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THE SMOOTH SOLUTIONS OF A CLASS OF
COUPLED KDV EQUATIONS

Boling Guo' and Qi Guo>'

Abstract This paper is devoted to the study of the periodic initial boundary
value problem and Cauchy problem for the coupled KdV equations. By the
Galerkin method and sequential approximation, we get a series of a priori
estimates and establish the existence of classical local solution to the periodic
problem for the system. Then we obtain the existence and uniqueness of global
smooth solution when the coefficients of the system satisfy certain conditions
by energy method, conserved quantities and nonconservative quantity I(u,v).
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1. Introduction

In this paper, we consider a class of coupled KdV (Korteweg-de Vries) equations as
follows:

{ut—|—2bux—|—auxmz—2b(uv)w, z e R, t>0, (1.1)

v + bvg + bvvg + CUpgy = —b (\u|2)I, reRt>0

where u(z,t) is a complex value function, and v(x, t) is real-valued, the coefficients
a,b,c are real constants which are not zero. Deconinck and Nguyen [3] derived
the system (1.1) in the process of deriving the NLS-KdV (nonlinear Schriodinger-
Korteweg-de Vries) system with the traditional ansatz used in [6] from a generic
system which has nonlinearities that are quadratic, cubic, etc. And in this paper, it
has been proved that the system (1.1) has at least the following conserved quantities.

Hg(u):/OC wdzx, Hl(v):/oovdx,

— 00 oo

Hy(u,v) = /OO (Jul* + v*) da,

— 00

< (a c b b
Hs(u,v) = / (um|2 + —v2 — Z0% — blu?v — blul* — vz) dx.
o \2 2% " § 2

KdV equation

Ug + Uty + Ugee = 0,
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is a unidirectional shallow water partial differential equation discovered by Dutch
mathematicians Korteweg and De-Vries when they studied the small amplitude
long wave motion in shallow water, and they gave the solitary wave solution. Then,
Zabusky and Kruskal [25] considered the periodic boundary conditions for the KdV
equation, and simulated the initial and exact solutions, finally obtained some special
properties of the KdV isolated wave. The KdV equation is widely used in solid
state physics, plasma, quantum theory and so on [5,7]. So far, various properties
of individual KdV equation, including infinite symmetry, infinite multiconserved
quantities, inverse scattering transformation, Painleve property, Backlund property
and Darboux transformation have been well known [17,26,27]. In addition to the
individual KdV equation, researchers have recently discovered a series of different
forms of coupled KdV systems in the practical physics and mathematics fields, which
are commonly used to describe the near-resonance interaction between hierarchical
fluid internal waves [8], interstellar near-resonance wave interaction [9], etc. And
how to use the known theories to explore the various properties of these nonlinear
systems and their solutions has gradually become one of the attention topics of
researchers. Later, the first coupled KdV equation

{ ut + 6auu, — 2bvv, + Qg = 0, (12)

(e 36““1 + B’Umzz =0,

was proposed by Hirota, which were derived to model the interaction of water
waves. Here «,3,b are constants. And Hirota and Satsuma [14] obtained the
isolated subsolutions and three fundamental conserved quantities of the coupled
system (1.2). In [15], using the iterative Darboux transformation, the authors firstly
obtained the analytical solution and non-singular complex solution of the following
coupled system

U + 6vv, — 6UUL + Ugrr = 0,
vy — 6uv, — 6vUy + Uy = 0.

In [1], Basakoglu and Giirel proved the existence and smoothness of a global attrac-
tor in the energy space of the following coupled system

Up + QUgze + 3a(u?)y + B(02), =0, x €T,
V¢ + Vg + 37.L’Um = 07

by smoothing estimates, where a € (%, 1), 8 € R. Similar works can also be referred
to [2,16,19,20,23,24].

The literature proving the existence of solutions for the KdV equation or its
derived system by the Galerkin finite element method can be referred to [12,18,21].
In particular, Guo [11] researched the existence of periodic solution of the KdV
system as follows

ug + f(w)g + Ugge =0, zeR,t>0,
u(z,0) =u(z, T),u(z + 21,t) = u(x, t), >0

and obtained the weak solution space as L>(0,T; H*(—1,1)) N C1(0,T; L?(—1,1)),
where [ > 0. By using the Galerkin finite element method and a priori estimation,
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Yang [22] studied the initial boundary value problem of a generalized KdV system

ut+f(u)I :auzm'i_ﬁua::rxy X €R+,t > 0,
u(w,t)]i=o0 = uo(w),
u(@,t)]s=0 =0,  wu(z,t) >0 (z—00)

and obtained the weak solution space as L°°(0,T; H3(R")), where o > 0,3 < 0.
Ding and Wei [4] investigated the existence of the periodic solution for the coupled
system as follows

