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ON THE WELL-POSEDNESS AND STABILITY
FOR CARBON NANOTUBES AS COUPLED

TWO TIMOSHENKO BEAMS WITH
FRICTIONAL DAMPINGS
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Abstract The objective of this paper is to study the well-posedness and
stability questions for double wall carbon nanotubes modeled as linear one-
dimensional coupled two Timoshenko beams in a bounded domain under fric-
tional dampings. First, we prove the well-posedness of our system by ap-
plying the semigroups theory of linear operators. Second, we show several
strong, non-exponential, exponential, polynomial and non-polynomial stabil-
ity results depending on the number of frictional dampings, their position and
some connections between the coefficients. In some cases, the optimality of
the polynomial decay rate is also proved. The proofs of these stability results
are based on a combination of the energy method and the frequency domain
approach.
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ior, semigroups theory, energy method, frequency domain approach.
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1. Introduction

The system under consideration in this paper is the following:

ϕtt − k1 (ϕx + ψ)x − k0 (w − ϕ) + τ1a1ϕt = 0 in (0, 1)× (0,∞) ,

ψtt − k2ψxx + k1 (ϕx + ψ) + τ2a2ψt = 0 in (0, 1)× (0,∞) ,

wtt − k3 (wx + z)x + k0 (w − ϕ) + τ3a3wt = 0 in (0, 1)× (0,∞) ,

ztt − k4zxx + k3 (wx + z) + τ4a4zt = 0 in (0, 1)× (0,∞)

(1.1)

along with the homogeneous Dirichlet-Neumann boundary conditions
ϕx (0, t) = ψ (0, t) = wx (0, t) = z (0, t) = 0 in (0,∞) ,

ϕ (1, t) = ψx (1, t) = w (1, t) = zx (1, t) = 0 in (0,∞)

(1.2)
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and the initial data
ϕ (x, 0) = ϕ0 (x) , ψ (x, 0) = ψ0 (x) , w (x, 0) = w0 (x) , z (x, 0) = z0 (x) in (0, 1) ,

ϕt (x, 0) = ϕ1 (x) , ψt (x, 0) = ψ1 (x) , wt (x, 0) = w1 (x) , zt (x, 0) = z1 (x) in (0, 1) ,

(1.3)

where kj , j = 0, 1, 2, 3, 4, and aj , j = 1, 2, 3, 4, are positive constants,

(τ1, τ2, τ3, τ4) ∈ {0, 1}4 and (τ1, τ2, τ3, τ4) 6= (0, 0, 0, 0), (1.4)

the functions ϕj , ψj , wj and zj , j = 0, 1, are fixed initial data,

(ϕ,ψ,w, z) : (x, t) ∈ (0, 1)× (0,∞) 7→ (ϕ(x, t), ψ(x, t), w(x, t), z(x, t)) ∈ R4

is the unknown of (1.1)-(1.3), and the subscripts t and x denote, respectively, the
derivative with respect to the time variable t and the space variable x.

In the case k0 = 0, both (1.1)1-(1.1)2 and (1.1)3-(1.1)4 are reduced to the well-
known single Timoshenko beam introduced in [42], so (1.1) can be seen as coupled
two Timoshenko beams thanks to the coupling terms −k0 (w − ϕ) and k0 (w − ϕ).

The well-posedness and stability questions for the single Timoshenko beam have
been widely treated in the literature during the last few decades using various con-
trols, like frictional or fractional dampings, memories, heat conduction and bound-
ary feedbacks. Several stability and non-stability results have been established de-
pending on the considered controls and some connections between the coefficients;
we refer the readers to, for example, [3–5, 8, 12–14, 18–20, 28–32, 35, 38, 40] and the
references therein. In the particular case of a dissipation related to frictional damp-
ings, it was proved in [4, 31, 35, 40] (under some boundary conditions) that the
following Timoshenko-type system:

ρ1ϕtt − k1 (ϕx + ψ)x + τ1a1ϕt = 0 in (0, L)× (0,∞) ,

ρ2ψtt − k2ψxx + k1 (ϕx + ψ) + τ2a2ψt = 0 in (0, L)× (0,∞) ,

(1.5)

where ρ1, ρ2 and L are positive constants, is exponentially stable if

(τ1, τ2) = (1, 1) or

[
(τ1, τ2) ∈ {(1, 0), (0, 1)} and

k1
ρ1

=
k2
ρ2

]
, (1.6)

however, when

(τ1, τ2) ∈ {(1, 0), (0, 1)} and
k1
ρ1
6= k2
ρ2
, (1.7)

system (1.5) is not exponentially stable but it is polynomially stable with an optimal
decay rate, at infinity, of type 1√

t
for the norm of its solution.

Similar exponential and polynomial stability results are obtained in the last few
years for Bresse type systems (coupled three wave equations) and Rao-Nakra sand-
wish type systems (coupled two wave equations and one Euler-Bernoulli equation)
under various kinds of controls; for more details, see, for example, [1,2,12,24,26,36]
and the references therein.

During the last three decades, many authors were interested by the study of
finite carbon structures consisting of needle-like tubes; see, for example, [11,23,37,
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39, 41, 43–48]. In these papers, and according to various physical considerations,
several models of carbon nanotubes were descriped and classified; like single wall
carbon nanotubes (SWCNT), double wall carbon nanotubes (DWCNT) and multi-
wall carbon nanotubes (MWCNT). In the case of double wall carbon nanotubes,
the modeling is based on the Timoshenko beam theory (as in [43–48]) by neglecting
some physical properties of carbon nanotubes and/or assuming some relationships
between them.

The authors of [47] proposed the following coupled two Timoshenko beam models
to model the double wall carbon nanotubes:

ρA1Y1,tt − kGA1 (Y1,x − ϕ1)x − P = 0,

ρI1ϕ1,tt − EI1ϕ1,xx − kGA1 (Y1,x − ϕ1) = 0,

ρA2Y2,tt − kGA2 (Y2,x − ϕ2)x + P = 0,

ρI2ϕ2,tt − EI2ϕ2,xx − kGA2 (Y2,x − ϕ2) = 0,

(1.8)

where the functions Yj and ϕj , j = 1, 2, represent, respectively, the total deflection
and the inclination due to the bending of the nanotube j, the constants Ij and Aj ,
j = 1, 2, denote, respectively, the moment of inertia and the cross-sectional area
of the nanotube j, the constants ρ, E, G and k represent, respectively, the mass
density of the material, the Young’s modulus, the stiffness modulus and the shearn
factor, and P is the Van der Waals force acting on the interaction between the two
nanotubes and given by

P = L(Y2 − Y1),

where L is the Van der Waals interaction coefficient for the interaction pressure.

To the best of our knowledge, the stability problem of (1.8) is new and have not
been discussed earlier. Only in order to simplify the mathematical study, we replace
Y1, ϕ1, Y2 and ϕ2 by ϕ,−ψ,w and −z, respectively, replace kGA1, EI1, kGA2, EI2
and L by k1, k2, k3, k4 and k0, respectively, and, without loss of generality, assume
that ρAj = ρIj = L = 1, where L is the length of tubes. So (1.8) is reduced to (1.1)
with (τ1, τ2, τ3, τ4) = (0, 0, 0, 0).

Our main objective in this paper is to treat this stability problem for (1.1)-(1.3),
where the dissipation is generated by the frictional dampings τ1a1ϕt, τ2a2ψt, τ3a3wt
and τ4a4zt. First, we will show the existence and uniqueness of solutions of (1.1)-
(1.3) in a given Hilbert space, and get some of their smoothness properties depending
on the fixed initial data. Second, we will provide strong, non-exponential, expo-
nential, polynomial, non-polynomial and optimality stability results for (1.1)-(1.3)
depending on the values of τj in (1.4) and some connections between the coefficients
kj . For strong and exponential stability results, we introduce necessary and suffi-
cient conditions. Moreover, in some cases, we prove the optimality of polynomial
decay rate.

The proof of the well-posedness results is based on the linear semigroups theory.
However, the stability results are proved using the energy method combining with
the frequency domain approach and some contradiction arguments by constructing
judicious counter examples in order to prove the optimality and non-polynomial
stability results.
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The paper is organized as follows: in section 2, we prove the well-posedness of
(1.1)-(1.3). Section 3 is devoted to the proof of the strong stability for (1.1)-(1.3).
In sections 4, 5 and 6, we show, respectively, our non-exponential, exponential
and polynomial stability results for (1.1)-(1.3). Sections 7 and 8 are devoted to
the proof of our, respectively, optimal polynomial decay rate and non-polynomial
stability results. Finally, we end our paper by giving some comments and issues in
section 9.

2. Abstract formulation and well-posedness

We consider the Hilbert Sobolev spaces

V0 =
{
v ∈ H1 (0, 1) : v(0) = 0

}
and V1 =

{
v ∈ H1 (0, 1) : v(1) = 0

}
,

and we introduce the space

H = V1 × L2 (0, 1)× V0 × L2 (0, 1)× V1 × L2 (0, 1)× V0 × L2 (0, 1) ,

where L2 (0, 1) is equipped with its standard inner product 〈·, ·〉 and generated norm
‖ · ‖. For

Φj = (ϕj , ϕ̃j , ψj , ψ̃j , wj , w̃j , zj , z̃j)
T , j = 1, 2,

we consider on H the inner product

〈Φ1,Φ2〉H = k1 〈ϕ1,x + ψ1, ϕ2,x + ψ2〉+ k2 〈ψ1,x, ψ2,x〉+ k3 〈w1,x + z1, w2,x + z2〉

+k4 〈z1,x, z2,x〉+ k0 〈w1 − ϕ1, w2 − ϕ2〉

+ 〈ϕ̃1, ϕ̃2〉+ 〈ψ̃1, ψ̃2〉+ 〈w̃1, w̃2〉+ 〈z̃1, z̃2〉 .
(2.1)

Using Young’s inequality, we see that there exist a positive constant b1 (depending
only on kj) such that

k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 + k3 ‖wx + z‖2 + k4 ‖zx‖2 + k0 ‖w − ϕ‖2

≤b1
(
‖ϕ‖2H1(0,1) + ‖ψ‖2H1(0,1) + ‖w‖2H1(0,1) + ‖z‖2H1(0,1)

)
. (2.2)

On the other hand, using Cauchy-Schwarz and Young’s inequalities, we observe
that, for any ε > 1,

k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 + k3 ‖wx + z‖2 + k4 ‖zx‖2 + k0 ‖w − ϕ‖2

≥ k1

(
‖ϕx‖2 + ‖ψ‖2 + 2 〈ϕx, ψ〉

)
+ k2 ‖ψx‖2 + k3

(
‖wx‖2 + ‖z‖2 + 2 〈wx, z〉

)
+k4 ‖zx‖2

≥ k1
(
1− 1

ε

)
‖ϕx‖2 + k1(1− ε) ‖ψ‖2 + k2 ‖ψx‖2 + k3

(
1− 1

ε

)
‖wx‖2

+k3(1− ε) ‖z‖2 + k4 ‖zx‖2 ,

therefore, because ψ(x = 0) = z(x = 0) = 0, one can apply Poincaré’s inequality to
ψ and z, and get (c0 denotes the Poincaré’s constant)

k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 + k3 ‖wx + z‖2 + k4 ‖zx‖2 + k0 ‖w − ϕ‖2



2576 A. Guesmia

≥k1
(

1− 1

ε

)
‖ϕx‖2 + [k2 + k1(1− ε)c0] ‖ψx‖2 + k3

(
1− 1

ε

)
‖wx‖2

+ [k4 + k3(1− ε)c0] ‖zx‖2 ,

then, by choosing 1 < ε < 1 + 1
c0

min
{
k2
k1
, k4k3

}
, we observe that there exists a

positive constant b2 (depending only on kj and c0) such that

k1 ‖ϕx + ψ‖2 + k2 ‖ψx‖2 + k3 ‖wx + z‖2 + k4 ‖zx‖2 + k0 ‖w − ϕ‖2 (2.3)

≥b2
(
‖ϕ‖2H1(0,1) + ‖ψ‖2H1(0,1) + ‖w‖2H1(0,1) + ‖z‖2H1(0,1)

)
.

Consequently, we deduce from (2.2) and (2.3) that H, endowed with the inner
product 〈, 〉H, is a Hilbert space and its norm ‖ · ‖H =

√
〈·, ·〉H is equivalent to the

one of
(
H1(0, 1)× L2(0, 1)

)4
.

Now, we put 
ϕ̃ = ϕt, ψ̃ = ψt, w̃ = wt, z̃ = zt,

Φ =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, z, z̃

)T
,

Φ0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, z0, z1)
T
.

