥2

2
+
d

dt

∥∥vhx∥∥2

2
+ b

∫ l

−l

(
vhx
)3
dx+ 6b

∫ l

−l

∣∣uhx∣∣2 vhx dx = 0.

Thus, we can get the following estimate:

d

dt

(∥∥uhx∥∥2

2
+
∥∥vhx∥∥2

2

)
.
∥∥vhx∥∥2

2

∥∥vhx∥∥∞ +
∥∥uhx∥∥2

2

∥∥vhx∥∥∞ . (3.10)

Similarly, multiplying ηj(t), ζj(t) by
(
uht + 2buhx + auhxxx + 2b(uhvh)x, λ

2wj

)
= 0

and
(
vht + bvhx + bvhvhx + cvhxxx + b

(
|uh|2

)
x
, λ2wj

)
= 0 respectively, and summing

about j we arrive at(
uht + 2buhx + auhxxx + 2b

(
uhvh

)
x
, uhxxxx

)
= 0, (3.11)(

vht + bvhx + bvhvhx + cvhxxx + b
(
|uh|2

)
x
, vhxxxx

)
= 0. (3.12)

By calculation, combining (3.11) and (3.12) and taking the real part we have

d

dt
‖uhxx‖22 +

d

dt
‖vhxx‖22 + 5b

∫ l

−l
vhx
(
vhxx
)2
dx+ 5b

∫ l

−l

∣∣uhxx∣∣2 vhxdx
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+Re2b

∫ l

−l

(
4uhxu

h
xxv

h
xx + uhxu

h
xxv

h
xx

)
dx = 0.

Thus, we can get estimate as follows:

d

dt

(
‖uhxx‖22 + ‖vhxx‖22

)
. ‖vhxx‖22‖vhx‖∞ + ‖uhxx‖22‖vhx‖∞ + ‖uhxx‖2‖vhxx‖2‖uhx‖∞.

(3.13)

Finally combining (3.10) and (3.13) we get

d

dt

(
‖uhx‖22 + ‖vhx‖22 + ‖uhxx‖22 + ‖vhxx‖22

)
. ‖uhx‖32 + ‖vhx‖32 + ‖uhxx‖32 + ‖uhxx‖32.

Thus by the above inequality we get, if uh0 , v
h
0 ∈ H2 ([−l, l]), there exist constants

T0, C > 0, such that for any t ∈ [0, T0], there holds

‖uhx‖22 + ‖vhx‖22 + ‖uhxx‖22 + ‖vhxx‖22 ≤ C.

Lemma 3.3. Under the conditions in Lemma 3.2, and uh0 (x), vh0 (x) ∈ H3 ([−l, l]),
then there exists a constant T0 > 0, such that for any t ∈ [0, T0], there holds

‖uht ‖22 + ‖vht ‖22 ≤ C.

Proof. Differentiating (3.1) and (3.2) with respect to t, then multiplying by η′j(t)
and ζ ′j(t) respectively and summing about j we can get(

Et + 2bEx + aExxx + 2b(Exv
h + uhxF + Evhx + uhFx), E

)
= 0, (3.14)(

Ft + bFx + b(Fvhx + vhFx) + cFxxx + b(Exuh + uhxE + Exu
h + uhxE), F

)
= 0,

(3.15)

where E := uht , F := vht .
Applying integration by parts and taking the real part, we obtain

d

dt

(
‖E‖22 + ‖F‖22

)
=− b

2

∫ l

−l
vhx
(
2|E|2 + |F |2

)
dx− 2bRe

∫ l

−l
uhxEF dx

+ 2bRe

∫ l

−l
uhxFE dx− b

∫ l

−l

(
uhxEF + uhxEF

)
dx

≤ b
(
‖uhx‖∞ + ‖vhx‖∞

) (
‖E‖22 + ‖F‖22

)
.

Combining Lemma 3.2, we get

d

dt

(
‖E‖22 + ‖F‖22

)
. ‖E‖22 + ‖F‖22.