up + vy + aovy + Pruty + Bouuy + Puges = kiUa, z € R,
v + 0(uv), + €vvy + €0V, + 00Uy = koUgy, r €R, (1.3)
uli—o = ug(@), vlmo = vo(z), 0<a <1, '

u(z + 1,t) = u(z, t),v(r + 1,t) = v(z, 1),

and obtained the weak solution space as L>(0,7T; H3([0, 1])), where «, 7, 81, B2, 3, 9,
€ are real constants. The unknown functions w,v are all real-valued functions. In
addition, we can prove the similar problems by other methods. By the conserved
quantities and priori estimates, Guo and Tan [10] researched the global existence
and uniqueness of smooth solution to the initial value problem of the following
coupled system

Up = Upze + OUU, + 200,
vy = 2(uv) .

In [13], He established the existence of smooth solution to the system of coupled
non-linear KdV equations

{ut = a(Uggs + 6uLy) + 2bvv,,

UVt = —VUggx — 3””1‘7

where a and b are constants. His proof depended on the presence of dispersive terms
in both components and did not extend to the system of non-linear KdV equations
with a hyperbolic partial differential equations.

In this paper, we concern with the coupled system (1.1):

{ut + 2buy + AUy = —2b(uv),, x €[], t>0, (1.4)
v + bvg + vy + Cvgrr = —b(|ul?)s, xe[-LI, t>0
with the initial value conditions
ult=0 = uo(x), v|i=0 = vo(z), x e [-1,]] (1.5)
and the periodic conditions
uwx+1Lt) =ulx—-11t), vx+1,t)=v(x—11). [>0. (1.6)

It can be seen that the system (1.4) — (1.6) is a dispersion system when k; =
ko = 0 in the system (1.3) and the unknown functions include a complex value
function, which leads that the highest derivative in the calculation process cannot be
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controlled by the lower derivatives, thus furtherly increasing the difficulty of proving
the existence of the global smooth solution. Firstly, we construct the existence of
classical local solution of the system (1.4) — (1.6) by the Galerkin finite element
method and sequential approximation. Next, through the conserved quantities and
nonconservative quantity I(u,v) of the system, we obtain a series of priori estimates
and then we achieve the existence of global smooth solution. Finally, we prove the
uniqueness of the smooth solution.
Now, we state our main results as follows:

Theorem 1.1. If the following conditions are met,
: c 3v65-5 .
(i) ac >0, > 25772
(i) wo,vo € H™([=1,1]),m > 4, and they are periodic functions with period 21;

then the periodic initial value problem (1.4) — (1.6) admits a unique global periodic
smooth solution with ug(x),ve(x) as initial values, and there holds

u(z,t),v(z,t) € L (RY; H™ ([-1,1])) .

If only the condition (i) is met, then there exists a constant Ty > 0 such that the
system (1.4) — (1.6) admits a unique local periodic smooth solution with ug(x), vo(x)
as initial values, and there holds

u(a, £), v(w,t) € L (0, To; H™ ([=1,1])).

For the priori estimates of the solution to the system (1.4) are unconcerned with
the period parameter [, we can derive the global smooth solution as I — oo, a.e.
z € R. Theorem 1.1 is the global smooth solutions to the periodic initial boundary
value problem for the system (1.4) and Theorem 1.2 is the global smooth solition
for the Cauchy problem.

Theorem 1.2. Assumed that ug(z),vo(x) € H™(R),m > 4, then there exists a
constant Ty > 0 such that the system (1.4) — (1.5) admits a unique local smooth
solution with uo(x),vo(x) as initial values, and there holds

u(z,t),v(z,t) € L=(0,To; H™(R)).

Ifac>0,¢ > 3‘/150*5 are satisfied on this basis , then there is a unique global smooth

solution of the problem (1.4) — (1.5) satisfying
u(z,t),v(z,t) € L (RY; H™(R)) .

Remark 1.1. We define the generalized solution of the coupled system (1.4) —(1.6)
as follows. Here we let Q = [—[,[] or R.

Definition 1.1. The set of solution u(x,t),v(z,t) € L>® (RY; H™(Q)),m > 2 is
called a generalized periodic solution of the coupled KdV system (1.4) — (1.6) or
(1.4) —(1.5) if for any test function ¢(z,t) € ® :={¢p: p € C= ([0,T] x Q) ,¢(z,T)
=0,VT > 0}, there hold the following integral identities:

T
/ / (s + 2buthy, + Az, + 2buvt,) dedt + / upp(z,0)dx = 0,
0o Ja Q

T
/ / (th + bvip, + SUQT/% + CULp sy + U|2¢z> dxdt + / v (z,0)dz = 0,
o Ja Q

with the periodic and initial conditions (1.5) — (1.6).
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Theorem 1.3. Assumed that ac > 0, & > 3‘{% and ug,vg € H™(),m > 2, then
there exists a unique generalized solution of the system (1.4) — (1.6) or (1.4) — (1.5)
satisfying

u(z, t),v(z,t) € LR H™(Q)).