System (1.1)-(1.3) can be formulated in the following first order one:
Φt = AΦ, t ∈ (0,∞) ,

Φ (t = 0) = Φ0,

(2.4)

where A is a linear operator defined by

AΦ =



ϕ̃

k1 (ϕx + ψ)x + k0 (w − ϕ)− τ1a1ϕ̃

ψ̃

k2ψxx − k1 (ϕx + ψ)− τ2a2ψ̃

w̃

k3 (wx + z)x − k0 (w − ϕ)− τ3a3w̃

z̃

k4zxx − k3 (wx + z)− τ4a4z̃



(2.5)

with domain given by

D (A) =

Φ ∈ H : (ϕ,ψ,w, z) ∈
(
H2 (0, 1)

)4
, (ϕ̃, ψ̃, w̃, z̃) ∈ V1 × V0 × V1 × V0,

ϕx(0) = ψx (1) = wx(0) = zx (1)

 .
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Theorem 2.1. For any Φ0 ∈ H, system (2.4) admits a unique solution

Φ ∈ C (R+;H) , (2.6)

where R+ = [0,∞). Moreover, if Φ0 ∈ D(A), then the solution satisfies

Φ ∈ C1 (R+;H) ∩ C (R+;D (A)) . (2.7)

Proof. First, using (2.1) and (2.5), integrating with respect to x and using the
boundary conditions (1.2), we get, for any Φ ∈ D (A),

〈AΦ,Φ〉H = −
(
τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2

)
≤ 0, (2.8)

hence A is dissipative in H.
After, we show that 0 ∈ ρ (A), where ρ (A) denotes the resolvent of A; that is,

for any
F := (f1, · · · , f8)T ∈ H,

there exists a unique Φ ∈ D (A) satisfying

AΦ = F. (2.9)

From (2.5), we remark that (2.9)1, (2.9)3, (2.9)5 and (2.9)7 are reduced to

ϕ̃ = f1, ψ̃ = f3, w̃ = f5 and z̃ = f7, (2.10)

and then
(ϕ̃, ψ̃, w̃, z̃) ∈ V1 × V0 × V1 × V0. (2.11)

So (2.9) has a unique solution Φ ∈ D (A) if there exists a unique

(ϕ,ψ,w, z) ∈ (H2(0, 1)∩V1)×(H2(0, 1)∩V0)×(H2(0, 1)∩V1)×(H2(0, 1)∩V0) (2.12)

satisfying
ϕx(0) = ψx(1) = wx(0) = zx(1) = 0 (2.13)

and the equations (2.9)2, (2.9)4, (2.9)6 and (2.9)8. Assuming that such unknown

(ϕ,ψ,w, z) exists, then, multiplying (2.9)2, (2.9)4, (2.9)6 and (2.9)8 by (ϕ̂, ψ̂, ŵ, ẑ) ∈
V1 × V0 × V1 × V0, respectively, inegrating by parts and using (2.10) and (2.13), we
remark that (ϕ,ψ,w, z) is a solution of the variational formulation

B
(

(ϕ,ψ,w, z), (ϕ̂, ψ̂, ŵ, ẑ)
)

= B̂(ϕ̂, ψ̂, ŵ, ẑ), ∀(ϕ̂, ψ̂, ŵ, ẑ) ∈ V1 × V0 × V1 × V0,
(2.14)

where B is a bilinear form on (V1 × V0 × V1 × V0)
2

given by

B
(

(ϕ,ψ,w, z), (ϕ̂, ψ̂, ŵ, ẑ)
)

= k1

〈
ϕx + ψ, ϕ̂x + ψ̂

〉
+ k2

〈
ψx, ψ̂x

〉
+ k3 〈wx + z, ŵx + ẑ〉

+k4 〈zx, ẑx〉+ k0 〈w − ϕ, ŵ − ϕ̂〉

and B̂ is a linear form on V1 × V0 × V1 × V0 defined by

B̂(ϕ̂, ψ̂, ŵ, ẑ) =− 〈τ1a1f1 + f2, ϕ̂〉 −
〈
τ2a2f3 + f4, ψ̂

〉
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− 〈τ3a3f5 + f6, ŵ〉 − 〈τ4a4f7 + f8, ẑ〉 .

According to the fact that F ∈ H and using (2.2) and (2.3), it is easy to see that B
is continuous and coercive, and B̂ is continuous. Then, the Lax-Milgram theorem
implies that (2.14) has a unique solution

(ϕ,ψ,w, z) ∈ V1 × V0 × V1 × V0. (2.15)

By considering in (2.14) the particular test functions (ϕ̂, 0, 0, 0), (0, ψ̂, 0, 0),

(0, 0, ŵ, 0) and (0, 0, 0, ẑ), for (ϕ̂, ψ̂, ŵ, ẑ) ∈ (C∞c (0, 1))
4
, integrating by parts and

using (2.10) and the density of C∞c (0, 1) in L2(0, 1), we get, respectively, (2.9)2,
(2.9)4, (2.9)6 and (2.9)8. Therefore, thanks to (2.11) and (2.15), we get

(ϕxx, ψxx, wxx, zxx) ∈
(
L2(0, 1)

)4
,

so (2.12) holds. To show (2.13), we consider in (2.14) test functions (ϕ̂, 0, 0, 0),

(0, ψ̂, 0, 0), (0, 0, ŵ, 0) and (0, 0, 0, ẑ) such that (ϕ̂, ψ̂, ŵ, ẑ) ∈ V1 × V0 × V1 × V0 and

ϕ̂(0) = ψ̂(1) = ŵ(0) = ẑ(1) = 1,

integrating by parts and using (2.9)2, (2.9)4, (2.9)6, (2.9)8 and (2.10), we obtain
(2.13). Consequently, we have proved that, for any F ∈ H, (2.9) admits a unique
solution Φ ∈ D(A). By the resolvent identity, we have λI − A is surjective, for
any λ > 0 (see [27]), where I is the identity operator. Finally, A is densely defined
(see Theorem 4.6 of [33]) and the Lumer-Phillips theorem implies that A is the
infinitesimal generator of linear C0-semigroups of contractions on H. The linear
semigroups theory guarantees the results of Theorem 2.1 (see [33]).

Remark 2.1. From the proof of the dissipativity of A, we observe that (2.4)1 and
(2.8) lead to

∂

∂t

(
‖Φ‖2H

)
= 2 〈Φt,Φ〉H
= 2 〈AΦ,Φ〉H
= −2

(
τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2

)
, (2.16)

then, if (τ1, τ2, τ3, τ4) = (0, 0, 0, 0), the function t 7→ ‖Φ(·, t)‖H is constant, and so
the problem in not posed. This show that, to get the strong stability of (2.4); that
is

∀Φ0 ∈ H : lim
t→∞

‖Φ‖H = 0, (2.17)

at least one frictional damping must be considered; this why we are assuming (1.4).

3. Strong stability

In this section, we prove our first stability result concerning the strong stability
(2.17) for (2.4) in the following three cases:

(τ1, τ2, τ3, τ4) = (1, 0, 0, 0),[
(k2 − k3)

(π
2

+mπ
)2

+ k1 − k0
] [

(k2 − k4)
(π

2
+mπ

)2
+ k1 − k3

]
6= k23

(π
2

+mπ
)2
, ∀m ∈ N,

(3.1)
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(τ1, τ2, τ3, τ4) = (0, 0, 1, 0),[
(k4 − k1)

(π
2

+mπ
)2

+ k3 − k0
] [

(k4 − k2)
(π

2
+mπ

)2
+ k3 − k1

]
6= k21

(π
2

+mπ
)2
, ∀m ∈ N

(3.2)

and
(τ1, τ2, τ3, τ4) /∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0)}. (3.3)

Theorem 3.1. The strong stability (2.17) holds if and only if (3.1) or (3.2) or
(3.3) is satisfied.

Proof. A C0 semigroup of contractions etA generated by an operator A on a
Hilbert space H with a compact resolvent ρ (A) in H is strogly stable if and only if
A has no imaginary eigenvalues; that is

σ(A) ∩ iR = ∅,

where σ(A) is the spectrum set of A (see [6]). According to the fact that 0 ∈
ρ (A) (proved in section 2) and since D(A) has a compact embedding into H, the
linear bounded operator A−1 is a bijection between H and D(A), and A−1 is a
compact operator, which implies that σ(A) is discrete and has only eigenvalues.
Consequently, to get the equivalence between (2.17) and (3.1)-(3.3), it is sufficient
to prove that (3.1) or (3.2) or (3.3) holds if and only if

ker (iλI −A) = {0}. (3.4)

In section 2, we have proved (3.4) for λ = 0. So let λ ∈ R∗ and

Φ =
(
ϕ, ϕ̃, ψ, ψ̃, w, w̃, z, z̃

)
∈ D(A)

such that
i λΦ−AΦ = 0. (3.5)

We have to prove that Φ = 0 if and only if (3.1) or (3.2) or (3.3) is satisfied. From
(2.8) and (3.5), we find

0 = Re iλ ‖Φ‖2H
= Re 〈iλΦ,Φ〉H
= Re 〈AΦ,Φ〉H
= −

(
τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2

)
,

then
τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2 = 0. (3.6)

It is enough to consider the two cases

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 0), (0, 1, 0, 0)}. (3.7)

Indeed, the proof in cases

(τ1, τ2, τ3, τ4) ∈ {(0, 0, 1, 0), (0, 0, 0, 1)}

is identical to the one that will be given in cases (3.7) because (1.1)1-(1.1)2 and
(1.1)3-(1.1)4 play symmetrical roles, since, by replacing (ϕ,ψ, k1, k2) by (w, z, k3, k4)
and conversely, we get the same system (1.1). Then, clearly, Φ = 0 holds also in
the other cases, where at least two frictional dampings are present.
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3.1. Case (τ1, τ2, τ3, τ4) = (1, 0, 0, 0)

In vertue of (2.5)1, (3.5)1 and (3.6), we have

ϕ = ϕ̃ = 0. (3.8)

Then (2.5), (3.5) and (3.8) lead to

ψ̃ = iλψ,

w̃ = iλw,

z̃ = iλz,

k1ψx + k0w = 0,

k2ψxx +
(
λ2 − k1

)
ψ = 0,

k3(wx + z)x +
(
λ2 − k0

)
w = 0,

k4zxx +
(
λ2 − k3

)
z − k3wx = 0.

(3.9)

The equation (3.9)4 is equivalent to

w =
−k1
k0

ψx. (3.10)

Combining (3.9)6 and (3.10), we obtain[
k3(wx + z)− k1

k0

(
λ2 − k0

)
ψ

]
x

= 0.

Since h := k3(wx+z)− k1
k0

(
λ2 − k0

)
ψ satisfies h(0) = 0 (according to the definition

of D(A)), then h = 0, which implies that (using (3.10))

z =
k1
k0
ψxx +

k1
k0k3

(
λ2 − k0

)
ψ. (3.11)

Now, to solve the equation (3.9)5, we distiguish three subcases.

Subcase 1. λ2 = k1. Equation (3.9)5 implies that, for some c1, c2 ∈ C, ψ(x) =
c1x+ c2. Therefore, the boundary conditions

ψ(0) = ψx(1) = 0 (3.12)

lead to c1 = c2 = 0; that is ψ = 0. Consequently, according to (3.8), (3.9)1, (3.9)2,
(3.9)3, (3.10) and (3.11), we find Φ = 0.

Subcase 2. λ2 < k1. Equation (3.9)5 lead to, for some c1, c2 ∈ C,

ψ(x) = c1e

√
1
k2

(k1−λ2)x
+ c2e

−
√

1
k2

(k1−λ2)x
.
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Similarly, (3.12) implies that c1 = c2 = 0, which leads to Φ = 0 as in subcase 1.

Subcase 3. λ2 > k1. From (3.9)5, we have, for some c1, c2 ∈ C,

ψ(x) = c1 cos

(√
1

k2
(λ2 − k1)x

)
+ c2 sin

(√
1

k2
(λ2 − k1)x

)
.

The boundary conditions (3.12) lead to c1 = 0 and

c2 = 0 or ∃m ∈ N :

√
1

k2
(λ2 − k1) =

π

2
+mπ. (3.13)

Therefore

ψ(x) = c2 sin

(√
1

k2
(λ2 − k1)x

)
, (3.14)

and so, using (3.10) and (3.11),

w(x) = −c2k1
k0

√
1

k2
(λ2 − k1) cos

(√
1

k2
(λ2 − k1)x

)
(3.15)

and

z(x) = c2

[
k1
k0k3

(
λ2 − k0

)
− k1
k0k2

(
λ2 − k1

)]
sin

(√
1

k2
(λ2 − k1)x

)
, (3.16)

then, by combining (3.9)7, (3.15) and (3.16), we see that

c2 = 0 or[
(k2 − k3)λ2 + k1k3 − k0k2

] [
(k2 − k4)λ2 + k1k4 − k2k3

]
− k2k23

(
λ2 − k1

)
= 0.
(3.17)

Assume by contradiction that c2 6= 0. Then, according to (3.13), we have, for some
m ∈ N,

λ2 = k2

(π
2

+mπ
)2

+ k1. (3.18)

By combining (3.17)2 and (3.18), we get a contradiction to (3.1)2. Consequently,
c2 = 0, hence we arrive at Φ = 0.

On the other hand, if (3.1)2 does not hold, then there exists λ ∈ R defined by
(3.18) such that iλ is an eigenvalue of A with a corresponding eigenvector given by
(3.8), (3.9)1-(3.9)3 and (3.14)-(3.16), for any c2 ∈ C∗.

3.2. Case (τ1, τ2, τ3, τ4) = (0, 1, 0, 0)

From (2.5)3, (3.5)3 and (3.6), we have

ψ = ψ̃ = 0. (3.19)
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Then (2.5), (3.5) and (3.19) lead to

ϕ̃ = iλϕ,

w̃ = iλw,

z̃ = iλz,

k1ϕxx +
(
λ2 − k0

)
ϕ+ k0w = 0,

ϕx = 0,

k3(wx + z)x +
(
λ2 − k0

)
w + k0ϕ = 0,

k4zxx +
(
λ2 − k3

)
z − k3wx = 0.

(3.20)

The equation (3.20)5 with the boundary condition ϕ(1) = 0 imply that ϕ = 0, and
then, using (3.20)4, we get w = 0. Therefore, (3.20)6 and the boundary condition
z(0) = 0 imply that z = 0. Consequently, using (3.20)1, (3.20)2 and (3.20)3, we
conclude that Φ = 0. Finally, (3.4) holds and thus the proof of Theorem 3.1 is
ended.

4. Lack of exponential stability

The subject of this section is to show that, in the following cases:

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1)},
(4.1)

(τ1, τ2, τ3, τ4) ∈ {(1, 1, 0, 1), (1, 1, 1, 0)} and k3 6= k4, (4.2)

(τ1, τ2, τ3, τ4) ∈ {(0, 1, 1, 1), (1, 0, 1, 1)} and k1 6= k2 (4.3)

and

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0)}
and (k1, k3) 6= (k2, k4), (4.4)

system (2.4) is not exponentially stable; that is the following property is not satis-
fied:

∀Φ0 ∈ H, ∃ c1, c2 > 0 : ‖Φ(t)‖H ≤ c1e
−c2t, ∀t ≥ 0. (4.5)

Theorem 4.1. In cases (4.1)-(4.4), the exponential stability (4.5) does not hold.

Proof. It is known that the exponential stability (4.5) is equivalent to (see [22,34])

iR ⊂ ρ (A) and sup
λ∈R

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞. (4.6)

It is sufficient to prove that the second condition in (4.6) does not hold. To do so,
we prove that there exists a sequence (λn)n ⊂ R, n ∈ N, such that

lim
n→∞

∥∥∥(iλnI −A)
−1
∥∥∥
L(H)

=∞.
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This is equivalent to prove that there exists a sequence (Fn)n ⊂ H satisfying

‖Fn‖H :=
∥∥(f1,n, · · · , f8,n)T

∥∥
H ≤ 1, ∀n ∈ N (4.7)

and
lim
n→∞

‖ (iλnI −A)
−1
Fn‖H =∞. (4.8)

For this purpose, let

Φn :=
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, zn, z̃n

)T
= (iλnI −A)

−1
Fn, ∀n ∈ N.

