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MULTIQUADRIC QUASI-INTERPOLATION
METHOD FOR FRACTIONAL
INTEGRAL-DIFFERENTIAL EQUATIONS*

Zigiang Wang', Qing Tan?, Zhongqing Wang' and Junying Caol'f

Abstract In this paper, Multiquadric quasi-interpolation method is used to
approximate fractional integral equations and fractional differential equations.
Firstly, we construct two operators for approximating the Hadamard integral-
differential equation based on quasi interpolators, and verify their properties
and order of convergence. Secondly, we obtain that the approximation order
of the numerical integral scheme is 3, and the approximation order of the nu-
merical scheme is 3—p for (0 < p < 1) order fractional Hadamard derivative.
Finally, the results of numerical experiments show that the numerical results
are in agreement with the theoretical analysis.

Keywords Multiquadric quasi-interpolation, fractional integral-differential
equations, Hadamard derivative and integral, error analysis.
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1. Introduction

Fractional integral equations have significant applications in various fields of applied
science and engineering, such as fluid mechanics, viscoelasticity, bioengineering and
etc [23]. In recent years, these equations have become increasingly attractive in
applied science, and many numerical methods have been proposed to solve these
equations. Radial basis functions (RBFs) are known as a powerful tool in approx-
imation theory for reconstructing functions from scattered values. In [3], it was
entered into the field of numerical solution of partial differential equations. In [24],
they constructed a new numerical scheme for spatial fractional diffusion equation
by quasi-interpolation operators. Based on the method of RBFs, they proposed
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a procedure for approximating fractional derivatives values from one-dimensional
scattered noisy data in [14]. In [6], the Lagrange’s form of RBFs interpolation
with zero-degree algebraic precision was used to construct high order order’s finite
difference for differential equations. Multiquadric quasi-interpolation has been ex-
tensively studied in approximation to integral functionals in [9]. They applied a new
non-uniform mesh of points based on modified Legendre polynomial zeros in order
to computationally solve partial integro-differential equation in [21]. In [10], they
present a new reduced order model based on RBF's and proper orthogonal decompo-
sition methods for fractional advection diffusion equations with a Caputo fractional
derivative in time. In [26] and [27], the meshless method were constructed based
on spatial trial spaces spanned by the RBFs for the numerical solution of a class of
initial-boundary value fractional diffusion equations with variable coefficients on a
finite domain. In [25], they constructed Spectral approximation method for general-
ized fractional ordinary differential equation and Hadamard-type integral equations
by a variable transform technique and a-th(a > 0) order fractional derivative of
Jacobi polynomials. In [4], three kinds of numerical formulas were proposed for ap-
proximating the Caputo-Hadamard fractional derivatives, which are called L1-2 for-
mula, L2-1, formula, and H2N2 formula, respectively. They construct and analyze
a high-order time-stepping scheme for a(0 < a < 1) order Caputo derivative in [1]
with 3 4+ « order convergence based on the block-by-block method. In [2], the finite
difference/iterative method for the fractional telegraph equation with Hadamard
derivatives was constructed. For more research, readers can refer to [7,11,12,17-19]
further. The advantages of the multiquadric quasi-interpolation method lie in sev-
eral aspects, such as good shape preserving properties, very smooth, filter noise and
more stableetc. Recently, multiquadric quasi-interpolation method becomes in-
creasingly popular in many fields of applied mathematics. For more details, readers
can refer to [5,8,20-22]. Counsidering the advantages of quasi interpolation algo-
rithms, this paper constructs a log-type Multiquadric quasi-interpolation method
for solving the Hadamard fractional integral-differential equations with high con-
vergence order based on the idea of [15,16,24].

The outline of this paper is as follows. In Section 2, we introduce a log-
type quasi-interpolation operator. In Section 3, we introduce two operators for
approximating the Hadamard integral-differential equation based on the operator
Liog(u(x)), and verify their properties. In Section 4, the convergence order is veri-
fied by five examples, and the validity of the scheme is verified again. Finally, some
conclusion are given in Section 5.

2. Log-type multiquadric quasi-interpolation

In this section, we will construct a log-type quasi-interpolation operator ﬁlog (u(x))
based on the idea of [7]. Denoted the function ®(z) = 3[(log %)2 + (log(1 +
6))2]% as basis functions and log A = logzp < logzy < -+ < logapy = log B, 7 =
maXog¢§M-1(S€i+1 - 21?1) .

Similar to [7], we assume that Liog(u(x)) has the following form

ﬁlog(u(x)) =u(log xo)éo(z) + u(log z1)d1 (x) + u(log x2)ds(x) (2.1)
M-3
+ u(log xy )k (x) + u(log xpr—o2)dps—o(x)
k=3
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u(logzpr—1)dnr—1(x) + u(log zar) (),

Gi(z) = Or(x) = Okia(x) — Op1(x) —Ok(x)  Op_a1(x) — Ok(x)
F 2log £ "*2 log =& wk“ 2log £ "“ log = x’““ 210g "“  log Lk

Tr—1
Or— 2( )—9k 1( )
210g lg

3<k<M-3,

)
Ikz

1 (logf) —bi(z) loggr  log ot
) 2log 7% log 7t 2log > 2log 7V’
dy(z) = 01(z) — O2(z) (logi)Q —0u(z)  loggr  logg
1 - QIOg%‘jlog% 2]0g log QIOg% 210g%
(log 7-)? — log L110g*—91( )
2log 2 log
_ Oa(x) — O5(x) 91( )—92( ) _ 0i(x) = Oa(x)
~ 2log +log £2 2log 2 log £* 21ogi—flog%
(log £ )? — log 2 log £ — 01(x)
2log 2 log
(log xx) log log L+ Oy 2( ) Onr— 4( )*GM 3( )

x x
M—2 log M—2
TM-3 TM—4

)

(2.2)

)

@M_g(x) =

2log ZM log It

TM-—2 TM—2

~ Ou—s(x) —On—2(x) Ou—s(z) —On—2(2)

TM—1 TM—1 TM—1 TM—2 7
2log T log ==L s 2log TV log Fyva

log AL (log #20)% + Onr—o(z) | Opr—3(x) — Oar—2(2)