Thus, if uh0 (x), vh0 (x) ∈ H3 ([−l, l]), there exist constants T0, C > 0, such that for
any t ∈ [0, T0], there holds

‖E‖22 + ‖F‖22 ≤ C.
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Lemma 3.4. Under the conditions in Lemma 3.3, and uh0 (x), vh0 (x) ∈ H3 ([−l, l]),
then there exists a constant T0 > 0, such that for any t ∈ [0, T0], there holds

‖uhxxx‖22 + ‖vhxxx‖22 ≤ C.

Lemma 3.5. Under the conditions in Lemma 3.4, and uh0 (x), vh0 (x) ∈ H4 ([−l, l]),
then there exists a constant T0 > 0, such that for any t ∈ [0, T0], there holds

‖uhxt‖22 + ‖vhxt‖22 ≤ C.

Proof. Differentiating (3.1) and (3.2) with respect to t, then multiplying them by
η′j(t) and ζ ′j(t) respectively and summing about j we can get(
Et + 2bEx + aExxx + 2b(Exv

h + uhxF + Evhx + uhFx), Exx

)
= 0, (3.16)(

Ft + bFx + b(Fvhx + vhFx) + cFxxx + b(Exuh + uhxE + Exu
h + uhxE), Fxx

)
= 0.

(3.17)

Similarly to the estimations of Lemma 3.1− 3.3, combining the above two and
taking the real part we get

d

dt

(
‖Ex‖22 + ‖Fx‖22

)
. ‖Ex‖22 + ‖Fx‖22 + 1.

Thus, by the Gronwall inequality we obtain that, if uh0 (x), vh0 (x) ∈ H4 ([−l, l]), there
exist constants T0, C > 0, such that ∀t ∈ [0, T0], there holds

‖Ex‖22 + ‖Fx‖22 ≤ C.

Lemma 3.6. Under the conditions in Lemma 3.5, and uh0 (x), vh0 (x) ∈ H4 ([−l, l]),
then there exists a constant T0 > 0, such that for any t ∈ [0, T0], there holds

‖uhxxxx‖22 + ‖vhxxxx‖22 ≤ C.

Thanks to the Lemma 3.1 − 3.6, we obtain the result about the existence of
classical local solution as follows.

Theorem 3.1. If u0(x), v0(x) ∈ H4 ([−l, l]) and they are periodic functions with
period 2l, then there exists a constant T0 > 0 such that the periodic initial value
problem (1.4)− (1.6) admits at least one classical local solution with u0(x), v0(x) as
initial values satisfying

u(x, t), v(x, t) ∈ L∞
(
0, T0;C3 ([−l, l])

)
.

Proof. Thanks to Lemmas 3.1 − 3.6, we obtain that there exist a constant T0

such that for any 0 ≤ t ≤ T0, {uh} and {vh} are uniformly bounded in H4([−l, l]),
and the upper bound continuously depends on the initial values, therefore we can
select subsequences (still recorded as) {uh}, {vh} such that when h→ 0, {uh}, {vh}
are weakly star converge in L∞

(
0, T0;H4([−l, l])

)
to u and v respectively; and

{uht }, {vht } are weakly star converge in L∞
(
0, T0;H1([−l, l])

)
to ut and vt respec-

tively. Especially, in L∞
(
0, T0;L2([−l, l])

)
,
{(
uhvh

)
x

}
,
{
vhvhx

}
and

{(
|uh|2

)
x

}
are

weakly star converge to (uv)x, vvx and
(
|u|2
)
x

respectively.
Therefore let h→ 0, we can obtain that the classical local solutions of the cou-

pled problem (1.4)− (1.6) exist and satisfy u(x, t), v(x, t) ∈ L∞
(
0, T0;C3([−l, l])

)
.
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4. Existence of global solution

In this section, we prove the existence of global smooth solution.
The set of solution u = u(x, t), v = v(x, t) for the periodic initial value problem

(1.4) − (1.6) satisfy (1.4)1, (1.4)2,u(·, t), v(·, t) ∈ C3 ([−l, l]) , uxxx(·, t), vxxx(·, t) ∈
H1 ([−l, l]) satisfy the initial value condition (1.5) and periodic condition (1.6) and
we know that, ∀x, t, the initial functions u0(x), v0(x) should be the periodic func-
tions with period 2l. In the following lemmas, it is assumed that u(x, t), v(x, t) are
periodic solutions with u0(x), v0(x) as initial values respectively.