Then, we have to prove that (Φn)n ⊂ D (A), (4.7) holds,

lim
n→∞

‖Φn‖H =∞ and iλnΦn −AΦn = Fn, ∀n ∈ N. (4.9)

From (2.5), we observe that the second equality in (4.9) can be presented as

iλnϕn − ϕ̃n = f1,n,

iλnϕ̃n − k1 (ϕn,x + ψn)x − k0 (wn − ϕn) + τ1a1ϕ̃n = f2,n,

iλnψn − ψ̃n = f3,n,

iλnψ̃n − k2ψn,xx + k1 (ϕn,x + ψn) + τ2a2ψ̃n = f4,n,

iλnwn − w̃n = f5,n,

iλnw̃n − k3 (wn,x + zn)x + k0 (wn − ϕn) + τ3a3w̃n = f6,n,

iλnzn − z̃n = f7,n,

iλnz̃n − k4zn,xx + k3 (wn,x + zn) + τ4a4z̃n = f8,n.

(4.10)

We choose
ϕ̃n = iλnϕn, ψ̃n = iλnψn, w̃n = iλnwn, z̃n = iλnzn,

f1,n = f3,n = f5,n = f7,n = 0.

(4.11)

Then (4.10)1, (4.10)3, (4.10)5 and (4.10)7 are satisfied. On the other hand, we put

N =
π

2
+ nπ

(in order to simplify the computations) and choose

ϕn(x) = α1,n cos (Nx), ψn(x) = α2,n sin (Nx),

wn(x) = α3,n cos (Nx), zn(x) = α4,n sin (Nx),

f2,n(x) = −β2,n cos (Nx), f4,n(x) = −β4,n sin (Nx),

f6,n(x) = −β6,n cos (Nx), f8,n(x) = −β8,n sin (Nx),

(4.12)
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where αj,n, βj,n ∈ C. The choices (4.11) and (4.12) guarantee that Φn ∈ D (A) and
Fn ∈ H. Moreover, (4.10)2, (4.10)4, (4.10)6 and (4.10)8 are reduced to the following
algebraic system:

(
λ2n − k1N2 − k0 − iτ1a1λn

)
α1,n + k1Nα2,n + k0α3,n = β2,n,

k1Nα1,n +
(
λ2n − k2N2 − k1 − iτ2a2λn

)
α2,n = β4,n,

k0α1,n +
(
λ2n − k3N2 − k0 − iτ3a3λn

)
α3,n + k3Nα4,n = β6,n,

k3Nα3,n +
(
λ2n − k4N2 − k3 − iτ4a4λn

)
α4,n = β8,n.

(4.13)

4.1. Case (4.1)

It is sufficient to treat the cases

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0)}. (4.14)

Indeed, the proof in cases

(τ1, τ2, τ3, τ4) ∈ {(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1)}

is similar to the one that will be given in cases (4.14), since (1.1)1-(1.1)2 and (1.1)3-
(1.1)4 play symmetrical roles. We distinguish two subcases.

Subcase 1. (4.14) with k3 6= k4. We choose
α1,n = α2,n = β4,n = 0, α3,n =

β2,n
k0

, α4,n =
k3β2,n

k0(k4 − k3)N
,

β6,n =
k23β2,n

k0(k4 − k3)
, β8,n =

k3(k0 − k3)β2,n
k0(k4 − k3)N

, λn =
√
k3N2 + k0.

(4.15)

We see that (4.13) is satisfied. Moreover, according to (4.11)2, (4.12)3, (4.12)4 and
(4.15), it appears that

‖Fn‖2H = ‖f2,n‖2 + ‖f4,n‖2 + ‖f6,n‖2 + ‖f8,n‖2

≤ β2
2,n + β2

4,n + β2
6,n + β2

8,n

≤ β2
2,n

[
1 +

k43
k20(k4 − k3)2

+
k23(k0 − k3)2

k20(k4 − k3)2N2

]
,

then one can choose β2,n = ε > 0 independent of n and small enough so that (4.7)
holds. On the other hand, from (4.12)2, we have

‖Φn‖2H ≥ k3 ‖wn,x + zn‖2

= k3 (−α3,nN + α4,n)
2
∫ 1

0

sin2(Nx)dx

≥ k3
2

(−α3,nN + α4,n)2
∫ 1

0

[1− cos (2Nx)] dx

=
k3
2

(−α3,nN + α4,n)2,



Coupled two Timoshenko-type models with frictional dampings 2585

hence (4.8), since (4.15)1 implies lim
n→∞

α3,nN =∞ and lim
n→∞

α4,n = 0, and so

lim
n→∞

‖Φn‖H =∞. (4.16)

Subcase 2. (4.14) with k3 = k4. We choose
α1,n = α2,n = β4,n = 0, α3,n =

β2,n
k0

, α4,n = −β2,n
k0

,

β6,n = −β2,n, β8,n =
k3β2,n
k0

, λn =
√
k3N2 + k3N.

As in the previous subcase 1, we remark that (4.7), (4.13) and (4.16) are satisfied,
by choosing β2,n = ε > 0 independent of n and small enough.

4.2. Case (4.2)

We distinguish two subcases.

Subcase 1. (τ1, τ2, τ3, τ4) = (1, 1, 0, 1) with k3 6= k4. We take

α1,n = α2,n = β4,n = 0, α3,n =
β2,n
k0

, α4,n =
k3β2,n

k0(k4 − k3)N
,

β6,n =
k23β2,n

k0(k4 − k3)
, β8,n =

k3
(
k0 − k3 − ia4

√
k3N2 + k0

)
β2,n

k0(k4 − k3)N
,

λn =
√
k3N2 + k0.

Notice that (4.13) is satisfied and

lim
n→∞

β8,n = − ik3
√
k3a4β2,n

k0(k4 − k3)
.

Then, by choosing β2,n = ε > 0 independent of n and small enough, we get (4.7)
and (4.16).

Subcase 2. (τ1, τ2, τ3, τ4) = (1, 1, 1, 0) with k3 6= k4. We choose, for ε > 0,

α1,n = α2,n = β4,n = β6,n = 0,

α3,n =
ε

k0N
, α4,n =

ε
[
(k3 − k4)N2 + k0 − k3 + ia3

√
k4N2 + k3

]
k0k3N2

,

β2,n =
ε

N
, β8,n =

k3ε

k0
, λn =

√
k4N2 + k3.

We observe that (4.13) is satisfied and

lim
n→∞

α4,n =
(k3 − k4)ε

k0k3
6= 0. (4.17)

By choosing ε > 0 small enough, we get (4.7). Moreover, from (4.12)2, we have

‖Φn‖2H ≥ k4 ‖zn,x‖
2
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= k4α
2
4,nN

2

∫ 1

0

cos2(Nx)dx

=
k4
2
α2
4,nN

2

∫ 1

0

[1 + cos (2Nx)] dx

=
k4
2
α2
4,nN

2,

which implies (4.16), since (4.17).

4.3. Case (4.3)

By symmetry, the proof is similar to the one given in case (4.2), where k1 and k2
play the roles of k3 and k4, respectively.

4.4. Case (4.4)

As before, by symmetry, the proof for (τ1, τ2, τ3, τ4) = (0, 1, 1, 0) is similar to the
one that will be given for (τ1, τ2, τ3, τ4) = (1, 0, 0, 1). So we need to consider only
the cases

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1)}. (4.18)

Because we are assuming in this case that (k1, k3) 6= (k2, k4), then we have k1 6= k2
or k3 6= k4, so we distinguish the next four subcases.

Subcase 1. (τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (0, 1, 0, 1)} with k3 6= k4. The choices
considered in Case (4.2) - Subcase 1 lead to the desired result.

Subcase 2. (τ1, τ2, τ3, τ4) = (1, 0, 1, 0) with k3 6= k4. Using the choices considered
in Case (4.2) - Subcase 2, we get the desired result.

Subcase 3. (τ1, τ2, τ3, τ4) = (0, 1, 0, 1) with k1 6= k2. We choose

α3,n = α4,n = β8,n = 0, α1,n =
β6,n
k0

, α2,n =
k1β6,n

k0(k2 − k1)N
,

β2,n =
k21β6,n

k0(k2 − k1)
, β4,n =

k1
(
k0 − k1 − ia2

√
k1N2 + k0

)
β6,n

k0(k2 − k1)N
,

λn =
√
k1N2 + k0.

Notice that (4.13) is satisfied and, for any β6,n = ε > 0 independent of n,

lim
n→∞

Nα1,n =∞, lim
n→∞

α2,n = 0 and lim
n→∞

β4,n = − ik1
√
k1a2β6,n

k0(k2 − k1)
. (4.19)

Then, by choosing ε > 0 small enough, we get (4.7). Moreover, from (4.12)1, we see
that

‖Φn‖2H ≥ k1 ‖ϕn,x + ψn‖2

= k1 (−α1,nN + α2,n)
2
∫ 1

0

sin2(Nx)dx

≥ k1
2

(−α1,nN + α2,n)2
∫ 1

0

[1− cos (2Nx)] dx
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=
k1
2

(−α1,nN + α2,n)2,

so (4.16) holds, since (4.19).

Subcase 4. (τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0)} with k1 6= k2. We take, for
ε > 0, 

α3,n = α4,n = β2,n = β8,n = 0, α1,n =
ε

k0N
,

α2,n =
ε
[
(k1 − k2)N2 + k0 − k1 + ia1

√
k2N2 + k1

]
k0k1N2

,

β6,n =
ε

N
, β4,n =

k1ε

k0
, λn =

√
k2N2 + k1.

We observe that (4.13) is satisfied and

lim
n→∞

α2,n =
(k1 − k2)ε

k0k1
6= 0. (4.20)

By choosing ε > 0 small enough, we get (4.7). Moreover, using (4.12)1, we get

‖Φn‖2H ≥ k2 ‖ψn,x‖
2

= k2α
2
2,nN

2

∫ 1

0

cos2(Nx)dx

=
k2
2
α2
2,nN

2

∫ 1

0

[1 + cos (2Nx)] dx

=
k2
2
α2
2,nN

2,

which implies (4.16), since (4.20). This ends the proof of Theorem 4.1.

5. Exponential stability

In this section, we give necessary and sufficient conditions for the exponentailly
stability (4.5).

Theorem 5.1. The exponentailly stability (4.5) for (2.4) holds if and only if

(τ1, τ2, τ3, τ4) = (1, 1, 1, 1) (5.1)

or

(τ1, τ2, τ3, τ4) ∈ {(1, 1, 0, 1), (1, 1, 1, 0)} and k3 = k4 (5.2)

or

(τ1, τ2, τ3, τ4) ∈ {(0, 1, 1, 1), (1, 0, 1, 1)} and k1 = k2 (5.3)

or

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0)}
and (k1, k3) = (k2, k4). (5.4)
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Proof. According to the results of section 4, (4.5) does not hold if (5.1)-(5.4)
are not satisfied. On the other hand, from the results of section 3, we remark
that the first condition in (4.6) holds if (5.1) or (5.2) or (5.3) or (5.4) is satisfied.
Moreover, the exponential stability (4.5) is equivalent to (4.6) (see [22, 34]). So, to
get Theorem 5.1, it is sufficient to prove that the second condition in (4.6) holds in
cases (5.1)-(5.4).

We assume by contradiction that the second condition in (4.6) is false. Then
there exist sequences (λn)n ⊂ R and (Φn)n ⊂ D (A), n ∈ N, such that

‖Φn‖H = 1, ∀n ∈ N, (5.5)

lim
n→∞

|λn| =∞ (5.6)

and
lim
n→∞

‖(iλnI −A) Φn‖H = 0. (5.7)

Let, as in section 4,

Φn :=
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, zn, z̃n

)T
. (5.8)

We will prove that
lim
n→∞

‖Φn‖H = 0, (5.9)

which is a contradiction with (5.5). The limit (5.7) is equivalent to the following
convergences:

iλnϕn − ϕ̃n → 0 in V1,

iλnϕ̃n − k1 (ϕn,x + ψn)x − k0 (wn − ϕn) + τ1a1ϕ̃n → 0 in L2 (0, 1) ,

iλnψn − ψ̃n → 0 in V0,

iλnψ̃n − k2ψn,xx + k1 (ϕn,x + ψn) + τ2a2ψ̃n → 0 in L2 (0, 1) ,

iλnwn − w̃n → 0 in V1,

iλnw̃n − k3 (wn,x + zn)x + k0 (wn − ϕn) + τ3a3w̃n → 0 in L2 (0, 1) ,

iλnzn − z̃n → 0 in V0,

iλnz̃n − k4zn,xx + k3 (wn,x + zn) + τ4a4z̃n → 0 in L2 (0, 1) ,

(5.10)

where “→ 0” means “converges to zero when n converges to ∞”. Taking the inner
product of (i λn I − A) Φn with Φn in H and using (2.8), we get

Re 〈(iλnI −A) Φn,Φn〉H = Re 〈−AΦn,Φn〉H
= τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2,

so, (5.5) and (5.7) imply that

τ1a1‖ϕ̃n‖2 + τ2a2‖ψ̃n‖2 + τ3a3‖w̃n‖2 + τ4a4‖z̃n‖2 → 0. (5.11)
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5.1. Case (5.1)

By combining (5.1) and (5.11), we find

ϕ̃n, ψ̃n, w̃n, z̃n → 0 in L2 (0, 1) , (5.12)

and then (5.10)1, (5.10)3, (5.10)5 and (5.10)7 imply that

λnϕn, λnψn, λnwn, λnzn → 0 in L2 (0, 1) , (5.13)

so, from (5.6) and (5.13), we conclude that

ϕn, ψn, wn, zn → 0 in L2 (0, 1) . (5.14)

Taking the inner product of (5.10)2 with ϕn in L2 (0, 1), integrating by parts and
using (5.5) and the boundary conditions, we entail

i 〈ϕ̃n, λnϕn〉 − 〈k1ψn,x + k0(wn − ϕn)− a1ϕ̃n, ϕn〉+ k1 ‖ϕn,x‖2 → 0, (5.15)

then, combining (5.5), (5.13), (5.14) and (5.15), it follows that

ϕn,x → 0 in L2 (0, 1) . (5.16)

Similarly, taking the inner product in L2 (0, 1) of (5.10)4, (5.10)6 and (5.10)8 with
ψn, wn and zn, respectively, integrating by parts, using the boundary conditions
and (5.5), we find

i
〈
ψ̃n, λnψn

〉
+
〈
k1(ϕn,x + ψn) + a2ψ̃n, ψn

〉
+ k2 ‖ψn,x‖2 → 0, (5.17)

i 〈w̃n, λnwn〉 − 〈k3zn,x − k0(wn − ϕn)− a3w̃n, wn〉+ k3 ‖wn,x‖2 → 0 (5.18)

and
i 〈z̃n, λnzn〉+ 〈k3(wn,x + zn) + a4z̃n, zn〉+ k4 ‖zn,x‖2 → 0, (5.19)

then, by combining (5.5), (5.13), (5.14) and (5.17)-(5.19), we arrive at

ψn,x, wn,x, zn,x → 0 in L2 (0, 1) . (5.20)

The limits (5.12), (5.14), (5.16) and (5.20) lead to (5.9).