Proof. Taking the sequences of the initial values {u}}, {vj} € H™(Q),m > 2,
when i — oo, {ub},{vi} are strongly converge in H™({) to ug and vy. Then
we can prove that {u’(z,t)}, {vi(z,t)} are strongly converge to u(z,t) and v(x,t)
respectively in L>(R*; H™(Q)). Thus u(z,t),v(z,t) € L®(R*; H™(Q)). From the
standard method, we can prove that u(x,t),v(x,t) is the unique generalized solution
of the system (1.4) — (1.6) or (1.4) — (1.5) satisfying the Definition 1.1, here we omit
the details. O

Notations. Throughout the paper, C' stands for a generic positive constant, which
may be different from line to line. We will use the notation A < B to denote the
relation A < CB for conciseness.

This paper is organized as follows. In section 2, we present several function
spaces and symbols, which will be frequently used throughout the rest of the paper.
In section 3, we construct the approximate solutions by the Galerkin finite element
method and prove the existence of classical local solution by sequential approxima-
tion. In section 4, we give some priori estimates by the conserved quantities and
nonconservative quantity I(u,v), then we obtain the existence of global smooth
solution. The uniqueness of smooth solution will be proved in section 5.

2. Preliminaries

In this preliminaries section, we introduce some function spaces, symbols and a
lemma which play an important role in our proofs.

C* ([~1,1]) denotes a complex valued function space which is continuously dif-
ferentiable k times on the interval [, ].

L? ([-1,1]) denotes that the Lebesque measurable complex valued function f(z)
on the interval [~1,1] has a p'"-integrable space, and its norm is expressed as

1fllp = (/ll /1P dw)

Denote the inner product as follows:

1/p

!
(f,g9) = /_lf(x,t)g(x,t) dz,

where g(z,t) represents the complex conjugate of g(w,t), then L? ([—[,1]) is a com-
plete complex Hilbert space.

L ([-1,1]) denotes a space where Lebesgue measurable function f(z) is almost
bounded on the interval [—[,[], and its norm is expressed as

[flloc = esssup |f(z)] .

ze[—1,l]
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H? ([-1,1]) denotes a complex valued function space with generalized derivatives
D*u (|k| < s) € L3([~1,1]), and its norm is expressed as

lulltie = 37 [D*ulf;.

|k[<s

H ([—1,1]) denotes the closure of an infinitely differentiable function with com-
pact support C§° ([—1,1]) in the norm sense of H*® on the interval [—[,1].

W,([=1,1]) represents the function space composed of DFu(lk| < m) €
LP([~1,1]), where D¥u is the weak partial derivative of u, and its norm is expressed

as
P _ k. |IP
lullfyy = > (1D ull,-
[k|<m
L*> (0,T; H?) indicates that the complex valued function u(x,t) belongs to the

H? space as a function of z, and there holds

sup ||u(-,t)||gs < o0.
0<t<T

Lemma 2.1 (Sobolev inequality). Given € > 0,n, there exist a constant C' which
depends on € and n, such that

oFu o™u

<
H(“)xk N < Cllullz + € oo |, k <mn,
oFu o™u

— < —_— .
H@xk 2_C||u||2—i-e o |, k<n

3. Existence of local solutions

In this section, we prove that (1.4) —(1.6) admits at least one classical local solution
by using the Galerkin finite element method and sequential approximation. Firstly,
we construct the Galerkin finite element solution.

Choosing {w;(z)} is the basis function of N-dimensional space S* C H*(R),
where S* = {p(z), x € [-1,1]; p(x) periodically expand to C3(R), p(x) is the quintic
polynomial on the interval [ih, (i + 1)h], i = —m,1 —m,--- ,0,1,--- ;/m —1, mh =
[,R is the real axis }, and the basis function {w;(z)} is a characteristic function
class of the ordinary differential equation 3" = —\y with the boundary conditions
y(=1) = y(1). Let the approximate solutions be:

= Y nuE), P = Y G,

and the coefficient functions 7;(t), (;(t) satisfy the periodic problems of nonlinear

ordinary differential equations(j = —m,1 —m,--- ,m —1):
(uy', wy) + 2b(ul,w;) + a(ul,,, w;) + 26 (W04, w;) =0, (3.1)
(va wj) + b(v:?a wj) + b(vhva}clv wj) + C(UZME, wj) +b ((|uh|2)z ’wj) =0, (3'2)
m—1 m—1