CVM71(1U): 210g% - 210gwi1Ml logxzv -2 210g$M 11 g%

log 22t (log 5})* — log - log %3t + far—2(x)

x x ITM—1 ?
2]og M~ 2log e log

TM—1 TM—2

2log

. 1 (log )% + ar—o(x) log 2+ log “2-

aM(I) =-+ 3 - )
2 2log I?leil log rij‘fz 2log a:fj/i 2 log sz@

and O (z),1 <k < M — 2, is defined as

ék(x) - cI)kJrl(x) (2 3)
log x41 — log @y, ’

Qk(x) =

In order to obtain some properties and error estimates of (2.1), we can rewrite
it as follows

bo

(x))

tog (U
M—2
Z u[log Tp42,log Tr11,log xx] — ullog Tp41,log xk, log xk_1] 10k (x)

M\H

+§{U(10g o) + ullog z1,log o] (log x — log zo)
+ullog z2,log 71, log o] (log # — log z0)* }
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1
+§{u(log xp) + ullog zar, log xpr—1](log x — log xar) (2.4)
tuflog xps,log xps_1,log xar—o](log x — log x3)?}
1
fiu[log x9,log x1,log xp](log 1 — log xo)(log x — log xq)
1
fiu[log:cM,log xar—1,logxps—o](log zyr —logzpr—1)(log s — log z),
where ullog xg41,log xk,log xr_1] is defined by

1 1 _1] — ull 1
ullog zj41,log zy, log xx—1] = ullog zy, log ti—y] — ulloB Ti1, ngk]- (2.5)
logz_1 — log gy

Based on (2.4) and the idea of [7], it is easy to prove the following lemmas.

Lemma 2.1. Quasi-interpolation ﬁlog(u(:c)) satisfies the quadric polynomial repro-
duction property, i.e.

M
Z[ao(log x1)? + a1 log x + as)an () = ag(logz)? + ay logx + as, Vag, a1, as € R,
k=0

where Gy () is defined by (2.2).

Lemma 2.2. If data {u(logz)}L are from a convex function u(log z) € C[log xo,
log z ], then the quasi-interpolation Liog(u(x)) is also a convex function.

Lemma 2.3. If u”(log ) is Lipschitz continuous, then the approzimation capacity
of Liog(u(x)) satisfies
1 Ziog (u(x)) — u(log z)l|
< O(13) 4 O(log(1 + 6)7%) + O((log(1 4 6))7) + O((log(1 + 6))?).
Proof. Denote 7 = max(logz;1 —loga;), it is easy to prove that 7 < %.

For any = € [A, B], denote the first three terms of local Taylor polynomial
expression of u(t) at point z, i.e.,

1
y(t) = (@) +u'(@)(t — ) + Zu" (@)t - 2)*. (2.6)
According to Lemma 2.1, we have
M
Z(loga: —logzy) ag(x) =0,r =1,2, (2.7)
k=0
M
ap(z) = 1. (2.8)
k=0

Therefore, according to (2.7) and (2.8), we have

M

M
Z y(log zp)é (z) = Z[u(log z) + v/ (log z)(log zx, — log z)
k=0 k=0
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1
+—u"(log z)(log 1, — log x)*]ax ()

2!
M
=u(logz) Y dr(x)+ v (logx) Z(log x — log x)dy, (1)
k=0 k=0
1 M
2| u” (log ) Z(log xp, —logz)%dy(z) = u(log z).
k=0

Because u”(log ) is Lipschitz continuous, then for any &, & € [A, B,

u”(log &) — u”(log &)| < Collog &1 —log &,
where Cy = esssup |u'"(log x)|.
A<az<B
Therefore, we obtain

Iilog( (z)) — u(log z)|

IZ (log zx) — y(log zx)léuk ()]

M—2
= 5\ Z ullog xx12,log xp11,log xk, log ik —1](log xgyo — log xk_1)0k ()
k=1
" 10 " 10
—i—%(logxo —logz)® + %(logm‘]\/[ —log z)?|
M—2

/// 10 .
f\ Z gfk (log zp42 —log xx—1)0k(2)

g
N 3!

u” (log &)

3 (ogzar —log z)?|,

(log zg — log z)3 +

where &1 € (z9,22),&2 € (Tp—2,20) and & € (Tp—1, Tp—2).
Furthermore, we have

| Liog (u(x)) — u(log )|
C’ M—2
0| Z log Tx42 — log zp_1)0k () + (log zo — log 2)® + (log 25y — log z)?|
C C R
< (1)2 ~{| > (logziyo —logzp_1)bk(z)|

|log x—log x| <7

+ Z (log zp42 — log zx—1)0k(x) + (log 7o — log z)°|

log z—log x) >7

+ > (logzrya —logak_1)0k(z) + (log zas — logz)*[}

log x, —log x>7

CoCi . i 0
<O Y @Gl Y 3a) + (logw — loga)|

|log z—log xy|<7 log z—log x ), >7

+Cy| Y 370i(x) + (logar — logx)*|}}

log x —log z>7
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= Cigl 30 Y [llogz—logay|y/(logz —logy)? + (log(1 + 6))?

|log x—log x| <7

+Cafs [ (loga—0)/lloga — 07 + (og(1 + 9Pt + (logzo ~ log.a)*
logz—t>7

+Cg|3/ (logz — t)\/(logz — )2 + (log(1 + 8))2dt + (log zps — log x)*[}
t—logax>7

COCl —2{37%(7 + log(1 + 0)) 4 Cs|[(log z — log )2 + (log(1 + 5))2]%

—[(logx — (logz — 7))? 4 (log(1 + 5))2}% + (log zo — logz)3|
+Cs|[(log x — (log = + 7)) + (log(1 + 6))? ]

[(log:z: —logzar)? + (log(1 + 6))? } + (log zas — log x)®|}
73+ #2log(1 + 6) + (log(1 + 6))?7 + (lo (1 +6))?)
(1+

C(#
C(( ) (A) log(1 + 6) + (log(1 + 8))2(~ 7+ + (log(1 +6))?)
<o(r? ) + O(log(1 + 6)72) + O((log(1 + 6))? ) + O((log(1 + 6))?),

IN

IN

where C1,Cy and C3 are positive constants independent of 7 and §. Then complete
the proof of Lemma 2.3. O

3. Quasi-interpolation operators for Hadamard
fractional derivatives and integral based on

Liog (u(2))

In this section, we will use the quasi-interpolator Ly (lgg x) to construct two quasi-
interpolation operators aDHLiog(u(x)) and aHHLiog(u(x)) to approximate
Hadamard fractional derivatives and integral, respectively.