5.2. Case (5.2)

We are assuming in this case that k3 = k4. We distinguish two subcases.

Subcase 1. (τ1, τ2, τ3, τ4) = (1, 1, 0, 1) and k3 = k4. According to (5.11), we get

ϕ̃n, ψ̃n, z̃n → 0 in L2 (0, 1) , (5.21)

so (5.10)1, (5.10)3 and (5.10)7 lead to

λnϕn, λnψn, λnzn → 0 in L2 (0, 1) , (5.22)

hence, from (5.6) and (5.22), we deduce that

ϕn, ψn, zn → 0 in L2 (0, 1) . (5.23)
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As for (5.16) and (5.20) in the previous case (5.1), taking the inner product in
L2 (0, 1) of (5.10)2, (5.10)4 and (5.10)8 with ϕn, ψn and zn, respectively, integrating
by parts and using the boundary conditions, we get (5.15), (5.17) and (5.19), then,
combining with (5.5), (5.22) and (5.23), it appears that

ϕn,x, ψn,x, zn,x → 0 in L2 (0, 1) . (5.24)

From (5.5) and (5.10)5, we have

(λnwn)n is bounded in L2 (0, 1) , (5.25)

then, by combining (5.6) and (5.25), we find

wn → 0 in L2 (0, 1) . (5.26)

Taking the inner product of (5.10)6 with zn,x in L2 (0, 1), integrating by parts and
using the boundary conditions, (5.5) and (5.24), we obtain

〈iλnw̃n, zn,x〉 − k3 〈wn,xx, zn,x〉 → 0. (5.27)

Similarly, taking the inner product of wn,x with (5.10)8 in L2 (0, 1), integrating by
parts and using the boundary conditions, (5.5), (5.21) and (5.23), we find

〈wn,x, iλnz̃n〉+ k4 〈wn,xx, zn,x〉+ k3 ‖wn,x‖2 → 0, (5.28)

therefore, adding (5.27) and (5.28), and noticing that k3 = k4, we deduce that

k3 ‖wn,x‖2 + 〈iλnw̃n, zn,x〉+ 〈wn,x, iλnz̃n〉 → 0. (5.29)

But we observe that

〈iλnw̃n, zn,x〉 = −〈w̃n, iλnzn,x〉 = −〈w̃n, iλnzn,x − z̃n,x〉 − 〈w̃n, z̃n,x〉

and, using also inegrating by parts,

〈wn,x, iλnz̃n〉 = −〈iλnwn,x, z̃n〉
= −〈iλnwn,x − w̃n,x, z̃n〉 − 〈w̃n,x, z̃n〉
= −〈iλnwn,x − w̃n,x, z̃n〉+ 〈w̃n, z̃n,x〉 ,

so, by adding the above two identities and using (5.5) and the limits (5.10)5 and
(5.10)7, we see that

〈iλnw̃n, zn,x〉+ 〈wn,x, iλnz̃n〉 → 0, (5.30)

then, by combining (5.29) and (5.30), we conclude that

wn,x → 0 in L2 (0, 1) . (5.31)

Taking the inner product in L2 (0, 1) of (5.10)6 with wn, integrating by parts, using
(5.5) and the boundary conditions and exploiting (5.26) and (5.31), it follows that

〈iλnw̃n, wn〉 → 0. (5.32)

Because

〈iλnw̃n, wn〉 = −〈w̃n, iλnwn〉 = −〈w̃n, iλnwn − w̃n〉 − ‖w̃n‖2 ,
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then, by combining with (5.10)5 and (5.32), we obtain

w̃n → 0 in L2 (0, 1) . (5.33)

Finally, the limits (5.21), (5.23), (5.24), (5.26), (5.31) and (5.33) imply (5.9).

Subcase 2. (τ1, τ2, τ3, τ4) = (1, 1, 1, 0) and k3 = k4. From (5.11), we have

ϕ̃n, ψ̃n, w̃n → 0 in L2 (0, 1) , (5.34)

then (5.10)1, (5.10)3 and (5.10)5 imply that

λnϕn, λnψn, λnwn → 0 in L2 (0, 1) , (5.35)

then, according to (5.6) and (5.35), we deduce that

ϕn, ψn, wn → 0 in L2 (0, 1) . (5.36)

Similarly to the prrof of (5.16) and (5.20), taking the inner product in L2 (0, 1) of
(5.10)2, (5.10)4 and (5.10)6 with ϕn, ψn and wn, respectively, integrating by parts
and using (5.5) and the boundary conditions, we obtain (5.15), (5.17) and (5.18),
therefore, by combining with (5.35) and (5.36), we observe that

ϕn,x, ψn,x, wn,x → 0 in L2 (0, 1) . (5.37)

Using (5.5) and (5.10)7, we see that

(λnzn)n is bounded in L2 (0, 1) , (5.38)

then, by combining (5.6) and (5.38), we get

zn → 0 in L2 (0, 1) . (5.39)

Taking the inner product of (5.10)6 with zn,x in L2 (0, 1), integrating by parts, using
(5.5) and the boundary conditions and exploiting (5.34) and (5.36), we obtain

〈iλnw̃n, zn,x〉 − k3 〈wn,xx, zn,x〉 − k3 ‖zn,x‖2 → 0. (5.40)

Similarly, taking the inner product of wn,x with (5.10)8 in L2 (0, 1), integrating by
parts and using (5.5), (5.37) and the boundary conditions, we find

〈wn,x, iλnz̃n〉+ k4 〈wn,xx, zn,x〉 → 0. (5.41)

Therefore, adding (5.40) and (5.41), and noticing that k3 = k4, we conclude that

− k3 ‖zn,x‖2 + 〈iλnw̃n, zn,x〉+ 〈wn,x, iλnz̃n〉 → 0. (5.42)

As in the previous subcase 1, we remark that (5.30) holds, then, combining with
(5.42), we deduce that

zn,x → 0 in L2 (0, 1) . (5.43)

Taking the inner product in L2 (0, 1) of (5.10)8 with zn, integrating by parts, using
(5.5) and the boundary conditions and exploiting (5.39) and (5.43), it follows that

〈iλnz̃n, zn〉 → 0. (5.44)

But we remark that

〈iλnz̃n, zn〉 = −〈z̃n, iλnzn〉 = −〈z̃n, iλnzn − z̃n〉 − ‖z̃n‖2 , (5.45)

then, by combining with (5.10)7 and (5.44), we find

z̃n → 0 in L2 (0, 1) . (5.46)

Consequently, (5.34), (5.36), (5.37), (5.39), (5.43) and (5.46) lead to (5.9).
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5.3. Case (5.3)

By symmetry, the proof is similar to the one given in case (5.2), where k1 and k2
play the roles of k3 and k4, respectively.

5.4. Case (5.4)

As before, by symmetry, the proof for (τ1, τ2, τ3, τ4) = (0, 1, 1, 0) is similar to the
one that will be given for (τ1, τ2, τ3, τ4) = (1, 0, 0, 1). So we need to consider only
the three cases

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1)} and (k1, k3) = (k2, k4).
(5.47)

Subcase 1. (τ1, τ2, τ3, τ4) = (1, 0, 0, 1) and (k1, k3) = (k2, k4). According to (5.11),
we see that

ϕ̃n, z̃n → 0 in L2 (0, 1) , (5.48)

so (5.10)1 and (5.10)7 lead to

λnϕn, λnzn → 0 in L2 (0, 1) , (5.49)

then (5.6) and (5.49) imply that

ϕn, zn → 0 in L2 (0, 1) . (5.50)

Taking the inner product in L2 (0, 1) of (5.10)2 and (5.10)8 with ϕn and zn, respec-
tively, integrating by parts and using the boundary conditions and (5.5), we get
(5.15) and (5.19), then, combining with (5.49) and (5.50), it appears that

ϕn,x, zn,x → 0 in L2 (0, 1) . (5.51)

From (5.5), (5.10)3 and (5.10)5, we have

(λnψn)n , (λnwn)n are bounded in L2 (0, 1) , (5.52)

then, by combining (5.6) and (5.52), we find

ψn, wn → 0 in L2 (0, 1) . (5.53)

We observe that (5.27), (5.28), (5.29), (5.30) and (5.32) are satisfied also in this
subcase 1, since k3 = k4 and (τ3, τ4) = (0, 1) as in Case (5.2)-Subcase 1, so, similarly,
this leads to

wn,x, w̃n → 0 in L2 (0, 1) . (5.54)

Taking the inner product of (5.10)2 with ψn,x in L2 (0, 1), integrating by parts and
using the boundary conditions, (5.5), (5.48), (5.50) and (5.53), we obtain

〈iλnϕ̃n, ψn,x〉 − k1 〈ϕn,xx, ψn,x〉 − k1 ‖ψn,x‖2 → 0. (5.55)

Similarly, taking the inner product of ϕn,x with (5.10)4 in L2 (0, 1), integrating by
parts and using the boundary conditions, (5.5) and (5.51), we find〈

ϕn,x, iλnψ̃n

〉
+ k2 〈ϕn,xx, ψn,x〉 → 0, (5.56)
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therefore, adding (5.55) and (5.56), and noticing that k1 = k2, we deduce that

− k1 ‖ψn,x‖2 + 〈iλnϕ̃n, ψn,x〉+
〈
ϕn,x, iλnψ̃n

〉
→ 0. (5.57)

On the other hand, we have

〈iλnϕ̃n, ψn,x〉 = −〈ϕ̃n, iλnψn,x〉 = −
〈
ϕ̃n, iλnψn,x − ψ̃n,x

〉
−
〈
ϕ̃n, ψ̃n,x

〉
and, using also inegrating by parts,〈

ϕn,x, iλnψ̃n

〉
= −

〈
iλnϕn,x, ψ̃n

〉
= −

〈
iλnϕn,x − ϕ̃n,x, ψ̃n

〉
−
〈
ϕ̃n,x, ψ̃n

〉
= −

〈
iλnϕn,x − ϕ̃n,x, ψ̃n

〉
+
〈
ϕ̃n, ψ̃n,x

〉
,

so, by adding the above two identities and using (5.5) and the limits (5.10)1 and
(5.10)3, we see that

〈iλnϕ̃n, ψn,x〉+
〈
ϕn,x, iλnψ̃n

〉
→ 0, (5.58)

then, by combining (5.57) and (5.58), we conclude that

ψn,x → 0 in L2 (0, 1) . (5.59)

Taking the inner product in L2 (0, 1) of (5.10)4 with ψn, integrating by parts, using
(5.5) and the boundary conditions and exploiting (5.53) and (5.59), it follows that〈

iλnψ̃n, ψn

〉
→ 0. (5.60)

Because 〈
iλnψ̃n, ψn

〉
= −

〈
ψ̃n, iλnψn

〉
= −

〈
ψ̃n, iλnψn − ψ̃n

〉
−
∥∥∥ψ̃n∥∥∥2 ,

then, by combining with (5.10)3 and (5.60), we obtain

ψ̃n → 0 in L2 (0, 1) . (5.61)

Finally, the limits (5.48), (5.50), (5.51), (5.53), (5.54), (5.59) and (5.61) lead to
(5.9).

Subcase 2. (τ1, τ2, τ3, τ4) = (1, 0, 1, 0) and (k1, k3) = (k2, k4). From (5.11), it
appears that

ϕ̃n, w̃n → 0 in L2 (0, 1) , (5.62)

so (5.10)1 and (5.10)5 lead to

λnϕn, λnwn → 0 in L2 (0, 1) , (5.63)

then, using (5.6) and (5.63), we find

ϕn, wn → 0 in L2 (0, 1) . (5.64)
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Taking the inner product in L2 (0, 1) of (5.10)2 and (5.10)6 with ϕn and wn, re-
spectively, integrating by parts and using the boundary conditions and (5.5), we
get (5.15) and (5.18), then it follows from (5.63) and (5.64) that

ϕn,x, wn,x → 0 in L2 (0, 1) . (5.65)

Thanks to (5.5), (5.10)3 and (5.10)7, we have

(λnψn)n , (λnzn)n are bounded in L2 (0, 1) , (5.66)

then, by combining (5.6) and (5.66), we find

ψn, zn → 0 in L2 (0, 1) . (5.67)

We notice that (5.55), (5.56), (5.57), (5.58) and (5.60) hold also in this subcase 2,
since k1 = k2 and (τ1, τ2) = (1, 0) as in Case (5.4)-Subcase 1, so we get

ψn,x, ψ̃n → 0 in L2 (0, 1) . (5.68)

On the other hand, we see that (5.40), (5.41), (5.42), (5.44) and (5.45) are still
satisfied in this subcase 2 because k3 = k4 and (τ3, τ4) = (1, 0) as in Case (5.2)-
Subcase 2, then we arrive at

zn,x, z̃n → 0 in L2 (0, 1) . (5.69)

Consequently, the limits (5.62), (5.64), (5.65), (5.67), (5.68) and (5.69) lead to (5.9).