Lemma 4.1. Assume that ac > 0 and u0(x), v0(x) ∈ H1 ([−l, l]), then for any
T > 0, t ∈ [0, T ] there holds

‖u‖2H1 + ‖v‖2H1 ≤ C,

where the constant C depends on a, b, c, ‖u0‖H1 , ‖v0‖H1 .

Proof. Taking the inner product of (1.4)1, (1.4)2 with u and v on the interval
[−l, l] respectively, we have

(ut + 2bux + auxxx + 2b(uv)x, u) = 0, (4.1)(
vt + bvx + bvvx + cvxxx + b(|u|2)x, v

)
= 0. (4.2)

Then summing (4.1) and (4.2), taking the real part and using integration by parts
we get

1

2

d

dt

(
‖u‖22 + ‖v‖22

)
=2bRe

∫ l

−l
uvux dx− b

∫ l

−l

(
|u|2
)
x
v dx.

Finally, we obtain

d

dt

(
‖u‖22 + ‖v‖22

)
= 0,

and integrating it in t ∈ [0, T ],∀T > 0, we have

‖u(·, T )‖22 + ‖v(·, T )‖22 = ‖u0‖22 + ‖v0‖22.

Through the conserved quantity H3(u, v), we get

H3(u, v)|[−l,l] = H3(u0, v0)|[−l,l],

where

H3(u, v)|[−l,l] =

∫ l

−l

(
a

2
|ux|2 +

c

2
v2
x −

b

6
v3 − b|u|2v − b|u|2 − b

2
v2

)
dx.

Thus by Lemma 2.1, if ac > 0, we have

|a|
2
‖ux‖22 +

|c|
2
‖vx‖22 ≤

∣∣∣|H3(u0, v0)|[−l,l]
∣∣∣+

∣∣∣∣∣
∫ l

−l

(
b

6
v3 + b|u|2v + b|u|2 +

b

2
v2

)
dx

∣∣∣∣∣
≤C +

|b|
6
‖v‖22‖v‖∞ + |b|‖u‖22‖v‖∞ + |b|‖u‖22 +

|b|
2
‖v‖22
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≤C +
|b|
6
‖v‖

5
2
2 ‖vx‖

1
2
2 + |b|‖u‖22‖v‖

1
2
2 ‖vx‖

1
2
2 + |b|‖u‖22 +

|b|
2
‖v‖22

≤C +
|c|
8
‖vx‖22 + C(b, c)‖v‖

10
3

2 +
|c|
8
‖vx‖22 + C(b, c)‖u‖

8
3
2 ‖v‖

2
3
2

+ |b|‖u‖22 +
|b|
2
‖v‖22

≤C(b, c, ‖u‖2, ‖v‖2) +
|c|
4
‖vx‖22,

where C(b, c, ‖u‖2, ‖v‖2) represents a constant related to b, c, ‖u‖2, ‖v‖2, and C(b, c)
also has a similar definition. Thus,

|a|
2
‖ux‖22 +

|c|
4
‖vx‖22 ≤ C(b, c, ‖u‖2, ‖v‖2).

And we complete the proof of Lemma 4.1.

Lemma 4.2. If the following conditions are met,

(i) ac > 0, c
a >

3
√

5−5
10 ;

(ii) u0, v0 ∈ H2([−l, l]);

then for any T > 0, t ∈ [0, T ] there holds

‖uxx‖22 + ‖vxx‖22 ≤ C,

where the constant C is related to a, b, c, ‖u0‖H2 , ‖v0‖H2 .

Proof. Before proving this lemma, we give a claim, that is I(u, v) is bounded,
and

I(u, v) =

∫ l

−l
27a2c|uxx|2 + (15c3 + 15ac2 − 3a2c)v2

xx − 90abc|ux|2v

+ (25bc2 + 25abc− 5a2b)v2
xv − (60abc+ 30bc2)(|u|2)xvx)dx.