3.1. The quasi-interpolation operator 4D L, (u(z))

Let 0 = w%, the left-sided Caputo-Hadamard fractional derivatives of order p(u >
0) on (A, B) in [13] are defined by

dw

aDiua) = s [ (or L) ou@)

Base on (2.1), we construct an operator 4D Li,e(u(x)) for the Hadamard frac-
tional derivatives as following

AD# Liog (u()) = U(log fﬂo)%( ) +u(log z1)y1(z) + u(log x2)y2 ()
+ Z (log ) vk (x) + u(log xpr—2)yar—2(x) (3.1)

+u(10g rar—1)ym—1(x) + u(log war)yar (),
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where

Op(x) = Oir(z)  Op-a(x) — O(x)

2log “42 Jog ZEL 2]og *E I’”“ log Zk+1

Tl T Tr—1
 bea(@) - ék() Or—2(x) — b1 1()
2log Tl og Tk | 2]og Lk Jog Tk’

Tr—1 Ihl Tr—1 fI?k2

Yi(z) =

3<k<M-3,
(log %)+ log 2 (log %)+ 0:(x)
2I'(2 — ) log = ‘T—l (2 —p)log 2+ log 210g log

(log 5)*~* (log %)1_“
(3 —p)log log 22 2I'(2 — p)log 72 ’

Yo(x) = —

+

(log &)t log 2 (log %)!~+ (log Z)t-#
") = T + z
22 —p)log 3+ I'(2—p)log gtlog 22 2I'(2 — p) log 72

(log §)*~* 01 (x) 01(x) — 0>(x)
F(3 ) log 2+ log 2log 7+ log 2log 72 log 22
log 7 (log A)l #o log gt (log A)l "0 (a ) (2—u)
CT(2—p) log 2 log 2 2F(2— 1) log $2 log 22

(log 5)*~*
T(3-— p1) log 2 log 22

log 7 (log )" " (log %)+ O2(z) — O3(x)
['(2—p)log 22 log ['(3—p)log 22 2log 22 2log $2 log T4

Yo(r) =

Jog%;ﬂog%)l‘“wl( L@ —p) 91(@*92(%) 01 (x >fé2< )
2I'(2 — p) log 72 2 log $2 2log $2 log 2 210g"‘3 log”’

log 2 (log £ )=+ (log %)+

LM

(2 — p) log 7M=L Jog 2 +I‘(3 ) log ZM=1 log —EM

TM—2 TM—2 TM-—2 TM—2

Ym—2(T) =

L lomanUosH)T!  bys(e) — fua(a)
['(2 — p)log FM=L Jog 20 2log ZM=2 Jog TM=L

TM-—2 TM—2 TM-—3 TM-—-3

 Ons(x) — O a(x) | Oa(w) — O s(2) O ()
2log TM=1 Jog TM=L QIOgIM 21o g TM=2 © 9]og TM=1 |og LM’

TM-—2 TM-—-3 TM—4 TM—2 TM—2
(@) = (log %)~ 210g—(logA)1 B4 Op_o(2)D(2 — 1)
M1 2T'(2 — p) log 2T(2 — ) log 2= log S

TM—2

(3.2)

$]\/1 1

(log £)2~ log = (log )
- T(3—p)log iﬁ_; log% 2I'(2 — )log =2 log T

TM—2
B 2log ﬁ(log %)1’“4—91\/1 2(2)['(2 — p) B (log*)l_“
2I°(2 — ) log — W log LM 2I(2 — p) log 2

TM—2 TM—2

_ (log §)** Ori—3(z) — Onr—2()
['(3 — p)log ;22— log X 2log =" log .=
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(log £)1#  2log - (log )" + fyr—»(2)T'(2 — 1)

_ + T M T
20 (2 — 1) log -2 20'(2 — p) log S log ZA-
(log %)+ (log %)+
I'(3 — p)log -2 log ZA_ " 2T'(2 — 1) log —ZA"

TM—1 TM—2 TM—2

and 0y, (x),1 < k < M — 2, is defined as

5 DED (x) — ADE® 1 (2)
Oy (z) = 222 z . 3.3
k(@) log rp 41 — log (3:3)

In order to avoid the singularity of the integrand function, we calculate
ADED(2),2 < k < M — 2, as follows

ADp @y (x) = ﬁ /A log ;wlog %)2 + (log(1 + 6))2(log g)—u%w
1 A a, e
= w{logm\/ﬂog o)+ (log(1+8))*(log 7) (3.4)

8% 2(t — logay)® + (log(1 +6))?

* logA \/(t —logzy)? + (log(1 +9))2

(logz — t)l_”dt}.

In order to analysis some properties and error estimates of (3.1), one can rewrite
it as follows

+—{ullog x1, log zo] aD% log xﬁ] + ullog xa, log x1, log 20| AD%[(log ﬁ)2]}
0

Zo
1
+—{ullog xpr,log xpr—1] aD%[log i] (3.5)
2 TM
X
+ullog zar, log xpr—1,log xpr—2] aDE[(log E)Q]}
1
——ullog z2,log x1, log xo] log ﬁAD;‘ [log i]
2 To o
T M
TM-1

1
_§u[logxM,1og Tpr—1,logxar—o]log aDElog —mM],
x

where u[log 241, log zk, log x;_1] is defined in (2.5).
Similar to Lemma 2.1, we will study the regeneration property of quadratic
polynomial for 4D Lyoe(u(x)) as follows.