Subcase 3. (τ1, τ2, τ3, τ4) = (0, 1, 0, 1) and (k1, k3) = (k2, k4). The identity (5.11)
implies that

ψ̃n, z̃n → 0 in L2 (0, 1) , (5.70)

then (5.10)3 and (5.10)7 lead to

λnψn, λnzn → 0 in L2 (0, 1) , (5.71)

so, using (5.6) and (5.71), we obtain

ψn, zn → 0 in L2 (0, 1) . (5.72)

Taking the inner product in L2 (0, 1) of (5.10)4 and (5.10)8 with ψn and zn, respec-
tively, integrating by parts and using the boundary conditions and (5.5), we find
(5.17) and (5.19), then, combining with (5.71) and (5.72), it follows that

ψn,x, zn,x → 0 in L2 (0, 1) . (5.73)

According to (5.5), (5.10)1 and (5.10)5, we have

(λnϕn)n , (λnwn)n are bounded in L2 (0, 1) , (5.74)

then, by combining (5.6) and (5.74), we get

ϕn, wn → 0 in L2 (0, 1) . (5.75)

We remark that (5.27), (5.28), (5.29), (5.30) and (5.32) hold also in this subcase 3,
since k3 = k4 and (τ3, τ4) = (0, 1) as in Case (5.2)-Subcase 1, hence

wn,x, w̃n → 0 in L2 (0, 1) . (5.76)
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Taking the inner product of (5.10)2 with ψn,x in L2 (0, 1), integrating by parts and
using the boundary conditions, (5.5) and (5.73), we obtain

〈iλnϕ̃n, ψn,x〉 − k1 〈ϕn,xx, ψn,x〉 → 0. (5.77)

Similarly, taking the inner product of ϕn,x with (5.10)4 in L2 (0, 1), integrating by
parts and using the boundary conditions, (5.5), (5.70) and (5.72), we find〈

ϕn,x, iλnψ̃n

〉
+ k2 〈ϕn,xx, ψn,x〉+ k1 ‖ϕn,x‖2 → 0, (5.78)

therefore, adding (5.77) and (5.78), and exploiting the property k1 = k2, we deduce
that

k1 ‖ϕn,x‖2 + 〈iλnϕ̃n, ψn,x〉+
〈
ϕn,x, iλnψ̃n

〉
→ 0. (5.79)

On the other hand, we observe that (5.58) holds, and then, by combining with
(5.79), we conclude that

ϕn,x → 0 in L2 (0, 1) . (5.80)

Taking the inner product in L2 (0, 1) of (5.10)2 with ϕn, integrating by parts, using
(5.5) and the boundary conditions and exploiting (5.75) and (5.80), we get

〈iλnϕ̃n, ϕn〉 → 0. (5.81)

Because

〈iλnϕ̃n, ϕn〉 = −〈ϕ̃n, iλnϕn〉 = −〈ϕ̃n, iλnϕn − ϕ̃n〉 − ‖ϕ̃n‖2 ,

then, by combining with (5.10)1 and (5.81), we obtain

ϕ̃n → 0 in L2 (0, 1) . (5.82)

Hence, the limit (5.9) holds according to the limits (5.70), (5.72), (5.73), (5.75),
(5.76), (5.80) and (5.82). Finally, the proof of Theorem 5.1 is completed.

6. Polynomial stability

In this section, we study the decay rate of solutions in the following cases:

(τ1, τ2, τ3, τ4) ∈ {(0, 1, 0, 0), (0, 0, 0, 1)}, (6.1)

(τ1, τ2, τ3, τ4) ∈ {(1, 1, 0, 0), (0, 0, 1, 1)}, (6.2)

(τ1, τ2, τ3, τ4) ∈ {(1, 1, 0, 1), (1, 1, 1, 0)} and k3 6= k4, (6.3)

(τ1, τ2, τ3, τ4) ∈ {(0, 1, 1, 1), (1, 0, 1, 1)} and k1 6= k2 (6.4)

and

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0)}
and (k1, k3) 6= (k2, k4), (6.5)

where the strong stability (2.17) is satisfied but the exponential one (4.5) does not
hold (see sections 3 and 4). We will prove that the decay rate of solutions in these
cases is at least of polynomial type; that is, there exists δ > 0 such that

∀Φ0 ∈ D(A), ∃ c > 0 : ‖Φ(t)‖H ≤ ct
−δ, ∀t > 0. (6.6)
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Theorem 6.1. The polynomial decay (6.6) is satisfied in cases (6.1)-(6.5) with

δ =



1

18
in case (6.1),

1

14
in case (6.2),

1

2
in cases (6.3)-(6.5).

(6.7)

Proof. It is known by now (see [7, 9, 10]) that (6.6) holds if

iR ⊂ ρ (A) and sup
|λ|≥1

|λ|− 1
δ

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

<∞. (6.8)

We have proved in section 3 that the first condition in (6.8) holds in cases (6.1)-
(6.5). So we will prove that the second condition in (6.8) is also satisfied. This will
be done by contradiction arguments. Let us assume that the second condition in
(6.8) is false, then, there exist sequences (Φn)n ⊂ D (A) and (λn)n ⊂ R, n ∈ N,
satisfying (5.5), (5.6) and

lim
n→∞

|λn|
1
δ ‖(iλn I − A) Φn‖H = 0. (6.9)

The contradiction will be obtained by proving (5.9). Let define Φn by (5.8). From
(6.9), we get

|λn|
1
δ [iλnϕn − ϕ̃n]→ 0 in V1,

|λn|
1
δ

[
iλnϕ̃n − k1 (ϕn,x + ψn)x − k0 (wn − ϕn) + τ1a1ϕ̃n

]
→ 0 in L2 (0, 1) ,

|λn|
1
δ

[
iλnψn − ψ̃n

]
→ 0 in V0,

|λn|
1
δ

[
iλnψ̃n − k2ψn,xx + k1 (ϕn,x + ψn) + τ2a2ψ̃n

]
→ 0 in L2 (0, 1) ,

|λn|
1
δ [iλnwn − w̃n]→ 0 in V1,

|λn|
1
δ

[
iλnw̃n − k3 (wn,x + zn)x + k0 (wn − ϕn) + τ3a3w̃n

]
→ 0 in L2 (0, 1) ,

|λn|
1
δ [iλnzn − z̃n]→ 0 in V0,

|λn|
1
δ [iλnz̃n − k4zn,xx + k3 (wn,x + zn) + τ4a4z̃n]→ 0 in L2 (0, 1) .

(6.10)

Taking the inner product of |λn|
1
δ (i λn I − A) Φn with Φn in H and using (2.8),

we get

Re
〈
|λn|

1
δ (iλnI −A) Φn,Φn

〉
H

= −|λn|
1
δRe 〈AΦn,Φn〉H

= |λn|
1
δ

(
τ1a1‖ϕ̃‖2 + τ2a2‖ψ̃‖2 + τ3a3‖w̃‖2 + τ4a4‖z̃‖2

)
,
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so, (5.5) and (6.9) imply that

|λn|
1
δ

(
τ1a1‖ϕ̃n‖2 + τ2a2‖ψ̃n‖2 + τ3a3‖w̃n‖2 + τ4a4‖z̃n‖2

)
→ 0. (6.11)

Multiplying (6.10)1, (6.10)3, (6.10)5 and (6.10)7 by |λn|−
1
δ−1 and using (5.5) and

(5.6), we obtain
ϕn, ψn, wn, zn → 0 in L2(0, 1). (6.12)

Multiplying (6.10)1, (6.10)3, (6.10)5 and (6.10)7 by |λn|−
1
δ and exploiting (5.5) and

(5.6), we deduce that

(λnϕn)n , (λnψn)n , (λnwn)n , (λnzn)n are bounded in L2(0, 1). (6.13)

Multiplying (6.10)2, (6.10)4, (6.10)6 and (6.10)8 by |λn|−
1
δ−1 and using (5.5) and

(5.6), it appears that(
λ−1n ϕn,xx

)
n
,
(
λ−1n ψn,xx

)
n
,
(
λ−1n wn,xx

)
n
,
(
λ−1n zn,xx

)
n

are bounded in L2 (0, 1) .
(6.14)

Taking the inner product of (6.10)2 with |λn|−
1
δ ϕn in L2 (0, 1), using (5.5) and

(5.6), integrating by parts and using the boundary conditions, we find

− 〈ϕ̃n, iλnϕn − ϕ̃n〉 − ‖ϕ̃n‖2 + k1 ‖ϕn,x‖2

− 〈k1ψn,x + k0wn − k0ϕn − τ1a1ϕ̃n, ϕn〉 → 0,

then, using (5.5), (6.10)1 and (6.12), we observe that the first and last terms of this
limit converge to zero, and so

k1 ‖ϕn,x‖2 − ‖ϕ̃n‖2 → 0. (6.15)

Similarly to the proof of (6.15), taking the inner product of (6.10)4, (6.10)6 and

(6.10)8 with, respectively, |λn|−
1
δ ψn, |λn|−

1
δ wn and |λn|−

1
δ zn in L2 (0, 1), using

(5.5) and (5.6), integrating by parts and using the boundary conditions, it follows
that

k2 ‖ψn,x‖2 −
∥∥∥ψ̃n∥∥∥2 → 0, (6.16)

k3 ‖wn,x‖2 − ‖w̃n‖2 → 0 (6.17)

and
k4 ‖zn,x‖2 − ‖z̃n‖2 → 0. (6.18)

Taking the inner product of (6.10)1 with iλnϕn in L2 (0, 1) and using (6.13), we
find

|λn|
1
δ

[
λ2n ‖ϕn‖

2 − ‖ϕ̃n‖2
]
−
〈
ϕ̃n, |λn|

1
δ (iλnϕn − ϕ̃n)

〉
→ 0,

so, according to (5.5) and (6.10)1, it is clear that the last term of this limit converges
to zero, hence

|λn|
1
δ

[
λ2n ‖ϕn‖

2 − ‖ϕ̃n‖2
]
→ 0. (6.19)

Similarly to the proof of (6.19), taking the inner product of (6.10)3, (6.10)5 and
(6.10)7 with, respectively, iλnψn, iλnwn and iλnzn in L2 (0, 1), we arrive at

|λn|
1
δ

[
λ2n ‖ψn‖

2 −
∥∥∥ψ̃n∥∥∥2]→ 0, (6.20)
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|λn|
1
δ

[
λ2n ‖wn‖

2 − ‖w̃n‖2
]
→ 0 (6.21)

and
|λn|

1
δ

[
λ2n ‖zn‖

2 − ‖z̃n‖2
]
→ 0. (6.22)

Now, we notice that we need to treat only the cases

(τ1, τ2, τ3, τ4) = (0, 1, 0, 0) and δ =
1

18
,

(τ1, τ2, τ3, τ4) = (1, 1, 0, 0) and δ =
1

14
,

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 1), (0, 1, 0, 1)}

and δ =
1

2
,

(6.23)

since (as in section 3), the proof in cases

(τ1, τ2, τ3, τ4) = (0, 0, 0, 1) and δ =
1

18
,

(τ1, τ2, τ3, τ4) = (0, 0, 1, 1) and δ =
1

14
,

(τ1, τ2, τ3, τ4) ∈ {(0, 1, 1, 0), (1, 0, 1, 1), (0, 1, 1, 1)} and δ =
1

2
,

is, by symmetry, identical to the one that will be given in cases (6.23).

6.1. Case (τ1, τ2, τ3, τ4) = (0, 1, 0, 0) and δ = 1
18

In vertue of (6.11), it is clear that

λ9nψ̃n → 0 in L2(0, 1), (6.24)

and then, according to (6.20), we get

λ10n ψn → 0 in L2(0, 1). (6.25)

Taking the inner product of (6.10)4 with λ−8n ψn in L2(0, 1), integrating by parts
and using the boundary conditions, (5.5) and (5.6), we find

k2λ
10
n ‖ψn,x‖2 +

〈
iλnψ̃n + k1 (ϕn,x + ψn) + a2ψ̃n, λ

10
n ψn

〉
→ 0,

therefore, using (5.5), (6.24) and (6.25), we observe that〈
iλnψ̃n + k1 (ϕn,x + ψn) + a2ψ̃n, λ

10
n ψn

〉
→ 0,

hence, by combining the above two limits, we arrive at

λ5nψn,x → 0 in L2 (0, 1) . (6.26)

Taking the inner product of (6.10)4 with λ−10n ϕn,x in L2 (0, 1), integrating by parts
and using (5.5), (5.6) and the boundary conditions, we arrive at

k1λ
8
n‖ϕn,x‖2 + k2λ

8
n 〈ψn,x, ϕn,xx〉+

〈
iλ9nψ̃n + k1λ

8
nψn + a2λ

8
nψ̃n, ϕn,x

〉
→ 0,
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therefore, exploiting (5.6), (6.24) and (6.25), we entail〈
iλ9nψ̃n + k1λ

8
nψn + a2λ

8
nψ̃n, ϕn,x

〉
→ 0,

so, by combining the above two limits, we get

k1λ
8
n‖ϕn,x‖2 + k2λ

8
n 〈ψn,x, ϕn,xx〉 → 0. (6.27)

Taking the inner product of (6.10)2 with λ−10n ψn,x in L2 (0, 1), integrating by parts
and using (5.5), (5.6) and the boundary conditions, it follows that

−k1λ8n‖ψn,x‖2+k0
〈
wn,x − ϕn,x, λ8nψn

〉
−
〈
iλnϕ̃n,x, λ

8
nψn

〉
−k1λ8n 〈ϕn,xx, ψn,x〉 → 0.

(6.28)
On the other hand, exploiting (5.6), (6.25) and (6.26), it appears that

− k1λ8n‖ψn,x‖2 + k0
〈
wn,x − ϕn,x, λ8nψn

〉
→ 0. (6.29)

Moreover, we have

−
〈
iλnϕ̃n,x, λ

8
nψn

〉
=
〈
ϕn,x, λ

10
n ψn

〉
− i
〈
λ9n (ϕ̃n,x − iλnϕn,x) , ψn

〉
,

therefore, using (6.10)1 and (6.25), we find

−
〈
iλnϕ̃n,x, λ

8
nψn

〉
→ 0, (6.30)

then, from (6.28), (6.29) and (6.30), we deduce that

λ8n 〈ϕn,xx, ψn,x〉 → 0, (6.31)

therefore, by combining (6.27) and (6.31), we obtain

λ4nϕn,x → 0 in L2 (0, 1) , (6.32)

hence, by combining (6.15) and (6.32), we see that

ϕ̃n → 0 in L2 (0, 1) . (6.33)

Taking the inner product of (6.10)2 with λ−16n wn,xx in L2 (0, 1), integrating by parts
and using (5.5), (5.6), (6.14) and the boundary conditions, it follows that

k0λ
2
n‖wn,x‖2 − k1λ2n 〈ϕn,xx, wn,xx〉 − λ2n 〈iλnϕ̃n,x, wn,x〉 (6.34)

− k1
〈
λ3nψn,x, λ

−1
n wn,xx

〉
− k0

〈
λ2nϕn,x, wn,x

〉
→ 0.