2,0 = 3 (0w (@) = (@), V@ 0)= 3 GO0 ) = vli(), (33)

j=—m j=—m
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where {n;(t)} are complex value functions,while {{;(¢)} are real-valued functions.
Because of the linear independency for {w;(z)} and the denseness of {w;(z)} €
H*R) Cc H'(R), there exists a complex constant ¢; and a real constant d; such
that

(@) "8 (@), oli(@) TS vo(a), (3.4)
nj(0) = ¢j,  ¢;(0) = dj. (3.5)

If u"(x,t) and v"(z,t) satisfy (3.1) — (3.5), then u”(z,t),v"(x,t) are a set of finite
element solutions of the problem (1.4).

The solutions of Cauchy problem of nonlinear ordinary differential equations
(3.1) — (3.5) exist, for

m—1 m—1
ouh 0 ,
ot , Wy = a § MWk, Wy = E nk(t) ('lUk,U/j) 5

k=—m k=—m

v 0 =

(%) = (at 2 Ckwkywj> 5 )
k=—m k=—m

Since the basis functions {w;(z)} are linearly independent, det(wy,w;) # 0. And
from the priori estimation of " and v" by the following lemmas, we can know that
the solutions 7;(t), ;(t) of the problem (3.1) — (3.5) exist.

Lemma 3.1. Let ul(z),v}(x) € L?([-1,1]), then there exists a constant C' > 0
such that

el + 1o, < .
where the constant C is only related to ||uf]|, , ||vf |-
Proof. Multipling 7;(¢) by (3.1), and summing about j we get
(uy, u™) + 2b(ul, u") + a(uly,, u") + 2b (u"v"),, u") = 0, (3.6)

where

1d
Re(ul, u") = T

2b ((uhvh)w u ) —2b(ulo" ul).

lu"|3,  Re(2buy,u") = Re(auy,q,, u") =0,

Multipling ¢;(¢) by (3.2), and summing about j we arrive at
(vt v ) + b(v v ) + b(v v U ) + c( Vs U ) +b ((|uh|2)T ,vh) =0, (3.7)

where

1d
(v, v") = 2 dt

b((\u|)z M) = b (ubo™ u) + b (u ol ul)

Combining (3.6) and (3.7) and taking the real part we have

=03, v, o) = by, 0") = (v, ") =0,

LE’ TTrT?

d
= (a3 + 10"3) =o.
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Integrating the above equality with respect to ¢ € [0, 7], one gets

[ (D)5 + 0" (@)]]; = [[" ©)]; + " ©)]]; < C.
O

Lemma 3.2. Under the conditions in Lemma 3.1, and ul(x),vl(z) € H? ([-1,1]),
then there exists a constant Ty > 0 such that for any t € [0,Ty], there holds

2 2
ekl + el + Nl + el < €

Proof. Multiplying 7;(¢) by (ul +2bul + aul,, + 2b(u"v"),, —Mw;) = 0 and
summing about j we arrive at

(ufh + 2bul + aul,, + 2b(u" ™), ul,) = 0, (3.8)
where
1d 2
h o, h h h
Re(uy, u,,) = 3% HquQ, (2bu + aumm,um) =0,
and in the above relations we have used wj(z) = —Aw.

Multiplying (;(t) by (vf 4 bvl +bo"ol + el + b ([u"?) , —dw;) = 0 and
summing about j we obtain

(o) + ol + v ol + el + b (|uh|2)I ) =0, (3.9)
where
1d b [ 3
(U?W];x) = 75% | h||2v (b’U +C’Ugca"ac? xac) - 0 (bv Vg a}cla") = 7§/l (U;L) dz.

Combining (3.8) and (3.9) and taking the real part we have

l
L+ < e +b/ (o2)" da b [ [ub* oo =o.
—1 —1
Thus, we can get the following estimate:
d 2 2 2
o (e [ I 1 e (3.10)
Similarly, multiplying 77J( ):¢i(t) b ( + 2bul + aul, + 2b(uto"),, )\ij) =0

and (v + bl + boPol +col 4+ b (\u |2 ) S Aw;) =0 respectlvely, and summing
about j we arrive at

(uy + 2bul + ault,, +2b (u"0") ul,) =0, (3.11)
(o] + bol + b0l + vl + b (U ). vl ne) = 0. (3.12)

By calculation, combining (3.11) and (3.12) and taking the real part we have

d
g+ et +on [ o @) dw s [ ot
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1
Y S S
+ ReQb/l <4umu’g}xvm + u’;umvm> dz =0.
Thus, we can get estimate as follows:
d
T (e 13 + 1v3212) S lvzal3lvgllo + luga 3 lvgllo + lufellzllvz, 2w lloc
(3.13)

Finally combining (3.10) and (3.13) we get

d f ( :
= U2 l3 + oz 3 + lluza 13 + llvzal13) S uglls + oz lls + luga |13 + lluz, [2-

Thus by the above inequality we get, if ult, v& € H? ([~1,1]), there exist constants
Ty, C > 0, such that for any ¢ € [0, Tp], there holds

g 13 + 1013 + lluge |13 + llvg. )13 < C.
O

Lemma 3.3. Under the conditions in Lemma 3.2, and ul(x),vl(z) € H? ([~1,1]),
then there exists a constant Ty > 0, such that for any t € [0, Ty], there holds

luf I3 + o713 < .