Let

I1(u, v) =

∫ l

−l
γ1|uxx|2 + γ2v

2
xx + γ3|ux|2v + γ4v

2
xv + γ5(|u|2)xvxdx,

where γi(i = 1, 2, 3, 4) are undetermined coefficients and γ1, γ2 are the same sign
and not zero, that is, the same positive or negative numbers, thus there holds

‖uxx‖22 + ‖vxx‖22 ≤C + |γ3|‖ux‖22‖v‖∞ + |γ4|‖vx‖22‖v‖∞ + |γ5|‖ux‖2‖vx‖2‖u‖∞
≤C, (4.3)

where the constant C is related to γi(i = 1, 2, 3, 4, 5), ‖u‖H1 , ‖v‖H1 .
Next, we prove the claim. Firstly, differenting I1(u, v) with respect to t we have

d

dt
I1(u, v) =

∫ l

−l
γ1 (uxxuxxt + uxxuxxt) + 2γ2vxxvxxt + γ3

(
|ux|2vt + uxuxtv

+ uxuxtv
)

+ γ4

(
v2
xvt + 2vvxvxt

)
+ γ5

[(
|u|2
)
xt
vx +

(
|u|2
)
x
vxt
]
dx,

(4.4)
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where∫ l

−l
(uxxuxxt + uxxuxxt) dx =

∫ l

−l
−10b|uxx|2vx + 6b|ux|2vx3 − 2buuxxvx3

− 2buuxxvx3 dx, (4.5)∫ l

−l
2vxxvxxt dx =

∫ l

−l
−5bvxv

2
xx + 4b|ux|2vx3 + 2b(uuxxvx3 + uuxxvx3) dx, (4.6)∫ l

−l
(v2

xvt + 2vvxvxt) dx =

∫ l

−l
−3cvxv

2
xx − 4b|u|2vxvxx − 2b|u|2vvx3 − bvv3

x dx,

(4.7)∫ l

−l
(|ux|2vt + uxuxtv + uxuxtv) dx =

∫ l

−l
b|ux|2vx − 3a|uxx|2vx + (a− c)|ux|2vx3

− 5b|ux|2vvx + 2b|u|2vxvxx + 2b|u|2vvx3

− b|ux|2(|u|2)x dx, (4.8)∫ l

−l
(|u|2)xtvx + (|u|2)xvxt dx =

∫ l

−l
(2c+ a)|ux|2vx3 + (c− a)(uuxxvx3 + uuxxvx3)

− b|u|2vx3 − 2b|ux|2vvx + 8b|u|2vxvxx
− b(uuxxvvx + uuxxvvx) dx. (4.9)

Combining the above equalities (4.4)− (4.9), we get

d

dt
I1(u, v) ≤ (−10γ1b− 3γ3a) |uxx|2vx − (5γ2b+ 3γ4c) vxv

2
xx

+ (6γ1b+ 4γ2b+ γ3(a− c) + γ5(2c+ a)) |ux|2vx3

+ (−2bγ1 + 2bγ2 + γ5(c− a)) (uuxxvx3 + uuxxvx3)

+ C
(
‖uxx‖22 + ‖vxx‖22

)
+ C, (4.10)

where the constant C is related to γi(i = 1, · · · , 5), a, b, ‖u‖H1 , ‖v‖H1 . Therefore in
order to enable the right side of the (4.10) to be controlled by ‖uxx‖22 + ‖vxx‖22 +C,
the coefficients of the top four items on the right end of the (4.10) should be 0, that
is

− 10γ1b− 3γ3a = 0, 5γ2b+ 3γ4c = 0,

6γ1b+ 4γ2b+ γ3(a− c) + γ5(2c+ a) = 0, −2bγ1 + 2bγ2 + γ5(c− a) = 0.

From these we can obtain the relationship between γ1, γ2, γ3, γ4 and γ5 as

γ2 =
5c2 + 5ac− a2

9a2
γ1, γ3 = −10b

3a
γ1, (4.11)

γ4 =
25bc2 + 25abc− 5a2b

27a2c
γ1, γ5 = −20ab+ 10bc

9a2
γ1. (4.12)

At the same time, in order to guarantee the coefficients γ1, γ2 are the same sign
and not zero, there must hold 5c2 + 5ac− a2 > 0, thus the relationship between the
parameters a, c is obtained as follows:

ac > 0,
c

a
>

3
√

5− 5

10
.
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Combining (4.10) and (4.11)(4.12), we have

d

dt
I1(u, v) . I1(u, v) + C.

