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Abstract In this paper, we establish a new common fixed-point theorem
for multivalued mappings with the greatest lower bound property in general-
ized F-metric spaces. Also, we propose some new theorems via more general
contractions.
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1. Introduction

In 2013, Ahmad et al. proposed the concept of a complex-valued metric space, and
obtained common fixed-point results for multivalued mappings with the greatest
lower bound property [3]. As a generalization of the b-metric spaces [8], the notion
of a complex-valued double-controlled metric space was presented in [17]; After
that, Amiri et al. have established common fixed-point theorems for multivalued
mappings with the greatest lower bound property in this space [6]. Recently, with
the establishment of the concept of a F-metric space [11], there are also many
interesting results appeared. For instance, by using orbital α-admissibility, Aydi
et al. have improved the fixed-point theorem for α-ψ-contractive mappings [7], or
several generalizations of the fixed-point results of Reich and Jungck were given
in [15]. Furthermore, numerous authors aim to extend and innovate many known
results in the corresponding papers, such as Zhu et al. introduced the concept of
a generalized F-metric space [20], and proved some fixed-point theorems satisfying
Geraghty contraction or JS-contraction, etc, which generalized many fixed-point
results in F-metric spaces. For more details, see [1, 2, 4, 5, 9, 10, 12–14, 16, 18, 19].
Inspired by the above results, we have some new opinions with generalized F-metric
space, some examples and corollaries are used to enrich our results, and we apply one
of the results to solve a class of linear algebraic equation problems, which satisfies
all the conditions of Corollary 3.5.
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2. Preliminaries

Firstly, let z be the family of all functions f : (0,+∞)→ R, satisfying
(F1): f is nondecreasing;
(F2): lim

n→∞
Sn = 0 if and only if lim

n→∞
f(Sn) = −∞, where {Sn} ⊆ (0,+∞).

Definition 2.1 ( [20]). Let X be a non-empty set, consider the mapping D : X ×
X → [0,+∞). For all ξ1, ξ2, ξ3 in X, suppose that there exist (δ, f) ∈ [0,+∞)×z,
such that
(D1) D(ξ1, ξ2) = 0 if and only if ξ1 = ξ2;
(D2) D(ξ1, ξ2) = D(ξ2, ξ1);
(D3) f(D(ξ1, ξ2)) ≤ f(D(ξ1, ξ3) +D(ξ3, ξ2)) + δ, if D(ξ1, ξ2) > 0,

then the function D is called a generalized F-metric on X, and (X,D) is called
a generalized F-metric space.

Example 2.1. Let X = R, f(ξ) = − 1
2ξ , δ = 1

2 , and

D(ξ1, ξ2) =


1

2
e|ξ1−ξ2|, ξ1 6= ξ2,

0, ξ1 = ξ2.

Definition 2.2 ( [20]). Let (X,D) be a generalized F-metric space and {ξn} be
a sequence in X.
(1) For any ε > 0, if there exists a positive integer N such that D(ζ, ξn) < ε for all
n ≥ N , then {ξn} is called F-convergent to ζ ∈ X;
(2) For any ε > 0, if there exists a positive integer N such that D(ξn, ξm) < ε for
all n,m ≥ N , then {ξn} is called a F-Cauchy sequence;
(3) A generalized F-metric space (X,D) is called F-complete if any F-Cauchy
sequence in (X,D) is F-convergent.

From [3], we investigate the multivalued mappings with the greatest lower bound
property in generalized F-metric spaces, some similar definitions are given as fol-
lows:

Definition 2.3. Let (X,D) be a generalized F-metric space and NCB(X) be the
set of non-empty, bounded and closed subsets of X. For each ξ1 in R, we denote
∆(ξ1) = {ξ2 ∈ R : ξ1 ≤ ξ2}.

In addition, for each x ∈ X and A,B ∈ NCB(X),
(i) ∆(x,B) =

⋃
b∈B ∆(D(x, b)) =

⋃
b∈B{u ∈ R : D(x, b) ≤ u};

(ii) ∆(A,B) = (
⋂
a∈A ∆(a,B))

⋂
(
⋂
b∈B ∆(b, A)).

