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Abstract This paper deals with the solvability and optimal controls of a
class of impulsive fractional stochastic evolution equations with nonlocal initial
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existence conditions of optimal pairs to the control systems. In the end, an
example is presented to illustrate the effectiveness of our abstract results.
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1. Introduction

The purpose of this paper is to study the solvability and optimal controls to the
following nonlinear time fractional evolution equations with impulsive and nonlocal
initial conditions

cDα
t x(t) +Ax(t) = f(t, x(t)) + σ(t, x(t))

dW (t)

dt
+B(t)u(t),

t ∈ [0, b], t 6= ti, i = 1, 2, · · ·, p,

x(0) = g(x),

∆x(ti) = Ii(x(ti)), i = 1, 2, · · ·, p,

(1.1)

where cDα
t is the Caputo fractional derivatives of order 1

2 < α < 1,

g(x) =

∫ b

0

h(s, x(s))ds. (1.2)
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0 < t1 < t2 < · · · < tp < b, Ii is an impulsive function, i = 1, 2, · · ·, p, ∆x(ti) =
x(t+i )−x(t−i ), x(t+i ), x(t−i ) denote the right and the left limit of x at ti , respectively.
The state x(·) takes values in the separable Hilbert space H, A : D(A) ⊂ H→ H is
a closed linear operator and −A is the infinitesimal generator of a C0−semigroup
T (t)(t ≥ 0) on H. Let K be another separable Hilbert space. For convenience, we
will use the same notation ‖ · ‖ to denote the norms of H and K, and use 〈·, ·〉 to
denote inner product of H and K without any confusion. We are also using the same
notation ‖ ·‖ for the norm of L(K,H), which denotes the space of all linear bounded
operators from K into H. Suppose that {W (t) : t ≥ 0} is a given K-valued Wiener
process or Brownian motion with a finite trace nuclear covariance operator Q ≥ 0
defined on a filtered complete probability space (Ω,F , {Ft}t≥0, P ). The control
function u(·) takes values in another separable reflexive Hilbert space U, B : U→ H
is a linear operator. f, σ, Ii and h are appropriate functions to be given later.

In the past two decades, stochastic differential systems have attracted great
interest because of their practical applications in many areas, such as economics,
physics, population dynamics, chemistry, medicine biology, social sciences and other
areas of science and engineering. For more details, we refer to the books by
Da Prato and Zabczyk [11], Grecksch and Tudor [23], Liu [29], Mao [31] and
Sobczyk [38]. One of the branches of stochastic differential equations is the the-
ory of fractional stochastic evolution equations. Many researchers investigated
the existence, uniqueness, controllability and asymptotic behavior of mild solu-
tions to fractional stochastic evolution equations by using different approaches,
see [2, 6–9,13,14,16,17,19,27,30,32–35,40,44–47] and the references therein.

The theory of impulsive differential equations describes processes which experi-
ence a sudden change in their states at certain moments. For the basic theory on
impulsive differential equations, the reader can refer to the monographs of Bainov
and Simeonov [1], Benchohra et al. [4] and Lakshmikantham et al. [26]. Particularly,
impulsive fractional evolution equations in Banach spaces has been emerging as an
important area of investigation in the last few decades. For more details on this
theory and its applications, we refer to the the references [2,13,14,16,18,20–22,36,
37,39,41–43,45,46]. Some works [2,13,14,16,45,46] considered fractional stochastic
evolution equation with impulsive, for example, Balasubramaniam et al. [2] inves-
tigated a class of impulsive fractional stochastic integro-differential equations in
Hilbert space of the form

cDα
t x(t) = Ax(t) + J1−α

t [B(t)u(t) + f(t, x(t), x(a1(t)), x(a2(t)), · · ·, x(am(t)))]

+J1−α
t

( ∫ t

0

g(s, x(s), x(b1(s)), x(b2(s)), · · ·, x(bm(s))dws)
)

t ∈ [0, b], t 6= ti,

x(0) = x0,

∆x(ti) = Ii(x(ti)), i = 1, 2, · · ·, p,

they obtained the existence of mild solution and optimal controls for the considered
system. Dhayal et al. [16] studied the existence of optimal multicontrol pairs for a
class of noninstantaneous impulsive fractional stochastic differential systems driven
by the Rosenblatt process with state-dependent delay.
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It is well known that the study of abstract nonlocal Cauchy problem was ini-
tiated by Byszewski and Lakshmikantham [5]. Since the nonlocal initial condition
have better effects in applications than the classical initial condition, differential
equations with nonlocal conditions were studied by many authors and some basic
results on nonlocal problems have been obtained, see [9,10,12,17–21,28,32,43,48].
However, to the best of our knowledge, we have not seen the relevant papers to
study the optimal control of system governed by fractional impulsive stochastic
evolution equations with nonlocal conditions. Due to its importance in both the-
oretical and real-life applications point of view, it is significant to investigate its
existence, controllability, and other quantitative properties.

Inspired by the above discussions, in this paper, we first prove the existence and
uniqueness of mild solution for fractional impulsive stochastic evolution equations
with nonlocal conditions (1.1). Secondly, the existence of fractional optimal controls
for (1.1) is investigated. The obtained results are new and considered as a contri-
bution to the theory of fractional impulsive stochastic optimal control problem.