Proof. Differentiating (3.1) and (3.2) with respect to ¢, then multiplying by 7’ ()
and (}(t) respectively and summing about j we can get

(By + 2bE, + aBypy + 2b(E,0" + ' F + Ev! + " F,), E) =0, (3.14)
(Ft FbF, + b(Foh 4 0" Ey) + cFhpe + b((Eguh + u'E + Eyul + uhE), F) —0,
(3.15)

where E :=ul, F := vl
Applying integration by parts and taking the real part, we obtain

d b l l o
GUEB+IPID) = =5 [ o @B+ |PR) do—ne [ TP s
l

l R—
+2bRe/ uZFEda:—b/
-1 -1

<b (luzlloe + vz lloo) (1213 + 1F3) -

(uZEF + uTgEF) dx

Combining Lemma 3.2, we get
d
7

Thus, if ul(x),vl(x) € H? ([—1,1]), there exist constants Ty, C' > 0, such that for
any t € [0,Tp], there holds

Bl + 1F13) S B3 + 1F13-

B3 + I1FII3 < C.
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Lemma 3.4. Under the conditions in Lemma 3.3, and ul(x),vl(z) € H3 ([-1,1]),
then there exists a constant Ty > 0, such that for any t € [0, Ty], there holds

e |13 + [[viez 3 < C.

Lemma 3.5. Under the conditions in Lemma 3.4, and ul(x),vl(z) € H*([-1,1]),
then there exists a constant Ty > 0, such that for any t € [ , To], there holds

e l3 + o153 < C.

Proof. Differentiating (3.1) and (3.2) with respect to ¢, then multiplying them by
n;(t) and le‘(t) respectively and summing about j we can get

(B; + 2bE, + aBypy + 2b(E0" + uF + Bl + u"F,), E,,) = 0, (3.16)

(F,+bF FB(FO + 0" L) + cFupy + b(Epth + uE + Eyu + uhE), F ) = 0.
(3.17)

Similarly to the estimations of Lemma 3.1 — 3.3, combining the above two and
taking the real part we get

d
7 UIEL[I3 + 12 113) S 1Bel3 + 1725 + 1.

Thus, by the Gronwall inequality we obtain that, if ul (z), v5(z) € H* ([~1,1]), there
exist constants Tp, C' > 0, such that V¢t € [0, Tp], there holds

IB:I3 + | Fll3 < C.
O

Lemma 3.6. Under the conditions in Lemma 3.5, and ul(x),vh(z) € H*([-1,1]),
then there exists a constant Ty > 0, such that for any t € [0, Ty], there holds

h h
a3 + [V5are 3 < C.

Thanks to the Lemma 3.1 — 3.6, we obtain the result about the existence of
classical local solution as follows.

Theorem 3.1. If up(x),vo(z) € H*([~1,1]) and they are periodic functions with
period 21, then there exists a constant Ty > 0 such that the periodic initial value
problem (1.4) — (1.6) admits at least one classical local solution with uy(x),vo(x) as
initial values satisfying

u(z,t),v(z,t) € L= (0,Tp; C* ([-1,1))) -

Proof. Thanks to Lemmas 3.1 — 3.6, we obtain that there exist a constant Ty
such that for any 0 <t < Ty, {u"} and {v"} are uniformly bounded in H*([-1,1]),
and the upper bound continuously depends on the initial values, therefore we can
select subsequences (still recorded as) {u”}, {v"} such that when h — 0, {u"}, {v"}
are weakly star converge in L (O,TO;H“([fl,l])) to w and v respectively; and
{ul'}, {v}} are weakly star converge in L> (0, To; H'([—1,1])) to u; and v, respec-
tively. Especially, in L>° (O,TO; L2([1, l])), {(uhvh)w} , {vhv;’} and {(|uh|2)w} are

weakly star converge to (uv),,vv, and (|u|2)x respectively.
Therefore let h — 0, we can obtain that the classical local solutions of the cou-
pled problem (1.4) — (1.6) exist and satisfy u(z,t),v(z,t) € L> (0,To; C3([-1,1])) .
O



The smooth solutions of a class of coupled KdV equations 2515

4. Existence of global solution

In this section, we prove the existence of global smooth solution.