Definition 2.4. Let (X,D) be a generalized F-metric space and R : X →
NCB(X) be a multi-valued mapping. For all x, y ∈ X, define Ax(Ry) = {u ∈
R|u = D(x, z) : z ∈ Ry}.
(i) The multi-valued mapping R has the lower bound on (X,D) if for all x, y ∈ X
there exists u0 ∈ R such that u0 ≤ u for all u ∈ Ax(Ry);
(ii) The multi-valued mapping R has the greatest lower bound on (X,D) if there
exists a greatest lower bound of Ax(Ry) in R, and we write D(x,Ry) = inf{D(x, z) :
z ∈ Ry}.



2560 Y. Li, C. Zhu & Y. Xiao

3. Main results

In this section, we introduce a new common fixed-point theorem for the multivalued
mappings. In addition, we obtain other fixed-point results in this space, which
satisfy more general contractive conditions.

In [20], let Φ be the set of all functions φ : [0,∞)→ [0,∞), where φ satisfies:
(1) continuous and nondecreasing;
(2) for any t > 0, lim

n→∞
φn(t) = 0.

Obviously, φ(0) = 0, and φ(t) < t for any t > 0.

Theorem 3.1. Let (X,D) be a F-complete generalized F-metric space and R,S :
X → NCB(X) be multi-valued mappings. Suppose that there exists φ ∈ Φ, R and
S have the greatest lower bound on (X,D) such that

φ(θ(x, y)) ∈ ∆(Rx, Sy) (3.1)

for all x, y in X, where θ(x, y) = λ
ab
D(x, y)+ µ

ab
D(x,Rx)D(y,Sy)

1+D(x,Rx) , a, b > 1 and λ, µ > 0

with λ+ µ < 1. Then R and S have a common fixed-point.

Proof. By selecting any x0 ∈ X, from (3.1), there exists x1 ∈ Rx0 such that

φ(θ(x0, x1)) ∈ ∆(Rx0, Sx1).

Thus for all a ∈ Rx0, b ∈ Sx1, we have

φ(θ(x0, x1)) ∈ ∆(a, Sx1) =
⋃

b∈Sx1

{u ∈ R : D(a, b) ≤ u},

and
φ(θ(x0, x1)) ∈ ∆(Rx0, b) =

⋃
a∈Rx0

{u ∈ R : D(a, b) ≤ u}.

Since x1 ∈ Rx0, then there exists x2 ∈ Sx1 such that D(x1, x2) ≤ φ(θ(x0, x1)).
In addition, by using (3.1), we obtain

φ(θ(x2, x1)) ∈ ∆(Rx2, Sx1).

Similarly, owing to x2 ∈ Sx1, thus there exists x3 ∈ Rx2 such that D(x2, x3) ≤
φ(θ(x2, x1)). By repeating the above process, we can construct a sequence {xn},
where x2n+1 ∈ Rx2n, x2n+2 ∈ Sx2n+1 for all n ∈ N, thus we have

D(x2n+1, x2n+2) ≤ φ(θ(x2n, x2n+1)), (3.2)

and
D(x2n+2, x2n+3) ≤ φ(θ(x2n+2, x2n+1)), (3.3)

where

θ(x2n, x2n+1) =
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n, Rx2n)D(x2n+1, Sx2n+1)

1 +D(x2n, Rx2n)
, (3.4)

and

θ(x2n+2, x2n+1) =
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+2, Rx2n+2)D(x2n+1, Sx2n+1)

1 +D(x2n+2, Rx2n+2)
.

(3.5)



Fixed-point results in generalized F-metric spaces 2561

Suppose that there exists n ∈ N such that x2n = x2n+1, it can be proved that
x2n+1 = x2n+2. If not, consider Definition 2.2, we have

0 < D(x2n+1, x2n+2)

≤ φ(θ(x2n, x2n+1))

≤ φ(
µ

ab
D(x2n+1, Sx2n+1))

<
µ

ab
D(x2n+1, x2n+2),

contradiction. As a result, x2n+1 is a common fixed-point of R and S.
On the other hand, if x2n+1 = x2n+2 for some n ∈ N, then x2n+2 = x2n+3 and

x2n+2 is a common fixed-point of R and S. If not, it can be deduced that

0 < D(x2n+2, x2n+3)

≤ φ(θ(x2n+2, x2n+1))

≤ φ(
µ

ab
D(x2n+1, Sx2n+1))

<
µ

ab
D(x2n+1, x2n+2)

= 0.