Applying the Gronwall inequality, we know that I1(u, v) is bounded. And combining
(4.3), we finally obtain that desired reslut.

Lemma 4.3. Under the conditions in Lemma 4.2, and u0, v0 ∈ H3 ([−l, l]), then
for any T > 0, t ∈ [0, T ] there holds

‖ut‖22 + ‖vt‖22 ≤ C,

where the constant C is related to a, b, c, ‖u0‖H3 , ‖v0‖H3 .

Proof. Differenting the equations (1.4)1, (1.4)2 with respect to t and taking the
inner product with ut, vt respectively on the interval x ∈ [−l, l] we have

(utt + 2buxt + aux3t + 2b(uxtv + uxvt + utvx + uvxt), ut) = 0, (4.13)

(vtt + bvxt + b(vtvx + vvxt) + cvx3t + b(uxtu+ uxut + uxut + uxtu), vt) = 0.
(4.14)

Summing (4.13) and (4.14), taking the real part and using integration by parts, we
obtain

d

dt

(
‖ut‖22 + ‖vt‖22

)
=− b

2

∫ l

−l
vx
(
2|ut|2 + v2

t

)
dx− 2bRe

∫ l

−l
uxvtut dx

+ 2bRe

∫ l

−l
uxvtut dx− b

∫ l

−l
(uxutvt + uxutvt) dx

≤ b (‖ux‖∞ + ‖vx‖∞)
(
‖ut‖22 + ‖vt‖22

)
.

Finally, we have

d

dt

(
‖ut‖22 + ‖vt‖22

)
. ‖ut‖22 + ‖vt‖22.

Combining the Gronwall inequality, we derive that for any T > 0, t ∈ [0, T ], there
holds

‖ut‖22 + ‖vt‖22 ≤ C.

Lemma 4.4. Under the conditions in Lemma 4.3, then for any T > 0, t ∈ [0, T ]
there holds

‖uxxx‖22 + ‖vxxx‖22 ≤ C,

where the constant C is depends on a, b, c, ‖u0‖H3 , ‖v0‖H3 .

Proof. Taking the inner product of (1.4)1, (1.4)2 with uxxx and vxxx respectively
we have

(ut + 2bux + auxxx + 2b(uv)x, uxxx) = 0, (4.15)
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vt + bvx + bvvx + cvxxx + b(|u|2)x, vxxx

)
= 0. (4.16)

Thus, taking the real part of (4.15) we obtain

a‖uxxx‖22 =−Re
∫ l

−l
(ut + 2bux + 2buxv + 2buvx)uxxx dx

≤ (‖ut‖2 + 2b‖ux‖2 + 2b‖v‖∞‖ux‖2 + 2b‖u‖∞‖vx‖2) ‖uxxx‖2,

and applying the lemmas 4.1− 4.3, we have

‖uxxx‖2 ≤ C. ∀T > 0, t ∈ [0, T ].

In the same way, we can get the following estimate

‖vxxx‖2 ≤ C. ∀T > 0, t ∈ [0, T ].

And we complete the proof of Lemma 4.4.
Similar to the proof of the Lemmas 4.1− 4.4, if u0(x), v0(x) ∈ Hm ([−l, l]) ,m ≥

0, we obtain the following lemma by the induction argument.

Lemma 4.5. Assumed that u0(x), v0(x) ∈ Hs ([−l, l]) , s ≥ 0, then for any T >
0, t ∈ [0, T ] there holds

‖uxs‖22 + ‖vxs‖22 ≤ C, (4.17)

where the constant C is depends on a, b, c, ‖u0‖Hs , ‖v0‖Hs .

Proof. This lemma will be proved by the induction for s. According to the Lem-
mas 4.1− 4.4, we can know that the estimate holds for 0 ≤ s ≤ 3.

Now we assume that the estimate holds for s = M − 1 ≥ 3, and we will prove
that (4.17) holds for s = M .