By exploiting (6.14), (6.26) and (6.32), we get

− k1
〈
λ3nψn,x, λ

−1
n wn,xx

〉
− k0

〈
λ2nϕn,x, wn,x

〉
→ 0. (6.35)

Moreover, we see that

−λ2n 〈iλnϕ̃n,x, wn,x〉 =
〈
iλ3n (iλnϕn,x − ϕ̃n,x) , wn,x

〉
+
〈
λ4nϕn,x, wn,x

〉
,

then, according to (6.10)1 and (6.32), we conclude that

− λ2n 〈iλnϕ̃n,x, wn,x〉 → 0, (6.36)
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and so, by combining (6.34), (6.35) and (6.36), we obtain

k0λ
2
n‖wn,x‖2 − k1λ2n 〈ϕn,xx, wn,xx〉 → 0. (6.37)

On the other hand, taking the inner product of (6.10)6 with λ−16n ϕn,xx in L2 (0, 1),
integrating by parts and using (5.5), (5.6), (6.14) and the boundary conditions, we
entail

− k3λ2n 〈wn,xx, ϕn,xx〉 −
〈
iw̃n,x, λ

3
nϕn,x

〉
+ k3

〈
λ−1n zn,xx, λ

3
nϕn,x

〉
− k0

〈
wn,x − ϕn,x, λ2nϕn,x

〉
→ 0. (6.38)

Thanks to (6.14) and (6.32), it appears that

k3
〈
λ−1n zn,xx, λ

3
nϕn,x

〉
− k0

〈
wn,x − ϕn,x, λ2nϕn,x

〉
→ 0. (6.39)

On the other hand, we have

−
〈
iw̃n,x, λ

3
nϕn,x

〉
=
〈
i (iλnwn,x − w̃n,x) , λ3nϕn,x

〉
+
〈
wn,x, λ

4
nϕn,x

〉
,

so, using (6.10)5 and (6.32), we find

−
〈
iw̃n,x, λ

3
nϕn,x

〉
→ 0. (6.40)

By combining (6.38), (6.39) and (6.40), we get

λ2n 〈wn,xx, ϕn,xx〉 → 0, (6.41)

hence, (6.37) and (6.41) imply that

λnwn,x → 0 in L2 (0, 1) , (6.42)

and then, using (6.17),
w̃n → 0 in L2 (0, 1) . (6.43)

Taking the inner product of (6.10)6 with λ−18n zn,x in L2 (0, 1), integrating by parts
and using (5.5), (5.6), and the boundary conditions, it follows that

− k3‖zn,x‖2 + k3
〈
λnwn,x, λ

−1
n zn,xx

〉
− k0 〈wn,x − ϕn,x, zn〉

− i 〈w̃n,x − iλnwn,x, λnzn〉+ 〈λnwn,x, λnzn〉 → 0,

because, according to (6.10)5, (6.13), (6.14), (6.32) and (6.42),

k3
〈
λnwn,x, λ

−1
n zn,xx

〉
− k0 〈wn,x − ϕn,x, zn〉 − i 〈w̃n,x − iλnwn,x, λnzn〉

+ 〈λnwn,x, λnzn〉 → 0,

we see that the above two limits lead to

zn,x → 0 in L2 (0, 1) , (6.44)

and by combining (6.18) and (6.44), we get

z̃n → 0 in L2 (0, 1) . (6.45)

Finally, the obtained limits (6.12), (6.24), (6.26), (6.32), (6.33), (6.42), (6.43), (6.44)
and (6.45) imply (5.9), which is a contradiction with (5.5).
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6.2. Case (τ1, τ2, τ3, τ4) = (1, 1, 0, 0) and δ = 1
14

In virtue of (6.11), it is clear that

λ7nϕ̃n, λ
7
nψ̃n → 0 in L2(0, 1), (6.46)

and then, according to (6.19) and (6.20), we get

λ8nϕn, λ
8
nψn → 0 in L2(0, 1). (6.47)

Taking the inner product of (6.10)4 with λ−6n ψn in L2(0, 1), integrating by parts
and using the boundary conditions, (5.5) and (5.6), we find

k2λ
8
n‖ψn,x‖2 +

〈
iλnψ̃n + k1 (ϕn,x + ψn) + a2ψ̃n, λ

8
nψn

〉
→ 0,

therefore, using (6.46) and (6.47), we observe that〈
iλnψ̃n + k1 (ϕn,x + ψn) + a2ψ̃n, λ

8
nψn

〉
→ 0,

hence, by combining the above two limits, we arrive at

λ4nψn,x → 0 in L2 (0, 1) . (6.48)

Similarly, taking the inner product of (6.10)2 with λ−6n ϕn in L2(0, 1) and using the
same arguments as for (6.48), we find

λ4nϕn,x → 0 in L2 (0, 1) , (6.49)

which coincides with (6.32). Taking the inner product of (6.10)2 with λ−12n wn,xx in
L2 (0, 1) and proceeding as is subsection 6.1, we get (6.37) (using (6.48) instead of
(6.26) to find (6.35)). On the other hand, taking the inner product of (6.10)6 with
λ−12n ϕn,xx in L2 (0, 1) and following the same arguments as in subsection 6.1, we
find (6.42) and (6.43). Therefore, the prrof can be completed as in subsection 6.1
by taking the inner product of (6.10)6 with λ−14n zn,x in L2 (0, 1) to get (6.44) and
(6.45). Consequently, (5.9) holds.

6.3. Case (τ1, τ2, τ3, τ4) = (1, 0, 0, 1) and δ = 1
2

According to (6.11), we have

λnϕ̃n, λnz̃n → 0 in L2(0, 1), (6.50)

and then, thanks to (6.19) and (6.22), we find

λ2nϕn, λ
2
nzn → 0 in L2(0, 1). (6.51)

Taking the inner product of (6.10)2 and (6.10)8, respectively, with ϕn and zn in
L2(0, 1), integrating by parts and using the boundary conditions and (5.5), we
obtain

k1λ
2
n‖ϕn,x‖2 +

〈
iλnϕ̃n − k1ψn,x − k0 (wn − ϕn) + a1ϕ̃n, λ

2
nϕn

〉
→ 0

and
k4λ

2
n‖zn,x‖2 +

〈
iλnz̃n + k3 (wn,x + zn) + a4z̃n, λ

2
nzn
〉
→ 0,
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therefore, according to (5.5), (6.50) and (6.51), it is clear that〈
iλnϕ̃n − k1ψn,x − k0 (wn − ϕn) + a1ϕ̃n, λ

2
nϕn

〉
→ 0

and 〈
iλnz̃n + k3 (wn,x + zn) + a4z̃n, λ

2
nzn
〉
→ 0,

then, from the above four limits, we deduce that

λnϕn,x, λnzn,x → 0 in L2 (0, 1) . (6.52)

Similarly, taking the inner product of (6.10)2 and (6.10)8, respectively, with λ−2n ψn,x
and λ−2n wn,x in L2(0, 1), integrating by parts and using the boundary conditions,
(5.5) and (5.6), we arrive at

−k1‖ψn,x‖2 + 〈iλnϕ̃n − k0 (wn − ϕn) + a1ϕ̃n, ψn,x〉+ k1
〈
λnϕn,x, λ

−1
n ψn,xx

〉
→ 0

and

k3‖wn,x‖2 + 〈iλnz̃n + k3zn + a4z̃n, wn,x〉+ k4
〈
λnzn,x, λ

−1
n wn,xx

〉
→ 0,

so, according to (6.12), (6.14), (6.50) and (6.52), it is clear that

〈iλnϕ̃n − k0 (wn − ϕn) + a1ϕ̃n, ψn,x〉+ k1
〈
λnϕn,x, λ

−1
n ψn,xx

〉
→ 0

and
〈iλnz̃n + k3zn + a4z̃n, wn,x〉+ k4

〈
λnzn,x, λ

−1
n wn,xx

〉
→ 0,

hence these four limits imply that

ψn,x, wn,x → 0 in L2 (0, 1) , (6.53)

and by combining (6.16), (6.17) and (6.53), it follows that

ψ̃n, w̃n → 0 in L2 (0, 1) , (6.54)

Finally, the obtained limits (6.12), (6.50) and (6.52)-(6.54) lead to (5.9).

6.4. Case (τ1, τ2, τ3, τ4) = (1, 0, 1, 0) and δ = 1
2

From (6.11), it appears that

λnϕ̃n, λnw̃n → 0 in L2(0, 1), (6.55)

therefore, according to (6.19) and (6.21), we have

λ2nϕn, λ
2
nwn → 0 in L2(0, 1). (6.56)

The limits
λnϕn,x, ψn,x → 0 in L2(0, 1) (6.57)

can be proved exactly as in subsection 6.3, and therefore, by exploiting (6.16), we
find

ψ̃n → 0 in L2(0, 1). (6.58)
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On the other hand, taking the inner product of (6.10)6 with wn in L2(0, 1), inte-
grating by parts and using the boundary conditions and (5.5), we obtain

k3λ
2
n‖wn,x‖2 +

〈
iλnw̃n − k3zn,x + k0 (wn − ϕn) + a3w̃n, λ

2
nwn

〉
→ 0,

therefore, according to (5.5), (6.55) and (6.56), it appears that〈
iλnw̃n − k3zn,x + k0 (wn − ϕn) + a3w̃n, λ

2
nwn

〉
→ 0,

then these two limits imply that

λnwn,x → 0 in L2 (0, 1) . (6.59)

Similarly, taking the inner product of (6.10)6 with λ−2n zn,x in L2(0, 1), integrating
by parts and using the boundary conditions, (5.5) and (5.6), we get

−k3‖zn,x‖2 + 〈iλnw̃n + k0 (wn − ϕn) + a3w̃n, zn,x〉+ k3
〈
λnwn,x, λ

−1
n zn,xx

〉
→ 0,

then, using (6.14), (6.55), (6.56) and (6.59), we obtain

〈iλnw̃n + k0 (wn − ϕn) + a3w̃n, zn,x〉+ k3
〈
λnwn,x, λ

−1
n zn,xx

〉
→ 0,

hence

zn,x → 0 in L2 (0, 1) , (6.60)

and by combining (6.18) and (6.60), we find

z̃n → 0 in L2 (0, 1) . (6.61)

Consequetly, the limit (5.9) can be directly deduced from the ones (6.12), (6.55)
and (6.57)-(6.61).

6.5. Case (τ1, τ2, τ3, τ4) = (1, 1, 1, 0) and δ = 1
2

The limit (6.11) implies that

λnϕ̃n, λnψ̃n, λnw̃n → 0 in L2(0, 1), (6.62)

which implies (6.55), so the proof can be finished as in subsection 6.4.

6.6. Case (τ1, τ2, τ3, τ4) = (1, 1, 0, 1) and δ = 1
2

We deduce from (6.11) that

λnϕ̃n, λnψ̃n, λnz̃n → 0 in L2(0, 1), (6.63)

which implies (6.50), then the proof can be ended as in subsection 6.3.
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6.7. Case (τ1, τ2, τ3, τ4) = (0, 1, 0, 1) and δ = 1
2

The limit (6.11) leads to

λnψ̃n, λnz̃n → 0 in L2(0, 1). (6.64)

The limits
λ2nzn, λnzn,x → 0 in L2(0, 1) (6.65)

can be proved as in subsection 6.3. Similarly, we can prove the limits

λ2nψn, λnψn,x → 0 in L2(0, 1) (6.66)

(by exploiting (6.20) and multiplying (6.10)4 with ψn; we omit the details here).
On the other hand, taking the inner product of (6.10)8 with λ−2n wn,x in L2(0, 1),
integrating by parts and using the boundary conditions, (5.5) and (5.6), we find

k3‖wn,x‖2 + 〈iλnz̃n + k3zn + a4z̃n, wn,x〉+ k4
〈
λnzn,x, λ

−1
n wn,xx

〉
→ 0,

then, using (6.14), (6.64) and (6.65), we find

〈iλnz̃n + k3zn + a4z̃n, wn,x〉+ k4
〈
λnzn,x, λ

−1
n wn,xx

〉
→ 0,

hence
wn,x → 0 in L2 (0, 1) , (6.67)

and by combining (6.17) and (6.67), we deduce that

w̃n → 0 in L2 (0, 1) . (6.68)

Similarly (using (6.10)4 and λ−2n ϕn,x instead of (6.10)8 and λ−2n wn,x, respectively,
and exploiting (6.15)), we have

ϕn,x, ϕ̃n → 0 in L2 (0, 1) . (6.69)

Consequently, the limit (5.9) holds. The proof of Theorem 6.1 is then completed.

7. Optimality of the polynomial decay rate: Cases
(6.3)-(6.5)

In this section, we prove that the polynomial decay rate given in Theorem 6.1 in
cases (6.3)-(6.5) is optimal in the sense that there is no ε > 0 such that

∀Φ0 ∈ D(A), ∃ c > 0 : ‖Φ(t)‖H ≤ ct
− 1

2−ε, ∀t > 0. (7.1)

Theorem 7.1. For any ε > 0, the polynomial decay (7.1) does not hold in cases
(6.3)-(6.5).

Proof. To prove Theorem 7.1, it is sufficient to show that (see [9, 10])

lim sup
λ→∞

λ−2
∥∥(iλI −A)−1

∥∥
L(H)

> 0. (7.2)
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To get (7.2), it will be enough to find sequences (λn)n ⊂ R, (Fn)n ⊂ H and
(Φn)n ⊂ D(A), n ∈ N, satisfying

iλnΦn −AΦn = Fn,

‖Fn‖H ≤ 1,

lim
n→∞

λn =∞,

lim
n→∞

λ−2n ‖Φn‖H > 0.

(7.3)

As in section 4, let Φn :=
(
ϕn, ϕ̃n, ψn, ψ̃n, wn, w̃n, zn, z̃n

)T
, Fn := (f1,n, · · · , fn,8)

T

and N := π
2 + nπ. Then (7.3)1 is equivalent to (4.10). By considering the choices

(4.11) and (4.12), we see that (Fn)n ⊂ H, (Φn)n ⊂ D(A) and (7.3)1 is reduced to
the algebraic system (4.13). In order to simplify the computations, we put

J1 = λ2n − k1N2 − k0 − iτ1a1λn,

J2 = λ2n − k2N2 − k1 − iτ2a2λn,

J3 = λ2n − k3N2 − k0 − iτ3a3λn,

J4 = λ2n − k4N2 − k3 − iτ4a4λn,

(7.4)

so (4.13) can be presented in the form

J1α1,n + k1Nα2,n + k0α3,n = β2,n,

k1Nα1,n + J2α2,n = β4,n,

k0α1,n + J3α3,n + k3Nα4,n = β6,n,

k3Nα3,n + J4α4,n = β8,n.