Therefore, we assume that xn 6= xn+1 for all n ∈ N. By using (3.2) and (3.4),
we have

D(x2n+1, x2n+2) ≤ φ(θ(x2n, x2n+1))

≤ φ(
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1))

<
λ

ab
D(x2n, x2n+1) +

µ

ab
D(x2n+1, x2n+2),

and so D(x2n+1, x2n+2) < λ
ab−µD(x2n, x2n+1), where 0 < λ

ab−µ < 1.

Similarly, using (3.3) and (3.5), we obtain

D(x2n+2, x2n+3) ≤ φ(θ(x2n+2, x2n+1))

≤ φ(
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1))

<
λ

ab
D(x2n+2, x2n+1) +

µ

ab
D(x2n+1, x2n+2),

thus D(x2n+2, x2n+3) < λ+µ
ab

D(x2n+1, x2n+2), where 0 < λ+µ
ab

< 1.

As a consequence, D(xn, xn+1) < λ+µ
ab

D(xn−1, xn). Then,

D(xn, xn+1) <
λ+ µ

ab
D(xn−1, xn) < ... < {λ+ µ

ab
}nD(x0, x1),

it follows that
lim
n→∞

D(xn, xn+1) = 0. (3.6)

Now, it will be shown that {xn} is a F-Cauchy sequence. According to math-
ematical induction, suppose that lim

n→∞
D(xn, xn+k) = 0 for some k ∈ N, consider

(D3), we have

f(D(xn, xn+k+1)) ≤ f(D(xn, xn+k) +D(xn+k, xn+k+1)) + δ.
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From (3.6), we can get lim
n→∞

D(xn, xn+k) + D(xn+k, xn+k+1) = 0. Moreover, ac-

cording to (F2), we obtain

lim
n→∞

f(D(xn, xn+k+1)) ≤ lim
n→∞

f(D(xn, xn+k) +D(xn+k, xn+k+1)) + δ ≤ −∞,

hence,
lim
n→∞

D(xn, xn+k+1) = 0.

As a result, lim
n→∞

D(xn, xn+k) = 0 for all k ∈ N, thus {xn} is a F-Cauchy

sequence and there exists an element β in X such that xn → β.
Finally, we will prove β is a common fixed-point of R and S. From (3.1), we

obtain
φ(θ(x2n, β)) ∈ ∆(Rx2n, Sβ) ⊆ ∆(x2n+1, Sβ),

and
φ(θ(β, x2n+1)) ∈ ∆(Rβ, Sx2n+1) ⊆ ∆(Rβ, x2n+2),

where

θ(x2n, β) =
λ

ab
D(x2n, β) +

µ

ab
D(x2n, Rx2n)D(β, Sβ)

1 +D(x2n, Rx2n)
,

and

θ(β, x2n+1) =
λ

ab
D(β, x2n+1) +

µ

ab
D(β,Rβ)D(x2n+1, Sx2n+1)

1 +D(β,Rβ)
.

Therefore, there exist two sequences {un} ⊆ Rβ and {vn} ⊆ Sβ, such that

D(x2n+1, vn) ≤ φ(
λ

ab
D(x2n, β) +

µ

ab
D(x2n, Rx2n)D(β, Sβ)

1 +D(x2n, Rx2n)
),

and

D(un, x2n+2) ≤ φ(
λ

ab
D(β, x2n+1) +

µ

ab
D(x2n+1, Sx2n+1)D(β,Rβ)

1 +D(β,Rβ)
).

It follows that

lim
n→∞

D(x2n+1, vn) ≤ lim
n→∞

φ(
λ

ab
D(x2n, β) +

µ

ab
D(x2n, x2n+1)D(β, Sβ)

1 +D(x2n, x2n+1)
) = φ(0) = 0,

and

lim
n→∞

D(un, x2n+2) ≤ lim
n→∞

φ(
λ

ab
D(β, x2n+1) +

µ

ab
D(x2n+1, x2n+2)D(β,Rβ)

1 +D(β,Rβ)
)

= φ(0)

= 0,

i.e.
lim
n→∞

D(x2n+1, vn) = 0, (3.7)

and
lim
n→∞

D(un, x2n+2) = 0. (3.8)

According to (D3), we have

f(D(β, vn)) ≤ f(D(β, x2n+1) +D(x2n+1, vn)) + δ,
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from (3.7), we get lim
n→∞

f(D(β, vn)) ≤ lim
n→∞

f(D(β, x2n+1) + D(x2n+1, vn)) + δ ≤
−∞, then

lim
n→∞

D(β, vn) = 0,

i.e. vn → β.