The set of solution u = u(z,t),v = v(z,t) for the periodic initial value problem
(1.4) — (1.6) satisfy (1.4),, (L.4)yu(-t),v(-,t) € C?([=1,1]) s ugzz (- 1), Vaza (-, ) €
H?! ([-1,1]) satisfy the initial value condition (1.5) and periodic condition (1.6) and
we know that, Vz, ¢, the initial functions wug(x), vo(z) should be the periodic func-
tions with period 2[. In the following lemmas, it is assumed that u(z,t),v(z,t) are
periodic solutions with wg(x), vo(z) as initial values respectively.

Lemma 4.1. Assume that ac > 0 and uo(z),vo(z) € H' ([-1,1]), then for any
T >0,t €[0,T) there holds

lull + ol < C,

where the constant C' depends on a,b, ¢, ||ug|| g1, ||vollz1 -

Proof. Taking the inner product of (1.4),,(1.4), with @ and v on the interval
[—1,1] respectively, we have

(ug + 2buy + atgey + 2b(uv)y, u) =0, (4.1)
(’Ut + by + bvvg + CUpes + 0(Jul?)s, 11) =0. (4.2)

Then summing (4.1) and (4.2), taking the real part and using integration by parts
we get

! !
% ([[ull3 + llv]13) :2bRe/ uly, dr — b/ (Ju?)  vda.
1 —

N |

Finally, we obtain

d
@ g+ 013) =0,
and integrating it in ¢t € [0, T],VT > 0, we have
lu-, D)5 + [lo(- TIE = lluoll3 + [lvoll3-
Through the conserved quantity Hs(u,v), we get
Hj(u,v)|(—1,5) = H3z(uo,v0)|[-1,1,

where

l
a c b b
Hatw ol = [ (Gl + 52 = G0 = luPo — ouf? = 522 e

Thus by Lemma 2.1, if ac > 0, we have

]
a c b b
u||ugg\|§ + quzH% < ‘|H3(UO,”U())|[_I z]’ + —v3 4+ blul?v + blu|® + Z0v* | dx
2 2 , ., \6 2
<C M 2 b 2 b 2 M 2
<C+ Zlvlzlvlles + [ollulizl[vliee + Blllullz + vz
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D] 5 1 L 3 0]
<C+ vl lvallz + o[ [[ull3llv113 1oz 115 + [Blllull3 + 3
le o el e Silpll3
<C+ Fllvallz + CO, vl + Fllvallz + C b, )lull llvll3
|b]
+ Bl fJull3 + 3||v||§

C
<Ce.ulla Jo]) +

lvll3

lva 3,

where C(b, ¢, ||u||2, ||v||2) represents a constant related to b, ¢, ||ul|2, ||[v]|2, and C(b, c)

also has a similar definition. Thus,

la] ]
3 luall3 + ZFllve 5 < C (6, e ullz, [[v]l2)-

And we complete the proof of Lemma 4.1.
Lemma 4.2. If the following conditions are met,

. 3v6-5 .
(i) ac >0, > 7=,

(ZZ) Up, Vo € H2([—l,l]);
then for any T > 0,t € [0,T] there holds

H“wwng + ||UM||§ <C,

where the constant C is related to a,b, ¢, ||uol g2, ||vollm2-
Proof. Before proving this lemma, we give a claim, that is I(u,v) is bounded,

and
!
I(u,v) :/ 27a”clugy)® + (15¢ + 15ac? — 3a’c)v?, — 90abe|u,|*v
-]

+ (25bc? + 25abe — 5ab)v2v — (60abe 4 30bc®) (Jul?)pv, )d.

Let
l
Il (’U,, U) = / ’71|uza:|2 + 72“32095 + 73‘ux|21) + 74”30 + 75(|’U,|2>x’l)md$,
-1

where v;(i = 1,2,3,4) are undetermined coefficients and 71,72 are the same sign
and not zero, that is, the same positive or negative numbers, thus there holds
luzall3 + lezll3 < C + sllluzl3lvlloo + yalllvzl30lloo + [ysllluellallvz 2]l oo

where the constant C is related to v;(i = 1,2,3,4,5), ||lull g1, ||| g
Next, we prove the claim. Firstly, differenting I; (u, v) with respect to t we have

iy

d l
dt (’LL, ’U) :/ Y1 (umxumzt + @uacmt) + 2727}xxvmmt + ’73(|uz|2vt + Ugp Uyt V
-1

+ Ugprv) + Y4 (V30r + 200500¢) + 75 [([ul?) ,ve + (Jul?) vae] dz,
(4.4)
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where