Theorem 3.1. The quasi-interpolation operator D' Liog(u(x)) satisfies the
Hadamard fractional derivatives regeneration property of quadratic polynomial, i.e.,
Vag, a1, as € Ru(z) = apx? + a1z + as such that

ADgEIOg(anQ + a1z + a2) = aD%[ag(log x)2 + a1 logz + as),

where v () is defined by (3.2).
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Proof. Denote F(x) = apz? + aix + az, one can have

ADgilog(F(x))
| M2 )
=3 Z {Flog zjt2,10g 2k 11, log x| — Flog xxy1,log g, log xx—1]}0k ()
k=1
1 M T M T 9
+§{[a0(log xo + log x1) + a1]aD%[log x—o] + apaD%[(log x—o) ]

T x
—aologgiud?ﬁﬂoggﬁl}

1 x T
+§{[a0(10g rp—1 + log QTM) + al]ADg [log 7] + aOADgKlOg 7)2]
T M T M

"M \D¥llog Z21y
TN -1 X

_ [2a9log A + a1](log L)k 2a0(log & )2 K
T(2—p) rB—p)

—ag log

and
[2a9log A + a1](log %)' ™"  2ap(log §)*~*
T(2—p) INCED I

aD%[ao(log z)? + arlogx + as] =
where
Fllog x2,log z1,log x9] = Fllog zas,logxar—1,logxpr—a] = ag.

Based on the above analysis, one can obtain that
ADP Liog(apx® + ayx + az) = aD[ap(log x)? + ay log x + ag).

Hence, we have proved aD¥ Ljoq(u(x)) satisfies the Hadamard fractional deriva-
tives regeneration property of quadric polynomial and Theorem 3.1 is proved. [

Similar to Lemma 2.3, we will prove the the approximation capacity of
ADF Liog (u(z)) as following.

Theorem 3.2. Assumed that the second derivative of u(logx) is Lipschitz contin-
uous, the approzimation capacity of aAD¥ Liog(u(x)) satisfies

||ADgzlog(u($)) — aD{u(log z) || o
< O(T?’*“ + log(1 + 5)727” + (log(1 + 5))2717“ + (log(1 + 5))277“).

Proof. For any fixed x € [A, B], suppose y(t) be the first three items of local
Taylor polynomial expansion of u(t) at point z, i.e.,

y(t) = ulz) + ()t - ) + = (@) (t - 2)2.

2!
According to Theorem 3.1, we know
M . M .
Z(lOg —)"(2) = ADg[Z(log —)ok(x)] =0,r =1,2,
k=0 Tk k=0 Tk

M

M
S ykle) = aDAY dn(x)] = ADE[L),
k=0

k=0
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where vi(z) = aADH Gy (z),k =0,--- , M, then,

M "
1
= 4D¥| E u(logz) + u'(log x) log LA M(log ﬁ)2)07;6(35)}
x
k=0

2!
M M -
— 14 wi, ! Lk A
= 4D![u(log x) Z )] + aD%[u (logx)Zbg . G ()]
k=0 k=0
1 M
'AD“ v’ (log ) Z log ()]
k=0

= aD;[u(log z)].

Using the above equation, one can rewrite |AD§IA/10g(u(x)) — aDFu(log x)| as
follows

\AD“ﬁlog< (z)) — aDku(log z))| (3.6)

\Z (log zx) — y(log k)] vk ()]

=AD“|Z (log zx) — y(log zx )|k ()]

u(log 21) ~ y(log ) k()] (log ) 2|

|
T
i

1 T . M A

- m'/A (log ) d[,;(u(logwk) — y(log ax))ax ()|
1 log x M

T g (087 7R ) om0
1 log z M

T (00 lbom ) ullom e ()

logz—1 M
+ / (log  — £)d[> " (u(log zx) — y(log 71))ax (1)

og A k=0

1 /1ogas
< — logz —t| ™" (log 1) — y(log z)) &) (t)|dt
r L o=t \Z log,)) a4 (0)

1 logz—71 M
+7/ logxz —t|™"d u(log zx) — y(log xx))du (t)],
o, Meer iR (o5 1)) (1)

where ¢ = logw.
Because u”(logx) is Lipschitz continuous, then for any x1,xo € [A, B], there
exists Lg, such that

|u" (log 1) — v (log x2)| < Lo|log 1 — log xa).
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M
Next let’s start with the integral of the first part in (3.6). First, for |Z(u(log k)
k=0
— y(log zx))ay,(t)], t € (logz — 7,logz), according to (2.4), because |u(logs) —
y(log s)| < Lo|log s — log x|3, similar to the proof in [7], we know

(u(log zx) — y(log xy))dy, (t))

NE

=L

2
| ) ((ullog wiy2,108 Tpq1,log wk] — uflog zpt1,log i, log wi—1])
=1

—(yllog xp12,l0g 24 1,log zx] — y[log Txy1,log xx, log xr_1]))0 (1)
+L1[|t — log 1‘0‘3]/ + L2[|10g TMm — t|3]/

<

N =

=

M2
1
< : [u" (€) —u"" ()]|0, (t)] + L1[|t —log xo|®] + La[|log zar — t|*]
k=1
Lo = logx logx
0 k2 — k=1 114/ 3y 3
< Lo ) ()| + L[|t —1 Lol —t
<= ;' okt lo ||®).(t)] + L] og zo|°]" + La[llogxar — t|°]
3Ly "~ T
< TO ML @4 (8)] + L[|t — log wol*]) + La[llog zar — t)'
=1 Tp—1
3BLy =
< 4A0 > [t —logzi|\/(t —log zx)? + (log(1 + 6))% + L[|t — log zo|*)
k=1

+Ly[[logzps — t?)
_ 3BLo > > - 2
< |t —log ax|\/(t — log 2x)? + (log(1 + 6))2 + L1 [t — log x|

[t—log x|<T
+L2|10g.13M — t|2
3BL
ST 2 Tl log(L+0)] + Lflogzar — log |

[t—log xk|<T

+Lo|logxp — log xo + 7'|2

M M
< Lo7[T +log(1 + 9)] + LI(TT)Q + LQ(TT +7)?