Using the integration by parts we get

1

2

d

dt
‖uxM ‖22 =− 2bRe

∫ l

−l
(uv)xM+1uxM dx

≤‖uxM ‖22 + ‖vxM ‖22 + C + b

∫ l

−l
|uxM |2vxdx− b

∫ l

−l
(uvxM+1uxM

+ uuxM vxM+1) dx, (4.18)

1

2

d

dt
‖vxM ‖22 =− b

∫ l

−l
(vvx)xM vxMdx− b

∫ l

−l
(|u|2)xM+1vxM dx

≤‖uxM ‖22 + ‖vxM ‖22 + C +
b

2

∫ l

−l
(vxM )

2
vx dx− b

∫ l

−l
(uuxM+1vxM

+ uuxM+1vxM )dx. (4.19)

Combining (4.18) and (4.19) we have

d

dt

(
‖uxM ‖22 + ‖vxM ‖22

)
. ‖uxM ‖22 + ‖vxM ‖22 + 1,

then combining the Gronwall inequality, we derive that

‖uxM ‖22 + ‖vxM ‖22 ≤ C.

Thus by the induct method, we can obtain the estimate (4.17).
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5. Uniqueness of smooth solution

In this section, we prove the uniqueness of global smooth solution in Theorem 1.1.
Proof. Supposed that u1, v1 and u2, v2 are two sets of solutions to the system
(1.4)− (1.6). Let ϕ = u1 − u2, φ = v1 − v2, we have

ϕt + 2bϕx + aϕxxx = −2b (ϕxv2 + ϕv2x + φxu1 + φu1x) (5.1)

= −2b (u2xφ+ u2φx + ϕxv1 + ϕv1x) , (5.2)

φt + bφx + cφxxx = −b (v2φx + v1xφ)− b (u2xϕ+ u2ϕx + u1ϕx + u1xϕ) (5.3)

= −b (v2φx + v1xφ)− b (ϕu2x + ϕxu2 + u1ϕx + u1xϕ) , (5.4)

and ϕ(x, 0) = φ(x, 0) = 0, ϕ(x+ l, t) = ϕ(x− l, t), φ(x+ l, t) = φ(x− l, t).
Firstly, taking the inner product of (5.1) and (5.2) with ϕ respectively, and

taking the real part after the summation we get

d

dt
‖ϕ‖22 =− b

∫ l

−l
|ϕ|2v2x dx− b

∫ l

−l
|ϕ|2v1x dx− b

∫ l

−l
(u1φxϕ+ u1φxϕ+ u2φxϕ

+ u2φxϕ) dx− b
∫ l

−l
(u1xφϕ+ u1xφϕ+ u2xφϕ+ u2xφϕ) dx

≤ b
2∑

k=1

(‖ukx‖∞ + ‖vkx‖∞)
(
‖ϕ‖22 + ‖φ‖22

)
− b

∫ l

−l
(u1φxϕ+ u1φxϕ

+ u2φxϕ+ u2φxϕ) dx. (5.5)

Secondly, taking the inner product of (5.3) and (5.4) with φ respectively and sum-
ming them we have

d

dt
‖φ‖22 =b

∫ l

−l
v2xφ

2 dx− 2b

∫ l

−l
v1xφ

2 dx− b
∫ l

−l
(u2xφϕ+ u1xφϕ+ u2xφϕ

+ u1xφϕ) dx− b
∫ l

−l
(u2φϕx + u1φϕx + u2φϕx + u1φϕx) dx

≤ b
2∑

k=1

(‖ukx‖∞ + ‖vkx‖∞)
(
‖ϕ‖22 + ‖φ‖22

)
− b

∫ l

−l
(u2φϕx + u1φϕx + u2φϕx

+ u1φϕx) dx. (5.6)

Combining (5.5)− (5.6) and applying integration by parts we get

d

dt

(
‖ϕ‖22 + ‖φ‖22

)
≤ b

2∑
k=1

(‖ukx‖∞ + ‖vkx‖∞)
(
‖ϕ‖22 + ‖φ‖22

)
+ b

∫ l

−l

2∑
k=1

(ukxφϕ

+ ukxφϕ) dx

≤ b
2∑

k=1

(‖ukx‖∞ + ‖vkx‖∞)
(
‖ϕ‖22 + ‖φ‖22

)
. (5.7)

Thus, by the Gronwall inequality we obtain ϕ = φ = 0 when u1, u2, v1, v2 ∈
L∞

(
0, T ;H3[−l, l]

)
. This completes the proof of Theorem 1.1.
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