Similarly,

f(D(un, β)) ≤ f(D(un, x2n+2) +D(x2n+2, β)) + δ,

from (3.8), we get

lim
n→∞

D(un, β) = 0,

i.e. un → β.

Owing to Rβ and Sβ are closed subsets, it follows that β ∈ (Rβ
⋂
Sβ), thus

the proof is completed.

Example 3.1. Let X = [0, 1], D(ξ1, ξ2) = (ξ1−ξ2)2 for all ξ1, ξ2 in X, f(x) = ln x
and δ = ln 2.

In addition, let Rξ1 = [0, ξ110 ], Sξ2 = [0, ξ220 ], φ(ξ) = ξ
2 , a =

√
2, b = 2 and

λ = µ = 1
100 . Anyone can easily check that D(ξ1, Rξ1) = 81

100ξ
2
1 , D(ξ2, Sξ2) = 361

400ξ
2
2

and ∆(Rξ1, Sξ2) = ∆(( ξ110 −
ξ2
20 )2).

Suppose that 2ξ1 < ξ2, we have

(
ξ1
10
− ξ2

20
)2 ≤ 1

400
(ξ1 − ξ2)2

≤ 1

400
(ξ1 − ξ2)2 +

1

400

81
100ξ

2
1

1 + 81
100ξ

2
1

361

400
ξ22

=
1

2
(

1
100

(
√

2)2
D(ξ1, ξ2) +

1
100

(
√

2)2
D(ξ1, Rξ1)

1 +D(ξ1, Rξ1)
D(ξ2, Sξ2))

= φ(θ(ξ1, ξ2)),

then φ(θ(ξ1, ξ2)) ∈ ∆(Rξ1, Sξ2).

Therefore, the conditions of Theorem 3.1 are satisfied, R and S have a common
fixed-point ξ = 0.

If two multi-valued mappings R and S are supposed to be equal, then Theorem
3.1 reduces to below corollary.

Corollary 3.1. Let (X,D) be a F-complete generalized F-metric space and R :
X → NCB(X) be a multi-valued mapping. Suppose that there exists φ ∈ Φ, and R
has the greatest lower bound on (X,D), such that

φ(θ(x, y)) ∈ ∆(Rx,Ry)

for all x, y in X, where θ(x, y) = λ
ab
D(x, y)+ µ

ab
D(x,Rx)D(y,Ry)

1+D(x,Rx) , a, b > 1 and λ, µ > 0

with λ+ µ < 1. Then R has a fixed-point.

Obviously, if two multi-valued mappings R and S are supposed to be self-
mappings, then the following corollary holds.
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Corollary 3.2. Let (X,D) be a F-complete generalized F-metric space and R,S :
X → X be self-mappings. Suppose that there exists φ ∈ Φ such that

D(Rx, Sy) ≤ φ(θ(x, y))

for all x, y in X, where θ(x, y) = λ
ab
D(x, y)+ µ

ab
D(x,Rx)D(y,Sy)

1+D(x,Rx) , a, b > 1 and λ, µ > 0

with λ+ µ < 1. Then R and S have a common fixed-point.

In [12], let L be the family of all continuous and nondecreasing functions ω :
[0,+∞)→ [0,+∞), where ω satisfies:
(1) ω(0) = 0, and ω(x) > 0 for each x > 0;
(2) lim

n→∞
xn = 0 if and only if lim

n→∞
ω(xn) = 0, where {xn} ⊆ (0,+∞).

Theorem 3.2. Let (X,D) be a F-complete generalized F-metric space and R,S :
X → X be self-mappings. Suppose that there exists ω ∈ L such that

D(Rx, Sy) ≤ M(x, y)− ω(M(x, y)) (3.9)

for all x, y in X, where

M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.

Then R and S have a unique common fixed-point.

Proof. By selecting any x0 ∈ X, we can construct a sequence {xn} such that
x2n+1 = Rx2n and x2n+2 = Sx2n+1. If x2n = x2n+1 for some n ∈ N, then x2n+1 =
x2n+2, and so x2n+1 is a common fixed-point of R and S.

In fact, if x2n+1 6= x2n+2, from (3.9), we have

D(x2n+1, x2n+2) = D(Rx2n, Sx2n+1) ≤ M(x2n, x2n+1)− ω(M(x2n, x2n+1)),

where

M(x2n, x2n+1) = max{D(x2n, x2n+1), D(x2n+1, x2n+2), D(x2n, x2n+1)}
= D(x2n+1, x2n+2).