< LOT[T + IOg(l + 5)] + L17'2 + .[/27'27
where § € (log zy,log Tx12),1 € (log Tg—1,log Ty 41).
M
Bringing | >~ (u(log i) — y(log zx))a.(¢)| for t € (logz — 7,log x) into the first
k=0
part in (3.6), one get

1 /log;c i ,
=T logz —t[7"] > (u(logwk) — y(logzx))dy(t)|dt
F(l - :u‘) logxz—T1 k=0
1 2 2 logz
SL07'[7'—i—10g( F—(&—léj]l;LlT + Lot /l llog 2 — | ~"dt (3.7)

ogr—T
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< Lom® H[1 4+ log(1 +0)] + L1737 # + La73~
- (1= p)
§L0(73_“ + 72H log(1+9)) + L3 H 4 Lor37H,

here L, Lo are two positive constants and independent of § and 7.
For the last part in (3.6), using direct calculation one can be obtained that

1 /logr T B M
Y Em— logx — t|~Hd] u(log x) — y(log zx))du (¢

og A
L
- |F(1 — kzo(u(log zy) — y(log x))éy (log x — 7)
1 M
_F(T log HZO u(log zx) — y(log x1,))au (A)
logz—T1 M
_ﬁ g 4 [Zf“(k’g 71) — y(log ox))n (1) (log & — 1)L

T ”\Z (log zx) — y(log vk ))ax (1)

M
+(log 51) 7Y (u(log 1) — y(log ) (1)}
k=0
:F(ll— )(P1+P2+P3+P4). (38)

For Pi, using Lemma 2.2 and Lemma 2.3 one can obtain
Pi=7 ”\Z (log xx) — y(log zx)) . (log x — 7)| (3.9)
<rT “\Z (logzy) — y(log xy)) (G (logx — 7) — Gy (log x))|

+T*"IZ u(log zy) — y(log z ) (log )|
k=0
M
<77y Ju(logzx) — y(log zx )| |6 (log 2 — ) — é(log )|
k=0
M
+771 " u(log zx) — y(log )k (log )]
k=0
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M
_ Th\3 s
< 7K log —)°7|é&). (log
<7 3 (log 17} (o)
+O(r SRS log(1 + 6)7’2*“ + (log(1 + 5))2717" + (log(1 + 6))277“)
< pl-# E kT |ak log x)|

+0(7 3 P 4 log(1 + )72 + (log(1 + 0)) 27 * + (log(1 + 6))*77H)
< 0(7'3_” +log(1 + 5)72_“ + (log(1 + 5))27'1_“ + (log(1 + 5))27'_“).

For P, we have

log “\Z (logzy) — y(log xg)) k. (A)] (3.10)

(BA
A

IN

YTRO(13 4+ log(1 + 6)72 + (log(1 4 6))*1 + (log(1 + 6))?).

For P; and Py, we obtain
Ps + P4 (311)

= T “\Z (log ) — y(log x)) . (t)]

log— “|Z (logz) — y(log zx))a (t)]
<O(r*M + O(log(l +8)727) + O((log(1 + 8))*7 ) + O((log(1 + 8))*77+)

+O(7% + log(1 + 8)7° + (log(1 + 6))*7 + (log(1 + 5)>2)(BTTA)_H

< 0(7'3_”) + O(log(1 + 5)7’2_”) + O((log(1 4+ 5))271_“) + O((log(1 + 6))27_”).

Substituting (3.9), (3.10), (3.11) into (3.8), one can obtain immediately that
Va € (A, B),

D% Liog(u(2)) — 4Dt u(log )
< O(5#) + Oflog(1 + 8)7>~#) + O((log(1 + 8))>'#) + O((log(1 +8))*r ).

Therefore, one can obtain that

| AD" Liog (u()) — aDku(log 7)o
<O(r*F + log(1 + S)T3 M + (log(1 + 6))*7 7+ + (log(1 + 5))27_“).

The proof is completed. O
Remark 3.1. When § = O(71?), we have

1aD% Liog (u(x)) — aDlu(log z)ls < O(r*74).
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3.2. The quasi-interpolation operator jH Lo, (u(z))

The left-sided Hadamard fractional integrals of order p(p > 0) are given by [13] as
follows

AHPu(z) = @Azu(w)(logZ)“_lﬁu, z € (A, B).

Similar to (2.1), we will construct an operator 4H Lyog(u(z)) for the Hadamard
fractional integral as follows

AHgﬁlog(u(x)) = u(log z9) 8o (z) + u(log 21) 51 (z) + u(log x2)B2(x)
M-3

+ Z u(log x) B (x) + u(log xprr—2)Bar—2(x) (3.12)
k=3

+u(log zar—1)Br—1(x) + u(log zar) B (),

_ Ok(@) = Oria(z)  Oroa(z) — Ou()
2log L;:z log L;:l 2log *£ Ik“ log z:+1

ék71(l')_ék(33) ek 2( )_ak 1( )

~ 2log ot log S 2log S log o

. 3<k<M-3,

lk 2
_ (log&)w log Z(log %) (log £)*
S 2l(p+ 1) 2F(u+ Dlog 2t 20'(p+2)log £*
(log )% (log §)* — 1 ()L (p + 1) log £ (log )"
20 (1 + 1) log £+ log 32 I'(p+2)log Tt log 22
(log §)#+2 10g 2 (log )" (log )"+
L'(p+ 3)log 7+ log 22 2F(u+1)log§—§ 2F(/,L+2)1ogi—2’
8(@) = log 2 (log %) N (log prr [(log 2)2(log % )"
! 2T (pu+1)log 2 2T (i +2) log 2t 20 (p + 1)
log ;io(log %)”H (log %)’”2 B él(x)} ‘I 1
I(e+2) I(p+3) 2 log 71 log 72
1 log & c(log )" (log &)+t 1
oz ogz) T an +S (QFg( 4)—2) <1
08 7, 108 4, 2 12
log Tt 01 (x) — Oy(x
n i 1(z )x 2(z)7
log 72 1og 2log 2log =3
(log 2)2 (log ) logf(logﬂ)“*1 0(z) — 03(2)
2F(u+1)log 2log 22 I'(p+2)log 32 log 22~ 2log 2 log 7%
(log % )”*2 log 31 log a(log Z)
I'(p + 3)log $2 log 32 2T (p+ 1)log 22 log 32
log L(log % )u+1+61( 7T (ke + 2) §1( ) — Oy(x) 91( ) — Ba()
21"(#—1—2) log 2 log 22 2log 2 log 22 210g 2log 32’

x
log o

Ba(x) =
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Bu—2(x) = (log ;4-)*(log %)* log 7, (log %)+
_ T —1 T TM—1 xT
20(p + 1)log 7=, log 2 D(p +2) log T0= log 77
+ (log )+ log -2 log M(log a”