(7.5)

Now, because we need here to prove the stronger limit (7.3)4 than the one (4.16)
needed in section 4, we have to consider other choices of λn, αj,n and βj,n. On the
other hand, to cover the cases (6.3)-(6.5), we need to treat only the cases (6.3) and

(τ1, τ2, τ3, τ4) ∈ {(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1))} and (k1, k3) 6= (k2, k4), (7.6)

since, by symmetry, the proofs in cases (6.4) and (τ1, τ2, τ3, τ4) = (0, 1, 1, 0) are
similar to the ones of, respectively, (6.3) and (τ1, τ2, τ3, τ4) = (1, 0, 0, 1).

7.1. Case (τ1, τ2, τ3, τ4) = (1, 1, 0, 1) and k3 6= k4

We choose

β2,n = β4,n = β8,n = 0, β6,n = 1 and λn =

√
k3N2 + k0 +

k23
k3 − k4

, (7.7)
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for n ∈ N such that k3N
2 + k0 +

k23
k3−k4 > 0. We see that (7.3)2 and (7.3)3 are

satisfied, since, according to (4.11)2, (4.12)3, (4.12)4 and (7.7), we have

‖Fn‖2H = ‖f6,n‖2 =

∫ 1

0

cos2(Nx)dx ≤ 1. (7.8)

On the other hand, by a direct computations, it appears that (7.5) has the unique
solution 

α1,n =
−k0J2J4

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α2,n =
k0k1J4N

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α3,n =
J4
(
J1J2 − k21N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

,

α4,n =
−k3N

(
J1J2 − k21N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

.

(7.9)

We have(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4

=
k23

k4 − k3

(
ia4λn − k0 +

k3k4
k4 − k3

)[(
(k3 − k1)N2 − ia1λn +

k23
k3 − k4

)

×
(

(k3 − k2)N2 − ia2λn + k0 − k1 +
k23

k3 − k4

)
− k21N2

]

− k20
[
(k3 − k2)N2 − ia2λn + k0 − k1 +

k23
k3 − k4

]

×
[
(k3 − k4)N2 − ia4λn + k0 +

k3k4
k3 − k4

]
,

then, we denote by “∼” the “asymptotic equivalence when n goes to infinity” and
we find

J1J2 − k21N2 ∼



(k3 − k1)(k3 − k2)N4 if k3 /∈ {k1, k2},

ia1
√
k3(k2 − k3)N3 if k3 = k1 and k3 6= k2,

ia2
√
k3(k1 − k3)N3 if k3 6= k1 and k3 = k2,

−
(
a1a2k3 + k21

)
N2 if k3 = k1 = k2

(7.10)

and (
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 (7.11)
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∼



ia4k
2
3

√
k3(k3 − k1)(k3 − k2)

k4 − k3
N5 if k3 /∈ {k1, k2},[

a1a4k
3
3 + k20(k3 − k4)2

]
(k3 − k2)

k4 − k3
N4 if k3 = k1 and k3 6= k2,

a2a4k
3
3(k3 − k1)

k4 − k3
N4 if k3 6= k1 and k3 = k2,

i
√
k3
[
k23a4

(
a1a2k3 + k21

)
+ k20a2(k3 − k4)2

]
k3 − k4

N3 if k3 = k1 = k2,

therefore, by combining (7.10) and (7.11), we deduce from (7.9)3 and (7.9)4 that

(α3,n, α4,n) ∼



i(k3 − k4)

a4k23
√
k3

((k3 − k4)N,−k3) if k3 /∈ {k1, k2},

ia1
√
k3(k3 − k4)

a1a4k33 + k20(k3 − k4)2
((k3 − k4)N,−k3) if k3 = k1 and k3 6= k2,

i(k3 − k4)

a4k23
√
k3

((k3 − k4)N,−k3) if k3 6= k1 and k3 = k2,

i(k3 − k4)
(
a1a2k3 + k21

)
√
k3 [k23a4 (a1a2k3 + k21) + k20a2(k3 − k4)2]

((k3 − k4)N,−k3)

if k3 = k1 = k2.

(7.12)
On the other hand, from (4.12)2, we have

‖Φn‖2H ≥ k3 ‖wn,x + zn‖2 (7.13)

= k3|α3,nN − α4,n|2
∫ 1

0

sin2(Nx)dx

≥ k3
2
|α3,nN − α4,n|2

∫ 1

0

[1− cos (2Nx)] dx

=
k3
2
|α3,nN − α4,n|2,

then

λ−2n ‖Φn‖H ≥
√
k3
2
λ−2n |α3,nN − α4,n| =

√
k3
2 |α3,nN − α4,n|

k3N2 + k0 +
k23

k3−k4

, (7.14)

hence (7.12) and (7.14) lead to

lim
n→∞

λ−2n ‖Φn‖H
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≥



(k3 − k4)2√
2a4k33

if k3 /∈ {k1, k2},

a1(k3 − k4)2√
2 [a1a4k33 + k20(k3 − k4)2]

if k3 = k1 and k3 6= k2,

(k3 − k4)2√
2a4k33

if k3 6= k1 and k3 = k2,

(k3 − k4)2
(
a1a2k3 + k21

)
√

2k3 [k23a4 (a1a2k3 + k21) + k20a2(k3 − k4)2]
if k3 = k1 = k2,

(7.15)

which implies (7.3)4.

7.2. Case (τ1, τ2, τ3, τ4) = (1, 1, 1, 0) and k3 6= k4

We take

β2,n = β4,n = β6,n = 0, β8,n = 1 and λn =

√
k4N2 +

k3k4
k4 − k3

, (7.16)

for n ∈ N such that k4N
2 + k3 +

k23
k4−k3 > 0. We remark that (7.3)2 and (7.3)3 hold

because, thanks to (4.11)2, (4.12)3, (4.12)4 and (7.16), we have

‖Fn‖2H = ‖f8,n‖2 =

∫ 1

0

sin2(Nx)dx ≤ 1. (7.17)

On the other hand, (7.5) admits the unique solution

α1,n =
k0k3J2N

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α2,n =
−k0k1k3N2

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α3,n =
−k3N

(
J1J2 − k21N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

,

α4,n =
J3
(
J1J2 − k21N2

)
− k20J2

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
.

(7.18)

Similar computations to the ones done in subsection 7.1 show that(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 (7.19)

∼



−ia3k23
√
k4(k4 − k1)(k4 − k2)

k4 − k3
N5 if k4 /∈ {k1, k2},

−a1a3k23k4(k4 − k2)

k4 − k3
N4 if k4 = k1 and k4 6= k2,

−a2a3k23k4(k4 − k1)

k4 − k3
N4 if k4 6= k1 and k4 = k2,

ia3
√
k4k

2
3

(
a1a2k4 + k21

)
k4 − k3

N3 if k4 = k1 = k2
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and

J3
(
J1J2 − k21N2

)
− k20J2 (7.20)

∼



(k4 − k1)(k4 − k2)(k4 − k3)N6 if k4 /∈ {k1, k2},

−ia1
√
k4(k4 − k2)(k4 − k3)N5 if k4 = k1 and k4 6= k2,

−ia2
√
k4(k4 − k1)(k4 − k3)N5 if k4 6= k1 and k4 = k2,

−
(
a1a2k4 + k21

)
(k4 − k3)N4 if k4 = k1 = k2,

then we deduce from (7.18)4, (7.19) and (7.20) that

α4,n ∼
i(k4 − k3)2

a3k23
√
k4

N. (7.21)

On the other hand, from (4.12)2, we have

‖Φn‖2H ≥ k4 ‖zn,x‖2 (7.22)

= k4|α4,n|2N2

∫ 1

0

cos2(Nx)dx

≥ k4
2
|α4,n|2N2

∫ 1

0

[1 + cos (2Nx)] dx

=
k4
2
|α4,n|2N2,

then, according to (7.21) and the above inequality (7.22), we find (7.3)4.

7.3. Case (τ1, τ2, τ3, τ4) = (1, 0, 0, 1) and (k1, k3) 6= (k2, k4)

Because (k1, k3) 6= (k2, k4), we distinguish the two subcases [k1 6= k2] and [k1 = k2
and k3 6= k4].

Subcase 1. (τ1, τ2, τ3, τ4) = (1, 0, 0, 1) and k1 6= k2. We choose

β2,n = β6,n = β8,n = 0, β4,n = 1 and λn =

√
k2N2 +

k1k2
k2 − k1

, (7.23)

for n ∈ N such that k2N
2 + k1 +

k21
k2−k1 > 0. We observe that (7.3)3 holds, and

moreover, in virtue of (4.11)2, (4.12)3, (4.12)4 and (7.23), we have

‖Fn‖2H = ‖f4,n‖2 =

∫ 1

0

sin2(Nx)dx ≤ 1, (7.24)
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hence (7.3)2 is satisfied. On the other hand, (7.5) has the unique solution

α1,n =
−k1N

(
J3J4 − k23N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

,

α2,n =
J1
(
J3J4 − k23N2

)
− k20J4

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α3,n =
k0k1NJ4

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α4,n =
−k0k1k3N2

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
.

(7.25)

As in subsections 7.1 and 7.2, direct computations lead to(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4

∼



−ia1k21
√
k2(k2 − k3)(k2 − k4)

k2 − k1
N5 if k2 /∈ {k3, k4},

−ia1k21
√
k2

[
(k2 − k4)

(
k1k2
k2 − k1

− k0
)
− k23

]
k2 − k1

N3

if k0 6=
k1k2
k2 − k1

− k23
k2 − k4

, k2 = k3 and k2 6= k4,

−
[
a1a4k2k

2
1k

2
3 + k20k

2
1(k2 − k4)2

]
(k2 − k1)(k2 − k4)

N2

if k0 =
k1k2
k2 − k1

− k23
k2 − k4

, k2 = k3 and k2 6= k4,

−a1a4k21k2(k2 − k3)

k2 − k1
N4 if k2 6= k3 and k2 = k4,

ia1k
2
1k

2
3

√
k2

k2 − k1
N3 if k2 = k3 = k4

(7.26)

and

J1
(
J3J4 − k23N2

)
− k20J4 (7.27)

∼



(k2 − k1)(k2 − k3)(k2 − k4)N6 if k2 /∈ {k3, k4},

(k2 − k1)

[
(k2 − k4)

(
k1k2
k2 − k1

− k0
)
− k23

]
N4

if k0 6= k1k2
k2−k1 −

k23
k2 − k4

, k2 = k3 and k2 6= k4,

−ia4
√
k2(k2 − k1)

(
k1k2
k2 − k1

− k0
)
N3

if k0 =
k1k2
k2 − k1

− k23
k2 − k4

, k2 = k3 and k2 6= k4,

−ia4
√
k2(k2 − k1)(k2 − k3)N5 if k2 6= k3 and k2 = k4,

−k23(k2 − k1)N4 if k2 = k3 = k4,
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then, by combining (7.25)2, (7.26) and (7.27), we get, for some c > 0,

|α2,n| ∼ cN. (7.28)

Moreover, from (4.12)1, we see that

‖Φn‖2H ≥ k2 ‖ψn,x‖2 (7.29)

= k2|α2,n|2N2

∫ 1

0

cos2(Nx)dx

≥ k2
2
|α2,n|2N2

∫ 1

0

[1 + cos (2Nx)] dx

=
k2
2
|α2,n|2N2,

then (7.3)4 holds thanks to (7.28) and (7.29).

Subcase 2. (τ1, τ2, τ3, τ4) = (1, 0, 0, 1), k1 = k2 and k3 6= k4. The proof is similar
to the one given in subsection 7.1 by considering the choices (7.7) to get (7.8), (7.9),
(7.10)1, (7.11)1,

J1J2 − k21N2 ∼ −k21N2 if k1 = k2 = k3 (7.30)

and(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 ∼

ia4k
2
1k

2
3

√
k3

k3 − k4
N3 if k1 = k2 = k3

(7.31)
(that is (7.30) and (7.31) correspond to (7.10)4 and (7.11)4, respectively, with a2 =
0). Noticing that the two cases [k3 = k1 and k3 6= k2] and [k3 6= k1 and k3 = k2]
considered in (7.10), (7.11) and (7.12) can not be considered here because k1 = k2.
Then we deduce from (7.9)3, (7.9)4, (7.10)1, (7.11)1, (7.30) and (7.31) that, for
some c1, c2 > 0,

|α3,n| ∼ c1N and |α4,n| ∼ c2, (7.32)

hence, by using (7.14) and (7.32), we arrive at (7.3)4.

7.4. Case (τ1, τ2, τ3, τ4) = (1, 0, 1, 0) and (k1, k3) 6= (k2, k4)

When k1 6= k2, the proof is similar to the ones given in subsection 7.3 - subcase
1 by considering the same choices (7.23), so (7.24) and (7.25) hold, and therefore,
by exploiting (7.25)2, we get (7.28), and then (7.3)4 holds according to (7.29). We
omit the details here.

When k1 = k2 and k3 6= k4, we follow the same arguments as in subsection 7.2
by considering the choices (7.16), we find (7.17), (7.18), (7.19)1, (7.19)4 with a2 = 0,
(7.20)1 and (7.20)4 with a2 = 0 (the two cases [k4 = k1 and k4 6= k2] and [k4 6= k1
and k4 = k2] considered in (7.19) and (7.20) can not be considered here because
k1 = k2), so (7.21) holds, and then, by combining (7.18)4, (7.21) and (7.22), we
deduce (7.3)4.

7.5. Case (τ1, τ2, τ3, τ4) = (0, 1, 0, 1) and (k1, k3) 6= (k2, k4)

We distinguish the three subcases [k1 6= k2 and [k1 6= k3 or k1 = k4]], [k3 6= k4 and
[k1 6= k3 or k2 = k3]] and [k1 = k3 and k1 /∈ {k2, k4}]. We observe that these three
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subcases are equivalent to (k1, k3) 6= (k2, k4).

Subcase 1. (τ1, τ2, τ3, τ4) = (0, 1, 0, 1), k1 6= k2 and [k1 6= k3 or k1 = k4]. We
choose

β4,n = β6,n = β8,n = 0, β2,n = 1 and λn =

√
k1N2 + k0 +

k21
k1 − k2

, (7.33)

for n ∈ N such that k1N
2+k0+

k21
k1−k2 > 0. We remark that (4.11)2, (4.12)3, (4.12)4

and (7.33) lead to

‖Fn‖2H = ‖f2,n‖2 =

∫ 1

0

cos2(Nx)dx ≤ 1 (7.34)

(which implies (7.3)2) and (as for (7.13))

‖Φn‖2H ≥ k1 ‖ϕn,x + ψn‖2 (7.35)

= k1|α1,nN − α2,n|2
∫ 1

0

sin2(Nx)dx

≥ k1
2
|α1,nN − α2,n|2

∫ 1

0

[1− cos (2Nx)] dx

=
k1
2
|α1,nN − α2,n|2.