I l
/ (U Ugzt + Uggthzet) dx = / —1Ob|um|2vw + 6b|uw|2vw3 — 20Uy V3
-1 1

— 20Ul 5,3 d, (4.5)
1 l
/ QW Vgt AT = / —5bug 2, + 4blug |Pvys 4 20(Ttppvys + Uliggvys ) dz,  (4.6)
—1 -1

1 !
/ (V20 + 200,05) dx = / —3cv, 02, — 4bluPvvee — 2b|ul*vv,s — bovd de,
- -
(4.7

1 l
/ (|Uac|2”t + Uz Uzt + @U:ctv) dr = / b‘ux|2vx - 3a|uxx|2'ux =+ (a - C)|uoc‘2'uz3
—1 -1

— Bblug|Pvv, 4 2b[ul? 0,00, + 2b|ul?v,s

— b|ug;|2(|u\2)m dz, (4.8)
l

l
/ (Jul?)ztvs + (|u|2)wit dxr = / (2¢ + a)|ug|?vys + (¢ — @) (Wl Vg3 + Ullgz Vg3 )
—1 -l

— b\u|2vx3 — 2b\um|2vvx + 8b|u|2v£vm

— b(Wlgz vV, + Wy VU, ) di. (4.9)

Combining the above equalities (4.4) — (4.9), we get

d
%Il (u,v) < (=1071b — 3730) [tz |*ve — (5Y2b 4 3v4¢) vmvfm

T (691D + b+ 7s(0 — €) + 1526 + 0)) g P

+ (—2by1 + 2072 + v5(c — @) (TUzp V3 + Uz UL3)

+C(Hu11”3+ ”'szHg) +Cv (4'10)
where the constant C' is related to v;(i = 1,--- ,5),a,b, ||u||g1, ||v||g1. Therefore in
order to enable the right side of the (4.10) to be controlled by ||tz |2 + [|[vez]|2 + C,

the coefficients of the top four items on the right end of the (4.10) should be 0, that
is

— 10916 — 3y3a =0,  5y2b + 3y4¢ = 0,
6710+ 4y2b +v3(a —¢) +v5(2¢+a) =0, —2by; + 2bys + y5(c —a) = 0.

From these we can obtain the relationship between 1, v2,7v3,74 and 5 as

5¢? + Sac — a? 106
- b == 4.11
72 902 7,3 3a 71, ( )
_ 25bc? + 25abe — 5a?b _ 20ab+ 10bc (4.12)
= 27a%¢c S 9.2 " '

At the same time, in order to guarantee the coefficients v1,v2 are the same sign
and not zero, there must hold 5¢2 + 5ac —a? > 0, thus the relationship between the
parameters a, c is obtained as follows:

3 )
c_3V6-5

>0, <
e a 10
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Combining (4.10) and (4.11)(4.12), we have

%Il(um) < Li(u,v)+C.

Applying the Gronwall inequality, we know that I (u, v) is bounded. And combining
(4.3), we finally obtain that desired reslut. O

Lemma 4.3. Under the conditions in Lemma 4.2, and ug,vo € H? ([=1,1]), then
for any T > 0,t € [0,T] there holds

luell3 + llve 13 < C,

where the constant C is related to a,b,c, ||uol|l g3, ||vollgs-

Proof. Differenting the equations (1.4),,(1.4), with respect to ¢ and taking the
inner product with %z, v; respectively on the interval € [—,1] we have

(uge + 2bugs + atgsy + 2b(Ugptv 4+ UgVy + Uz + UVt ), ug) = 0, (4.13)
(vt + bugr + b(v4vg + VUgt) + U3y + b(UptT + Ty + Tguy + Ugpu), vy) = 0.
(4.14)

Summing (4.13) and (4.14), taking the real part and using integration by parts, we
obtain

d bl l
7 (||ut|\§ + Hvt||§) =— 5/1% (Q\ut|2 + vf) dr — 2bRe/luxvtu7dx

1 1
+ ZbRe/ Uy Vst AT — b/ (usTgvy + Tzuvy) da
—1 —1
<b ([[uzlloo + vzlloo) (Nusll3 + llvell3) -

Finally, we have

d

=7 (el + Toell3) < Hluellz + [loell3-

Combining the Gronwall inequality, we derive that for any T > 0,t € [0, T, there
holds

lJuell3 + [lvell3 < C.