[(p + 3) log 2= log ;24— o (p+ 1) log 7= log _tA

TM—2

log —2— (log & )++1

TM—1

Oni—2()
2T (11 + 2) log T2=L log 22

Tog T log 55 (3.13)

TM—2

COus(@) —Ovo(z)  Oum-s(z )_éM 2(7)

2log iﬁ 2 log ig ; 2log 2= IM_1 — log TM-1

Tp -3
éM 4( )—éM 3( )
210g TM—2 log rmM—2

TN -3 TM—-4
log - (log %)~ (log )+ Onr—2(x)
Bu-1(e) = S oT(pu+1)log -2 2T (p + 2)log ZA— =
p v H & T
(log %)z(log ) log —(log )P (log 2 )“*2}
o (1 + 1) T(u+2) T'(p+3)
. 1 . 1 ] [log A (log )"
log 2L Jog i " Jog EM_og LM 20 (4 1)
(log )t % log ‘TQILWNII 1 ]
MW (p+2)" " log =2 log 22— log 2
Oni—3(x) — Opr—a(2)
2log 73~ log 7=
Bar() = (log )H logi(log ) (log §)**
M W (p+1)  20(p+1)log 22 20 (p +2) log 224
(log A2 (log zym log A(log i)“+1
20 (ki + 1) log 75 log o D+ 2) log 700 log 7
+ (log £)“+2 a2 (x)
(i +3)log 722 log ;20 2log ;724 log L
log 4z (log £ )* (log §)#+*
QF(M + 1) log gcffiz 2F(IU' + 2) log Jif/fj\l
and 0y (x),1 < k < M — 2, is defined as
_ HH — AH!®
u(x) = AHERR() = AHE i (2) (3.14)
log 41 — log x,

In order to avoid the singularity of the integrand function, one can calculate
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AHE®(2),2 < k < M — 2, as follows

€T

(@) = g [ [lom 227 + ({1 + 6))) (log 2)

A 2 213 €T M
m{g[(logx—k) + (log(1 + 6))°] (log ) (3.15)

p—1 dw
w

+/Ogm(t —logz)\/(t —logxy)? + (log(1 + 8))2(log x — t)"dt }.
log A

In order to analysis some properties and error estimates of (3.12), one can also
rewrite it as follows

Al Llog(u(af))
| M2 )
=5 {u[log 2+ 2,log g 41, log vx] — ullog T4 1,log wk, log xp—1]} 0k ()

k=1

1
+§{u(log x0) AHH[1] + u[log 21, log xo] aH! [log xi]

0
+ullog 2, log 1, log o) aHE [ (log %)2]}
0

1

+§{u(log ) aHE 1] 4 ullog zar, log zar—1] aHE [log xi] (3.16)
M

x
+ullog xpr,log zpr—1,log xpr—2] aAHE [(log E)z]}

1

—ullog s, log 21, log &) log = sH[log —]
2 Ty To
T M

TM—1

x
—Eu[logxM,log Tp—1,logxar—o]log AHH[log ?M],
where u[log x41,log zk,log x;_1] is defined in (2.5).

Similar to Lemma 2.1, we will study the properties and approximation degree
of p-order Hadamard fractional integral of quasi-interpolator Liog(u(z)) in the fol-
lowing.

Theorem 3.3. The quasi-interpolation operator AH Liog(u(x)) satisfies the Hada-
mard fractional integral regeneration property of quadratic polynomial, i.e.
Vag, a1, az € Ru(z) = apx? + a1z + az, such that

M

Z[ao(log x1)? + a1 log wg + ao] B (x) = aHE[ap(log 2)? + a1 log z + as],
k=0

where Bi(x) is defined by (3.13).
Proof. Set G(z) = apz? + a1z + ag, based on (3.16) one have

AHY Liog (u(2))
| M2
=3 Z {Glog zj+2,1l0g xk11,log k] — Gllog Tit1,log 2y, log xk—1]} 0k ()
k=1
1 x
+§{[a0(10g 20)% + a1 log 2o + as] AHP[1] + [ap(log z¢ + log z1) 4 a1] AH[log x—]
0
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X X X
+ag H"[(log —)?] — ag log — 4H![log —1}
Zo Zo Zo

1
+§{[a0(logxM)2 + ay logzpr + az) AHE[1] + [ao(log zpar—1 + log xar) + aq]

T x T T
X AH![log —] +a0AHﬁ[(log—)Z] — ag log M AHE[log —M]}
Tpm Ty x

x

Tr—1
 lao(log A)* + a1 log A + az](log §)*  [2a9log A + a1](log §)#*!
N I(u+1) L+ 2)
2ap(log % )r+2
F(p+3)
because

AHiL [ao(log -'17)2 + a1 logx + a,2]
_ [ao(log A)2 + a1 log A + az)(log %)u

I(p+1)
[2a0log A + aq](log & )#+ 2ag(log %)+ +2
I(p+2) L(p+3)

Therefore, based on Gllog x2,log x1,logxg] = G[logxar,logzpr—1,logxpr—2] =
ag, we have

AHﬁﬁlog(u(x)) = sH![ap(log x)z + ay log z + as].

Hence, we have proved aH! Liog(u(x)) satisfies the Hadamard fractional integral
regeneration property of quadric polynomial. So the Theorem 3.3 is proved. O

In the following, we will study the approximation order of the quasi-interpolation
operator 4H" Ljog(u(z)) based on the idea of Theorem 3.2.

Theorem 3.4. Assumed that the second derivative of u(logx) is Lipschitz contin-
uous, the approximation capacity of aHY Liog(u(x)) satisfies

| AHY Liog (u(x)) — aH  u(log )| o
< O(7% +log(1 + 6)7% + (log(1 + 0))*7 4 (log(1 + §))?).