It follows that

0 < D(x2n+1, x2n+2) ≤ D(x2n+1, x2n+2)− ω(D(x2n+1, x2n+2)) < D(x2n+1, x2n+2),

contradiction. Similarly, if x2n+1 = x2n+2 for some n ∈ N and x2n+2 6= x2n+3, then

D(x2n+2, x2n+3) = D(x2n+3, x2n+2)

= D(Rx2n+2, Sx2n+1)

≤ M(x2n+2, x2n+1)− ω(M(x2n+2, x2n+1)),

where

M(x2n+2, x2n+1) = max{D(x2n+2, x2n+3), D(x2n+1, x2n+2), D(x2n+2, x2n+1)}
= D(x2n+2, x2n+3).

So we have

0 < D(x2n+2, x2n+3) ≤ D(x2n+2, x2n+3)− ω(D(x2n+2, x2n+3)) < D(x2n+2, x2n+3),
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contradiction, thus we get x2n+2 = x2n+3, and x2n+2 is a common fixed-point of R
and S.

As a consequence, we suppose that xn 6= xn+1 for all n ∈ N, and it can be easily
deduced that

D(x2n+1, x2n+2) ≤ D(x2n, x2n+1), (3.10)

and
D(x2n+2, x2n+3) ≤ D(x2n+1, x2n+2). (3.11)

Owing to (3.10) and (3.11), we obtain D(xn, xn+1) ≤ D(xn−1, xn) for all n ∈ N.
Moreover, {D(xn, xn+1)} is a monotonous nonincreasing sequence and we assume
that lim

n→∞
D(xn, xn+1) = e ≥ 0.

If e > 0, so by letting n→∞ at both sides of (3.10) and (3.11), we get

e < e− ω(e) < e,

contradiction. It can be easily shown that lim
n→∞

D(xn, xn+1) = 0, following the

proof process of Theorem 3.1, we get {xn} is a F-Cauchy sequence and there exists
an element β in X such that xn → β.

Now, we will prove β is a unique common fixed-point of R and S. If β 6= Rβ,
then

0 < inf{D(x, β) +D(x,Rx) : x ∈ X}
≤ inf{D(x2n, β) +D(x2n, Rx2n) : n ∈ N}
≤ 0 as n→∞,

contradiction, thus β = Rβ.
Uniqueness: Suppose that β and η are two common fixed-points of R and S,

β 6= η, so that

0 < D(β, η) = D(Rβ, Sη) ≤ M(β, η)− ω(M(β, η)),

where
M(β, η) = max{D(β,Rβ), D(η, Sη), D(β, η)} = D(β, η).

Hence,
0 < D(β, η) ≤ D(β, η)− ω(D(β, η)) < D(β, η),

contradiction.
It follows that D(β, η) = 0, i.e. β = η, the proof is completed.

Example 3.2. Let X = R, for all x, y in R, Rx = (x−1)
4 + x, Sy = (y−1)

4 + 1, and
ω(t) = 1− 1

et for all t ≥ 0.

Furthermore, let f(t) = − 1
t , δ = 1, and

D(x, y) =

{
e|x−y|, x 6= y,

0, x = y.

It can be proved that (X,D) is a generalized F-metric space (see [11]), and

D(Rx, Sy) =

{
e|

x−y
4 +x−1|, Rx 6= Sy,

0, Rx = Sy.
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Suppose that 2 ≤ 4|x− 1| ≤ |x− y|, we have

e|
x−y
4 +x−1| ≤ e

|x−y|
2 ,

and

e
|x−y|

2 + 1 ≤ e|x−y|.

Thus,

D(Rx, Sy) ≤ D(x, y)− ω(M(x, y)) ≤ M(x, y)− ω(M(x, y)),

where M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.
Obviously, the conditions of Theorem 3.2 are satisfied, R and S have a unique

common fixed-point ξ = 1.
It is clear that if R and S be equal, then Theorem 3.2 reduces to the following

corollary.

Corollary 3.3. Let (X,D) be a F-complete generalized F-metric space and R :
X → X be a self-mapping. Suppose that there exist φ ∈ Φ and ω ∈ L, such that

D(Rx,Ry) ≤ φ(M(x, y))− ω(M(x, y))

for all x, y in X, where

M(x, y) = max{D(x,Rx), D(y, Sy), D(x, y)}.