On the other hand, according to (7.33), simple computations imply that the unique
solution of (7.5) is

α1,n =
J2
(
J3J4 − k23N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

,

α2,n =
−k1N

(
J3J4 − k23N2

)
(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4

,

α3,n =
−k0J2J4

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

α4,n =
k0k3NJ2

(J3J4 − k23N2) (J1J2 − k21N2)− k20J2J4
,

(7.36)

therefore (
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 (7.37)

∼



−ia2k21
√
k1(k1 − k3)(k1 − k4)

k1 − k2
N5 if k1 /∈ {k3, k4},

−k20(k1 − k2)(k1 − k4)N4 if k1 = k3 and k1 6= k4,

−a2a4k31(k1 − k3)

k1 − k2
N4 if k1 6= k3 and k1 = k4,

i
√
k1
[
a2k

2
1k

2
3 + a4k

2
0(k1 − k2)2

]
k1 − k2

N3 if k1 = k3 = k4
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and

J3J4 − k23N2 ∼



(k1 − k3)(k1 − k4)N4 if k1 /∈ {k3, k4},

k21(k2 − k4)

k1 − k2
N2 if k1 = k3, k1 6= k4 and k2 6= k4,

−ia4k21
√
k1

k1 − k2
N if k1 = k3, k1 6= k4 and k2 = k4,

−ia4
√
k1(k1 − k3)N3 if k1 6= k3 and k1 = k4,

−k23N2 if k1 = k3 = k4,

(7.38)

so, according to (7.36)1, (7.36)2, (7.37) and (7.38), α1,n and α2,n satisfy, for some
c1, c2 > 0,

(|α1,n|, |α2,n|) ∼



(c1N, c2) if k1 /∈ {k3, k4},(
c1,

c2
N

)
if k1 = k3, k1 6= k4 and k2 6= k4,( c1

N
,
c2
N2

)
if k1 = k3, k1 6= k4 and k2 = k4,

(c1N, c2) if k1 6= k3 and k1 = k4,

(c1N, c2) if k1 = k3 = k4,

(7.39)

we omit the details here. Because we are assuming in this subcase 1 that [k1 6= k3
or k1 = k4], then (7.39)2 and (7.39)3 can not be considered in this subcase 1, so the
properties (7.35), (7.39)1, (7.39)4 and (7.39)5 lead to (7.3)4.

Subcase 2. (τ1, τ2, τ3, τ4) = (0, 1, 0, 1), k3 6= k4 and [k1 6= k3 or k2 = k3]. As
in subsection 7.1, we consider the choices (7.7) and we get (7.8), (7.9) and (7.14).
Moreover, we have

(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 (7.40)

∼



−ia4k23
√
k3(k3 − k1)(k3 − k2)

k3 − k4
N5 if k3 /∈ {k1, k2},

−k20(k3 − k2)(k3 − k4)N4 if k1 = k3 and k2 6= k3,

−a2a4k33(k3 − k1)

k3 − k4
N4 if k1 6= k3 and k2 = k3,

i
√
k3
[
a4k

2
3k

2
1 + a2k

2
0(k3 − k4)2

]
k3 − k4

N3 if k1 = k2 = k3
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and

J1J2 − k21N2 ∼



(k3 − k1)(k3 − k2)N4 if k3 /∈ {k1, k2},

k21(k4 − k2)

k3 − k4
N2 if k1 = k3, k2 6= k3 and k2 6= k4,

−ia2k23
√
k3

k3 − k4
N if k1 = k3, k2 6= k3 and k2 = k4,

−ia2
√
k3(k3 − k1)N3 if k1 6= k3 and k2 = k3,

−k21N2 if k1 = k2 = k3,

(7.41)

so, as for (7.39), according to (7.9)3, (7.9)4, (7.40) and (7.41), α3,n and α4,n satisfy,
for some c1, c2 > 0,

(|α3,n|, |α4,n|) ∼



(c1N, c2) if k3 /∈ {k1, k2},(
c1,

c2
N

)
if k1 = k3, k2 6= k3 and k2 6= k4,( c1

N
,
c2
N2

)
if k1 = k3, k2 6= k3 and k2 = k4,

(c1N, c2) if k1 6= k3 and k2 = k3,

(c1N, c2) if k1 = k2 = k3.

(7.42)

We remark that (7.42)2 and (7.42)3 can not be considered in this subcase 2 thanks
to the assumption [k1 6= k3 or k2 = k3], then (7.14), (7.42)1, (7.42)4 and (7.42)5
show that (7.3)4 is satisfied.

Subcase 3. (τ1, τ2, τ3, τ4) = (0, 1, 0, 1), k1 = k3 and k1 /∈ {k2, k4}. We take

β2,n = β4,n = β8,n = 0, β6,n = 1 and λn =
√
k1N2 + k0 + b, (7.43)

for n ∈ N such that k1N
2 + k0 + b > 0, where

b =
k21(2k1 − k2 − k4)

2(k1 − k2)(k1 − k4)
+

√
k20 +

k41(k2 − k4)2

4(k1 − k2)2(k1 − k4)2
. (7.44)

Then (7.8) and (7.9) hold. Moreover, we see that

J2J4 ∼ (k1 − k2)(k1 − k4)N4, J4N ∼ (k1 − k4)N3 (7.45)

and(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 (7.46)

=
[
b
[
(k1 − k4)N2 − ia4λn + b+ k0 − k1

]
− k21N2

]
×
[
b
[
(k1 − k2)N2 − ia2λn + b+ k0 − k1

]
− k21N2

]
− k20

[
(k1 − k2)N2 − ia2λn + b+ k0 − k1

] [
(k1 − k4)N2 − ia4λn + b+ k0 − k1

]
,
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since k1 = k3. On the other hand, direct computations show that the coefficient of
N4 in the right hand side of (7.46) vanishes; that is[

(k1 − k4)b− k21
] [

(k1 − k2)b− k21
]
− k20(k1 − k2)(k1 − k4) = 0,

therefore

(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 ∼


I3N

3 if I3 6= 0,

I2N
2 if I3 = 0 and I2 6= 0,

I1N if I3 = I2 = 0 and I1 6= 0,

(7.47)
where

Im =



i
√
k1
[
a2
[
k20(k1 − k4) + k21b− (k1 − k4)b2

]
+a4

[
k20(k1 − k2) + k21b− (k1 − k2)b2

]]
if m = 3,

(b+ k0 − k1)
[(
b− k20

)
(2k1 − k2 − k4)− 2k21

]
− k1a2a4

(
b2 − k20

)
if m = 2,

−i
√
k1(a2 + a4)(b+ k0 − k1)

(
b2 − k20

)
if m = 1.

Observing that (I1, I2, I3) 6= (0, 0, 0). Indeed, if I1 = 0, then b2 = k20 or b = k1− k0.
If b2 = k20, then

I3 = ik21
√
k1b(a2 + a4) 6= 0.

And if b2 6= k20 and b = k1 − k0, then

I2 = −k1a2a4
(
b2 − k20

)
6= 0.

Consequently, (7.47) implies that there exists m ∈ {1, 2, 3} such that(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 ∼ ImNm. (7.48)

Finally, we deduce from (7.9)1, (7.9)2, (7.45) and (7.48) the existence of c1, c2 > 0
such that

(|α1,n|, |α2,n|) ∼
(
c1N

4−m, c2N
3−m) , (7.49)

hence (7.3)4 holds, since (7.35) and (7.49) lead to

λ−2n ‖Φn‖H ∼
c1√
2k1

N3−m. (7.50)

The proof of Theorem 7.1 is then ended.

8. Lack of polynomial stability: Cases (3.1) and (3.2)

In the last cases (3.1) and (3.2) (where also the strong stability (2.17) holds but the
exponential one (4.5) is not satisfied; see sections 3 and 4), we will prove that even
the polynomial stability (6.6) does not hold in general.
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Theorem 8.1. For any δ > 0, the polynomial decay (6.6) does not hold in the
following two cases:

(τ1, τ2, τ3, τ4) = (1, 0, 0, 0), (k1, k2) ∈ {(k3, k3), (k0, k4)} and k3 =
k0k4
k0 + k4

(8.1)
and

(τ1, τ2, τ3, τ4) = (0, 0, 1, 0), (k3, k4) ∈ {(k1, k1), (k0, k2)} and k1 =
k0k2
k0 + k2

.

(8.2)

Proof. We need to treat only the case (8.1), since, by symmetry, the other case
(8.2) can be treated in a similar way.

As in section 7, to prove Theorem 8.1, it is sufficient to show that, for any
m ∈ N∗,

lim sup
λ→∞

λ−m
∥∥(iλI −A)−1

∥∥
L(H)

> 0, (8.3)

since (8.3) implies that (6.6) does not hold, for any δ > 1
m (see [9, 10]).

To get (8.3), it is sufficient to find sequences (λn)n ⊂ R, (Fn)n ⊂ H and (Φn)n ⊂
D(A), n ∈ N, satisfying (7.3)1, (7.3)2, (7.3)3 and (8.3). Let Φn, Fn, N and Jj ,
j = 1, 2, 3, 4, as in section 7. Then (7.3)1 is equivalent to (7.5). By considering
(4.11) and (4.12), it is clear that (Fn)n ⊂ H and (Φn)n ⊂ D(A). Let m ∈ N∗ and
take

β2,n = β4,n = β6,n = 0, β8,n = 1 and λn =
√
k2N2 + k1 +N−m−1, (8.4)

for n ∈ N. It appears that (7.3)2 and (7.3)3 are satisfied (thanks to (7.17)) and the
solution of (7.5) is given by (7.18). Moreover, we have J2 = N−m−1 and, according
to the connections between kj assumed in (8.1),

J3J4 − k23N2 = N−m−1
[
(2k2 − k3 − k4)N2 + 2k1 − k0 − k3 +N−m−1

]
,

therefore (noticing that 2k2 − k3 − k4 6= 0 because of (8.1))(
J3J4 − k23N2

) (
J1J2 − k21N2

)
− k20J2J4 ∼ −k21 (2k2 − k3 − k4)N3−m, (8.5)

then (7.18)2 and (8.5) imply that

|α2,n| ∼
k0k3

k1 |2k2 − k3 − k4|
Nm−1, (8.6)

hence, by using (7.29) and (8.6),

lim
n→∞

λ−mn ‖Φn‖H ≥ lim
n→∞

|α2,n|√
2
(√
k2
)m−1

Nm−1

=
k0k3√

2k1 |2k2 − k3 − k4|
(√
k2
)m−1

> 0, (8.7)

which leads to (8.3). This ends the proof of Theorem 8.1.
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9. Comments and issues

We would like to point out in this section that there are several possible general-
izations and various interesting open questions and promising research avenues.

1. Our results hold true for one of the following Dirichlet-Neumann boundary
conditions: 

ϕ (0, t) = ψx (0, t) = w (0, t) = zx (0, t) = 0 in (0,∞) ,

ϕx (1, t) = ψ (1, t) = wx (1, t) = z (1, t) = 0 in (0,∞) ,
ϕx (0, t) = ψ (0, t) = wx (0, t) = z (0, t) = 0 in (0,∞) ,

ϕx (1, t) = ψ (1, t) = wx (1, t) = z (1, t) = 0 in (0,∞) ,

(9.1)

and 
ϕ (0, t) = ψx (0, t) = w (0, t) = zx (0, t) = 0 in (0,∞) ,

ϕ (1, t) = ψx (1, t) = w (1, t) = zx (1, t) = 0 in (0,∞) .

(9.2)

In cases (9.1) and (9.2), and without loss of generality (thanks to some change of
variables as in Remark 2.1 of [17] for Bresse-type systems), one can, respectively,
assume that ∫ 1

0

ϕ(x, t)dx =

∫ 1

0

w(x, t)dx = 0

and ∫ 1

0

ψ(x, t)dx =

∫ 1

0

z(x, t)dx = 0,

which allows to apply Poincaré’s inequality to ϕ, ψ, w and z. The situation is
more delicate when [ϕ and ψ] or [ϕ and z] or [ψ and w] or [w and z] have the same
boundary condition at 0 or at 1, and also when [ϕ and w] or [ψ and z] have different
boundary conditions at 0 or at 1.

2. Similar stability results to the ones proved in this paper can be obtained
by replacing the coupling terms −k0 (w − ϕ) and k0 (w − ϕ) by −k0 (z − ψ) and
k0 (z − ψ), respectively, and adding them to (1.1)2 and (1.1)4, respectively. Simi-
larly, −k0 (w − ϕ) and k0 (w − ϕ) can be replaced by −k0 (z − ϕ) and k0 (z − ϕ),
respectively, and added to (1.1)1 and (1.1)4, respectively, or they are replaced by
−k0 (w − ψ) and k0 (w − ψ), respectively, and added to (1.1)2 and (1.1)3, respec-
tively.

3. The frictional dampings a1ϕt, a2ψt, a3wt and a4zt (or some of them) can be
replaced by other kinds of dissipation like, for example, memory, heat conduction
and Kelvin-Voigt effects. Similar stability results to ours can be proved in these
situations (see, for example, [1, 15,16,21] for other Timoshenko-type systems).

4. In section 7, we proved the optimality of the polynomial decay rate obtained in
cases (6.3)-(6.5). However, in cases (6.1) and (6.2), we do not know if the polynomial
deacy rates are optimal or not; perhaps, they can be improved.

5. The coupled two Timoshenko beams (1.1) studied in the present work is linaer.
It would be very desirable to obtain analogous results in the presence of some
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nonlinear terms, where such nonlinear models are more closer to the real world
than the linear ones. In particular, when the frictional dampings (or some of them)
are nonlinear; that is the linear frictional dampings a1ϕt, a2ψt, a3wt and a4zt are
replaced, respectively, by the nonlinear ones h1(ϕt), h2(ψt), h3(wt) and h4(zt),
where

hj : s ∈ R 7→ hj(s) ∈ R, j = 1, 2, 3, 4,

are fixed functions satisfying some smoothness and boundedness conditions. An-
other research avenue is to treat the local stability problem; that is the positive
constants (or some of them) aj , j = 1, 2, 3, 4, are replaced by nonnegative functions

aj : x ∈ (0, 1) 7→ aj(x) ∈ R+, j = 1, 2, 3, 4,

which can vanish on some parts of the interval (0, 1). We aspire in future works to
investigate these interesting questions.
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