Proof. According to Theorem 3.3, one can obtain immediately that

M M

S (log L) B () = 4HA[S (log ) ()] = 0,7 = 1,2,
k]\:/IO ; k=0

S Bule) = AHEY an(@)] = aHEL),

k=0 k=0

where By (z) = AHFé(z),k=0,--- | M
After direct calculation, it can be immediately obtained that

M

> y(log zx) B (x)

k=0
M u” (log x) x
Z (logz) + u'(log x) log TF(logf)Q)&k(:c)]

k=0



Multiquadric quasi-interpolation method for FIDEs 2551

74 M
“u(log ) Z do(@)] + aHE [ (log ) S log %’“dk(x)]
k=0

M
—|— AH“ "(log z) Z log— x)]
k=0
= sH"[u(log z)].
Therefore, one can rewrite | AH Liog(u(x)) — aH u(log )| in the form
‘AHufflog( ( )) - AHal;Lu(log JJ)|

\Z (logz) — y(log xx)] Br ()|

H“|Z (log 1) — y(log 21, ()|

= /Z (log xx) — y(log zx )] (w )(10g§)u71%"|
Sﬁ /AIZ (g 1) = log o) los Zp—1 2. (317)

Based on the Lemma 2.3, one has

lu(log ) — Liog (u())llso (3.18)
< O(73) + O(log(1 + 6)7%) + O((log(1 + 6))27) + O((log(1 + 6))?).
Bringing (3.18) into (3.17), one can obtain that
‘AH#I:log( ( )) — aH}u(log z)|

(1
- Oj_ﬁl |Z (log 1) — y(log z )]k (w)]

/\

(B— A M
m|];) u(log i) — y(log )] (w)]
< O(13) 4 O(log(1 + 6)7%) + O((log(1 + 6))7) + O((log(1 + 6))?).

IN

Based on the above analysis, one can get

[aH% Liog (u(x)) — aH % u(log )|
< O(7% +log(1 + 6)7% + (log(1 + 0))*7 + (log(1 + §))?).

To sum up, the approximation order of AH Lj,g(u(z)) has been proven. O

Remark 3.2. When § = O(7!®), one obtain

LAHE Liog (u(x)) — aHLu(log x)||c < O(7%).
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4. Numerical results

In this section, we will provide five numerical examples to demonstrate the effective-
ness of using log-type MQ quasi-interpolation operators for solving the Hadamard
fractional integral equations and Hadamard fractional differential equations. For
simplicity, we choose equidistant partial sample points {log xk}i‘/fz o and take A =
1,B=2.

Example 4.1. In order to test the approximation of the quasi interpolator
AHE Liog (u(z)) to the function aHFu(logz), we choose u(logz) = (logz)3.

In Table 1, we set 7 = 1—10,5 = 0.017,0.17,0.27,0.57, 7, 27 to observe the accuracy
of AH" Ly (u(x)) approaching 4H"u(log z). From the Table 1, one can see that the

AH Liog (u(z)) has good accuracy to approximate 4H"u(log ).

Table 1. The approximation capacity of 4H¥ ﬁlog(u(r)) as T = % for Example 4.1.

R 1 1 1 1 1 1
1000 100 50 20 10 5

- 1 1 1 1 1 1
10 10 10 10 10 10

n=03 64194E-4 6.5821E-4 7.0656E-4 1.0757E-3 2.4676E-3 6.9136E-3
pn=05 4.1699E-4 4.2435E-4 4.4619E-4 7.3284E-4 1.8066E-3 5.2401E-3
pw=0.7 24640E-4 2.4740E-4 2.7506E-4 5.3772E-4 1.3806E-3 4.1174E-3

In Table 2, we set 7 = ﬁﬁ = 0.017,0.17,0.27,0.57, 7, 27 to observe the accuracy
of AH* Ly (u(x)) approaching 4H"u(log z). From the Table 2, one can see that the
AHY Liog (u(x)) has high accuracy to approximate s4H%u(logz) than Table 1 when

1

T:E'

Table 2. The approximation capacity of aH/ ﬁlog(u(a:)) as T = ﬁ for Example 4.1.

s 1 1 1 1 1 1
10000 1000 500 200 100 50

- 1 1 1 1 1 1
100 100 100 100 100 100

pn=03 1.1582E-5 1.1846E-5 1.2645E-5 1.8216E-5 3.7928E-5 1.1527E-4
pn=0.5 8.0998E-6 8.2503E-6 8.7056E-6 1.1879E-5 2.3117E-5 6.9919E-5
pn=0.7 52910E-6 5.3590E-6 5.5649E-6 7.0005E-6 1.5900E-5 5.3500E-5

It can be seen from Table 3 that when § = O(71®), the convergence order of
the quasi interpolator approaches 3. This numerical results are consistent with the
theoretical analysis results of Lemma 2.3.

Example 4.2. We consider the Hadamard fractional integral equation as follows

(4.1)

AHFu(logz) = F (logz, u(logz)),1 <2 < 2,0 < p < 1,
u(1l) =0,

with the following right hand side function

F (logz, u(logz)) = (log 2)"*3 4 (log z)® — u(log x),

L(p+4)
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Table 3. Maximum errors and decay rate as functions of 7 and § with u = 0.3,0.5,0.7 for Example 4.1.

T ) nw=0.3 Rate nw=0.5 Rate w=0.7 Rate
& gots  L7718E-2 — 1.3137E-2 — 1.0258E-2 —

L 00 34903E-3 2.3437 2.3585E-3 24776 1.8217E-3 2.4934
L 80 52904E-4 27219 3.3106E-4 2.8327 2.5452E-4 2.8394
L 60 7.1851E-5 2.8802 4.2902E-5 2.9479 3.2903E-5 2.9515
A 80 94776E-6 2.9224 5.5694E-6 2.9454 4.1940E-6 2.9718

and the corresponding exact solution u(logz) = (logx)3.

Table 4 shows the maximum error and corresponding convergence order when
= 0.3,0.5,0.7, the step size 7 = ﬁ,i =1,2,---,8, the shape parameter § =
80715, It can be seen from Table 4 that for all 0 < p < 1, the convergence rate is
close to 3. This is in a good agreement with the theoretical prediction of Theorem
3.4.