Then R has a unique fixed-point.

Theorem 3.3. Let (X,D) be a F-complete generalized F-metric space R,S : X →
X be nondecreasing mappings. Suppose that there exists a continuous and nonin-
creasing mapping T : X → [0, 1), such that

D(Rx, Sy) ≤ (Tx− Ty)M(x, y) (3.12)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y, Sy)}.

If f ∈ z is an invertible function, then R and S have a unique common fixed-
point.

Proof. By selecting any x0 ∈ X, according to the property of R and S, we can
construct a nondecreasing sequence {xn}, such that x2n+1 = Rx2n ≥ x2n and
x2n+2 = Sx2n+1 ≥ x2n+1 for all n ∈ N. Inspired by the proof process of Theorem
3.1 and Theorem 3.2, we also assume that xn 6= xn+1 for all n ∈ N. From (3.12),
we get

D(x2n+1, x2n+2) = D(Rx2n, Sx2n+1) ≤ (Tx2n − Tx2n+1)M(x2n, x2n+1),

where

M(x2n, x2n+1) = max{D(x2n, x2n+1), D(x2n, x2n+1), D(x2n+1, x2n+2)}
= max{D(x2n, x2n+1), D(x2n+1, x2n+2)}.
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If M(x2n, x2n+1) = D(x2n+1, x2n+2), then

D(x2n+1, x2n+2) ≤ (Tx2n − Tx2n+1)D(x2n+1, x2n+2),

contradiction. Hence,

D(x2n+1, x2n+2) ≤ (Tx2n − Tx2n+1)D(x2n, x2n+1).

Similarly, we have

D(x2n+3, x2n+2) = D(Rx2n+2, Sx2n+1) ≤ (Tx2n+2 − Tx2n+1)M(x2n+2, x2n+1),

where

M(x2n+2, x2n+1) = max{D(x2n+2, x2n+1), D(x2n+2, x2n+3), D(x2n+1, x2n+2)}
= max{D(x2n+2, x2n+1), D(x2n+2, x2n+3)}.

Obviously, M(x2n+2, x2n+1) = D(x2n+2, x2n+1), hence,

D(x2n+3, x2n+2) ≤ (Tx2n+2 − Tx2n+1)D(x2n+2, x2n+1).

As a result, D(xn, xn+1) ≤ (Txn−1 − Txn)D(xn−1, xn) for all n ∈ N, we obtain

D(xn, xn+1)

D(xn−1, xn)
≤ Txn−1 − Txn,

and so
n∑
k=1

D(xk, xk+1)

D(xk−1, xk)
≤

n∑
k=1

(Txk−1 − Txk) = Tx0 − Txn <∞,

then

lim
k→∞

D(xk, xk+1)

D(xk−1, xk)
= 0,

which implies there exist κ ∈ (0, 1) and n0 ∈ N such that D(xn, xn+1) ≤
κD(xn−1, xn) for all n ≥ n0, it can be easily proved that

lim
n→∞

D(xn−1, xn) = 0.

By continuing the proof process of Theorem 3.1, we get {xn} is a F-Cauchy sequence
and there exists an element β in X such that xn → β.

Now, we will prove Rβ = β, if not, owing to (D3), we have

f(D(β,Rβ)) ≤ f(D(β, x2n+2) +D(x2n+2, Rβ)) + δ

= f(D(β, x2n+2) +D(Rβ, Sx2n+1)) + δ

≤ f(D(β, x2n+2) + (Tβ − Tx2n+1)M(β, x2n+1)) + δ,

where
M(β, x2n+1) = max{D(β, x2n+1), D(β,Rβ), D(x2n+1, x2n+2)}

= D(β,Rβ) as n→∞.

It yields that

f−1[f(D(β,Rβ))− δ] ≤ D(β, x2n+1) + (Tβ − Tx2n+1)D(β,Rβ),
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by using the property of T , we obtain lim
n→∞

f−1[f(D(β,Rβ))− δ] ≤ 0, then

lim
n→∞

f(D(β,Rβ)) ≤ −∞,

which is contradict with D(β,Rβ) > 0. Therefore, β = Rβ.
Similarly, owing to the continuity of T , we have

f(D(β, Sβ)) ≤ f(D(β, x2n+1) +D(x2n+1, Sβ)) + δ

= f(D(β, x2n+1) +D(Rx2n, Sβ)) + δ

≤ f(D(β, x2n+1) + (Tx2n − Tβ)M(x2n, β)) + δ

= −∞ as n→∞,

as a result, β = Sβ.
Uniqueness: Assume that β and γ are two common fixed-points of R and S,