O

Lemma 4.4. Under the conditions in Lemma 4.3, then for any T > 0,t € [0,T]
there holds

”uxm’”% + ”UzzﬂcH% <C,

where the constant C' is depends on a,b, c, |uol| g2, [|voll g3 -

Proof. Taking the inner product of (1.4), (1.4), with Uyz; and v,,, respectively
we have

(us + 2buy + AUgry + 2b(U0) 4, Ugrr) = 0, (4.15)
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(v¢ + bug + bovy + CVgps + b(|ul?)e, Vgaa) = 0. (4.16)

Thus, taking the real part of (4.15) we obtain

!
al[ g3 = — Re/ (ug + 2buy + 2bugv + 2buvy) Ugry dx
1

< (luellz + 2blluq 2 + 2b]|v]| ootz ll2 + 20l ullso[|va]l2) uzaz 2,
and applying the lemmas 4.1 — 4.3, we have
luzaz]l2 < C. vT > 0,t € [0,T].
In the same way, we can get the following estimate
[vzzzllz < C. vT > 0,t € [0,T].

And we complete the proof of Lemma 4.4. O
Similar to the proof of the Lemmas 4.1 — 4.4, if uo(z), vo(x) € H™ ([-1,1]) ,m >
0, we obtain the following lemma by the induction argument.

Lemma 4.5. Assumed that ug(x),vo(z) € H* ([-1,1]),s > 0, then for any T >
0,t € [0,T] there holds

3+ llvaell3 < C, (4.17)

(e

where the constant C' is depends on a,b, ¢, ||uol| ms, |vo|l mrs-

Proof. This lemma will be proved by the induction for s. According to the Lem-
mas 4.1 — 4.4, we can know that the estimate holds for 0 < s < 3.

Now we assume that the estimate holds for s = M — 1 > 3, and we will prove
that (4.17) holds for s = M.

Using the integration by parts we get

1d :
*fHuwM ||2 = - 2bRe/ (uv)l.M+1ul.M dx
2 dt 2 .
l l
< |ugpm Hg + ||vpm H% +C+ b/ |uzM|21}IdCC — b/ (wvgn+1Ugm
1 1

+ﬂuwMUIM+1)d.T, (4.18)

b !
< g2+ [[ogne |2 + C + 5/ (w00 )2 v dar — b/ (T2 vyt
1 -1
+ Ul v )de. (4.19)
Combining (4.18) and (4.19) we have

d
77 Ul 13+ opall3) S uane 13 + floane 15 +1,

then combining the Gronwall inequality, we derive that
luga |13 + [lvgae |3 < C.

Thus by the induct method, we can obtain the estimate (4.17). O
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5. Uniqueness of smooth solution

In this section, we prove the uniqueness of global smooth solution in Theorem 1.1.
Proof. Supposed that ui,v; and us,vs are two sets of solutions to the system
(1.4) — (1.6). Let ¢ = uy — ug, ¢ = v; — v9, we have

P+ 2000 + aPaze = =20 (Pava + PUar + drur + Puiy) (5.1)
= —2b (u2:® + U2y + @av1 + U1z, (5.2)

Gt + bdy + Chrza = —b (V2gs + V12¢) — b (U2eP + u2Pe + Uips +Uizp)  (5.3)
= —b (V20by + V150) — b (PUsg + P2z + U1 Py + u1,P),  (5.4)

and So(xﬂ 0) = QS(:E»O) = 07 @(‘r + lvt) = (p(.’E - lat)7 (b(ér + l7t) = ¢($ - lat)
Firstly, taking the inner product of (5.1) and (5.2) with ¢ respectively, and
taking the real part after the summation we get

d l l l
Glels == [ fePuacds = [ fePorde=b [ 005+ o0+ w07
l
+U2¢sp) dr —b / (U120 + Uio b + u22§P + Uz p) d
—1

2 l
<Y (lukalloo + llvezlloo) (lll3 + 16113) — b/l(u1¢$¢+u7¢mcp
k=1 -

+ U2¢$¢+@¢x@) dx. (5'5>

Secondly, taking the inner product of (5.3) and (5.4) with ¢ respectively and sum-
ming them we have

d l l l
G013 = [ w6t dn -2 [ oot do b [ (uasdip+ wop + wmop
1 -1 —1
l
b uns67) o —b [ (1077 + W00, + T + 1 07) do
—1
2 l
<6 (lukellos + lloralloe) (213 + l1913) — b/l(U2¢@+1T1¢<Pm + Waps
k=1 -

+ w109y ) dx. (5.6)

Combining (5.5) — (5.6) and applying integration by parts we get

1 2
ke loo + 1oke loo) (0113 + 1912) + b / D (ukes
k=1

d
= (lel3 + 1913) <
<

b (lukelloo + llvrzlloo) (o3 + l1213) - (5.7)

b (
k=1
D
k=1

Thus, by the Gronwall inequality we obtain ¢ = ¢ = 0 when wuy,us,v1,v9 €
L™ (O7 T; H3[—, l]) This completes the proof of Theorem 1.1. O
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