Table 4. Maximum errors and decay rate as functions of 7 and § with = 0.3,0.5,0.7 for Example 4.2.

T 6 nw=0.3 Rate nw=0.5 Rate w=0.7 Rate
~ 2% 16977E-2 - 1.2653E2 -  6.7125E-3 -

L 80 23996E-3 2.8227 1.7521E-3 2.8523 1.0458E-3 2.6822
L 80 7.2154E-4 29636 5.2714E-4 2.9622 3.2798E-4 2.8598
A 80 30529E-4 29897 2.2370E-4 29795 1.4259E-4 2.8954
A 80 1 5646E-4 2.9957 1.1497E-4 29827 7.4231E-5 2.9255
A 80 9.0611E-5 29959 6.6754E-5 2.9822 4.3402E-5 2.9435
A 80 57112E-5 29942  4.2165E-5 2.9804 2.7523E-5 2.9547
A 80 38302E-5 2.9917 2.8330E-5 2.9780 1.8534E-5 2.9611

Example 4.3. We consider the fractional differential problem as follows

AD*u(logx) = F (logz,u(logz)),1 <2 <2,0 < u < 1, 42)
4.2
u(1) =0,

and the right hand side function is

6(log x)3~#

(4= ) + (log z)* — u(log ),

F (log 2, u(log z)) =

it can be verified that the exact solution also is u(logz) = (log z)3.

Table 5 show the maximum errors and corresponding convergence orders as T,
0 and p take a series of different values. It can be seen from Table 5 that for all
0 < < 1, when § = 713, the convergence rate is close to 3 — . The numerical
results can well verify the validity the theory of Theorem 3.2.
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Table 5. Maximum errors and decay rate as functions of 7 and § with p = 0.3,0.5,0.7 for Example 4.3.

T ) nw=0.3 Rate nw=0.5 Rate w=0.7 Rate
% 20115 2.2058E-3 - 6.5182E-3 — 2.4414E-2 -

ﬁ 4011,5 3.6978E-4 2.5765 1.2939E-3 2.3327 5.7088E-3 2.0964
% 601145 1.2790E-4 2.6182 4.9228E-4 2.3833 2.3725E-3 2.1655
% 8011-5 5.9922E-5 2.6357 2.4635E-4 2.4063 1.2611E-3 2.1967
ﬁ Wlm 3.3204E-5 2.6456 1.4356E-4 2.4200 7.6929E-4 2.2150
ﬁ 120% 2.0474E-5 2.6520 9.2191E-5 2.4292 5.1255E-4 2.2271

Example 4.4. We consider the fractional differential problem:

aDPu(logx) = F (logz,u(logz)),1 <2 <2,0 < pu < 1,
u(1l) =0,

where
F (1og 2, u(log z))
= 7F(6) (log z)>~* — 7“5) (log z)4—+

T — ) L5 — p)
+m(log 2)> " + (logz)° — (log z)* + 2(log 2)* — u(log ),

and the exact solution is u(logx) = (logx)® — (log x)* + 2(log z)3.

Table 6 is similar to Table 5, it shows the maximum errors and corresponding
convergence orders as 7,  and p take a series of different values. We also take
§ = 7%, from Table 6, we find the convergence rate is close to 3 — u for 0 < u < 1.

Table 6. Maximum errors and decay rate as functions of 7 and § with p = 0.3,0.5, 0.7 for Example 4.4.

T é w=0.3 Rate w=20.5 Rate w=0.7 Rate

1 1
20 sors  9-9250E-3 — 1.1575E-2 — 4.3227E-2 —

st

%5 s 06.9360E-4 25005 2.4247E-3 22551 1.0681E-2 2.0167
% Gots  2.4480E-4 25684 9.4162E-4 23327 4.5333E-3  2.1138
& o 1.1590E-4 25990 4.7630E-4 2.3690 2.4362E-3 2.1586

o5 oors  6.4645E-5 26165 2.7939E-4 23905 1.4961E-3 2.1848
4.0036E-5 2.6279 1.8021E-4 2.4049 1.0014E-3 2.2022
2.6666E-5 2.6361 1.2419E-4 24153 7.1177E-4 2.2147

_1
120 12075

1
140 14015

Example 4.5. We consider the Hadamard fractional integration problem as follows

AHPu(logz) + aDFu(logx) = F (logz,u(logz)),1 <2 <2,0 < u < 1, (4.4)
u(1) =0, ’
and the right hand side function is

6(logz)>~*  6(logx)H*3
I'(4—p) L(p+4)

I (logz,u(logz)) =
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It can be verified that the exact solution is u(logx) = (log x)3.

Figure 1 shows the log-log sketches of the theoretical convergence order with p =
0.3, 7= 2%, i, %, %, ﬁ and shape parameter § = O(7!:%). Figure 2 shows the log-
log sketches of the theoretical convergence order with g = 0.6,7 = %, %, %, ﬁ, ﬁ
and shape parameter § = O(7!%). As estimated by theory, the error convergence
order of the scheme is close to 3 — pu, that is, we can find that the red line is
approximately parallel to the blue line, so the error slope of the curve is 2.7 and

2.4, when p = 0.3,0.6 in log-log coordinates.
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Figure 1. Log-log sketches of approximation orders with p = 0.3 for Example 4.5.
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Figure 2. Log-log sketches of approximation orders with p = 0.6 for Example 4.5.

5. Conclusion

In this paper, the log-type MQ quasi-interpolation operators are constructed. And
the quadric polynomial reproduction and convexity-preserving properties of log-
type MQ quasi-interpolation operators are studied. Considering the log-type MQ
quasi-interpolation operator with advantages of preserving quadratic polynomial
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and convexity, we use it to solve the Hadamard fractional integral equation and
Hadamard fractional differential equation. The approximation order of the numer-
ical scheme based on the log-type MQ quasi-interpolation operators is established.
Theoretical analysis indicates that the approximation order of the integral scheme
is 3, and the approximation order of the differential scheme is 3 — . The correct-
ness of the theoretical prediction is verified by the linear numerical experiments of
Hadamard fractional integral equation and Hadamard fractional differential equa-
tion. The numerical results show that it is feasible to construct the numerical
scheme with MQ fitting interpolation algorithm.
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