γ 6= β, and so

0 < D(β, γ) = D(Rβ, Sγ) ≤ (Tβ − Tγ)M(β, γ),

clearly, M(β, γ) = D(β, γ), thus,

0 < D(β, γ) ≤ (Tβ − Tγ)D(β, γ), (3.13)

and
0 < D(γ, β) ≤ (Tγ − Tβ)D(γ, β). (3.14)

According to (D2), if Tβ 6= Tγ, it can be proved that (3.13) and (3.14) cannot
be established at the same time. As a consequence, D(β, γ) = 0, i.e. β = γ, the
proof is completed.

Using Theorem 3.3 with R = S, we can easily obtain the following corollary.

Corollary 3.4. Let (X,D) be a F-complete generalized F-metric space and R :
X → X be a nondecreasing mapping. Suppose that there exists a continuous and
nonincreasing mapping T : X → [0, 1), such that

D(Rx,Ry) ≤ (Tx− Ty)M(x, y)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y,Ry)},

then R has a unique fixed-point.
Since 0 ≤ T (x) < 1, thus Theorem 3.3 can reduce below corollary.

Corollary 3.5. Let (X,D) be a F-complete generalized F-metric space and R,S :
X → X be self-mappings. Suppose that there exists k ∈ [0, 1) such that

D(Rx, Sy) ≤ kM(x, y)

for all x, y in X, where

M(x, y) = max{D(x, y), D(x,Rx), D(y, Sy)},

then R and S have a unique common fixed-point.
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Let R = S in Corollary 3.5, it follows that

Corollary 3.6 ( [20]). Let (X,D) be a F-complete generalized F-metric space and
R : X → X be a self-mapping. Suppose that there exists k ∈ [0, 1) such that

D(Rx,Ry) ≤ kD(x, y)

for all x, y in X, then R has a unique fixed-point.

4. Application

In this section, we will apply Corollary 3.5 to solve a system of linear algebraic
equations as follows:

Consider the following linear algebraic equations:
a11x1 + a12x2 + ...+ a1nxn + β1 = 0,

...

an1x1 + an2x2 + ...+ annxn + βn = 0,

(4.1)

and 
c11y1 + c12y2 + ...+ c1nyn + β1 = 0,

...

cn1y1 + cn2y2 + ...+ cnnyn + βn = 0.

(4.2)

Then (4.1) can be written as Ax+β = O, where A = (aij)n×n, O = (0, 0, ..., 0)T ,
x = (x1, x2, ..., xn)T and β = (β1, β2, ..., βn)T . Similarly, (4.2) can be written as
Cy + β = O, where y = (y1, y2, ..., yn)T and C = (cij)n×n.

Let X = Rn, for all x, y in X, D(x, y) = max
1≤ i≤n

|xi − yi|2, f(x) = ln x and

δ = ln 2. Moreover, we define two self-mappings R,S : Rn → Rn as

Rx = Bx+ β, (4.3)

and
Sy = Dy + β, (4.4)

where B = (bij)n×n, bii = aii + 1 and bij = aij if i 6= j, and also D = (dij)n×n,
dii = cii + 1 and dij = cij if i 6= j.

Clearly, the linear algebraic equations (4.1) and (4.2) have a common solution
x∗ in X if and only if x∗ is a common fixed-point of R and S. For all 1 ≤ i ≤ n,
suppose that

n∑
j=1

(bijxj − dijyj) ≤ max
1≤ j≤n

√
k(xj − yj), (4.5)

where 0 ≤ k < 1. From (4.3)-(4.5), we get

D(Rx, Sy) = max
1≤ i≤n

[

n∑
j=1

(bijxj − dijyj)]2 ≤ max
1≤ j≤n

k(xj − yj)2 ≤ kM(x, y).

Obviously, all conditions of Corollary 3.5 are satisfied, R and S have a common
fixed-point x∗, and so x∗ is a common solution of the linear algebraic equations
(4.1) and (4.2).
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5. Conclusion

In short, we have obtained some interesting and latest fixed-point results in gen-
eralized F-metric spaces, and also an application for solving the linear algebraic
equations. Applying these results to the field of integral equation or differential
equation is worth spending more time to study.
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