The rest of this paper is organized as follows: In Section 2, we give some defini-
tions and preliminary results to be used in this paper. In Section 3, the existence
and uniqueness of mild solutions are proved. Existence of fractional optimal con-
trols is shown in Section 4. Finally, In Section 5, an example is provided to illustrate
the applications of the obtained results.

2. Preliminaries

Let (Ω,F , {Ft}t≥0, P ) be a filtered complete probability space satisfying the usual
condition, which means that the filtration is a right continuous increasing family and
F0 contains all P -null sets. Let {ek, k ∈ N} be a complete orthonormal basis of K.
{W (t) : t ≥ 0} is a cylindrical K-valued Brownian motion or Wiener process defined
on the probability space (Ω,F , {Ft}t≥0, P ) with a finite trace nuclear covariance
operator Q ≥ 0, we denote Tr(Q) =

∑∞
k=1 λk = λ < ∞, which satisfies that

Qek = λkek, k ∈ N. Let {Wk(t), k ∈ N} be a sequence of one-dimensional standard
Wiener processes mutually independent on (Ω,F , {Ft}t≥0, P ) such that

W (t) =

∞∑
k=1

√
λkWk(t)ek, t ≥ 0.

Forthermore, we assume that Ft = σ{W (s), 0 ≤ s ≤ t} is the σ-algebra generated

by W and Fb = F . Let L0
2 = L2(Q

1
2K, H) denote the space of all Hilbert-Schmidt

operators from Q
1
2K into H with the inner product 〈φ, ϕ〉 = Tr(φQϕ∗). It also

turns out to be a separable Hilbert space. The collection of all Fb-measurable,
square-integrable H-valued random variables, denoted L2(Ω,H), is a Banach space

equipped with the norm ‖x‖L2 = (E‖x(ω)‖2)
1
2 , where E denotes the expectation

with respect to the measure P. For more details on stochastic integrals, see the
books of [11,31].

Let C([0, b], L2(Ω,H)) be the Banach space of all continuous mappings from [0, b]

to L2(Ω,H) with the norm ‖x‖C = (supt∈[0,b] E‖x(t)‖2)
1
2 . Let

PC([0, b], L2(Ω,H)) ={x : [0, b]→ L2(Ω,H), x(t) is continuous at t 6= ti,

left continuous at t = ti, and the right limit x(t+i )

exists for i = 1, 2, · · ·, p}.
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PC([0, b], L2(Ω,H)) be the space of all Ft-adapted measurable stochastic processes

x ∈ PC([0, b], L2(Ω,H)) with the norm ‖x‖PC = (supt∈[0,b] E‖x(t)‖2)
1
2 . It is easy to

see that (PC, ‖ · ‖PC) is a Banach space. We suppose that U is a separable reflexive
Hilbert space from which the controls u take the values. Let

L2
F (J, U) ={u : J × Ω→ U : u is Ft − adapted measurable stochastic

processes and E
∫ b

0

‖u(t)‖2dt <∞}.

Let Y be a nonempty closed bounded convex subset of U. Define the admissible
control set

Uad = {u(·) ∈ L2
F (J, U)| u(t) ∈ Y, t ∈ J}.

We assume that the control function u ∈ Uad and B ∈ L∞(J, L(U,H)), ‖B‖∞ stands
for the norm of operator B on Banach space L∞(J, L(U,H)), where L∞(J, L(U,H))
is the space of operator valued functions which are measurable in the strong operator
topology and uniformly bounded on the interval J .

In the rest of the manuscript, we suppose that A generates a compact C0−
semigroup T (t)(t ≥ 0) of uniformly bounded linear operator in H. That is there
exists a positive constant M ≥ 1 such that ‖T (t)‖ ≤M for all t ≥ 0.

The following result will be used in the sequel of this paper.

Lemma 2.1. (see [11]) For any p ≥ 1 and for arbitrary L0
2-valued predictable

process χ(·) such that

sup
s∈[0,t]

E
∥∥∥∥∫ s

0

χ(τ)dW (τ)

∥∥∥∥2p ≤ (p(2p− 1))p
(∫ t

0

(E
∥∥χ(s)

∥∥2p
L0

2
)

1
p ds

)p
, t ∈ [0, ∞).

Definition 2.1. (see [25]) The Riemann-Liouville fractional integral of order α > 0
of a function y : (0, +∞)→ R is given by

Iα0 y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds

provided the right side is pointwise defined on (0,+∞).

Definition 2.2. (see [25]) The Riemann-Liouville fractional derivative of order
α > 0 of a function y : [0, +∞)→ R is given by

Dα
0 y(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0,+∞).

Definition 2.3. (see [25]) The Caputo fractional derivative of order α > 0 of a
function y : [0, +∞)→ R is given by

cDα
0 y(t) = Dα

0

[
y(t)−

n−1∑
k=0

tk

k!
y(k)(0)

]
,

where n = [α] + 1, provided that the right side is pointwise defined on (0,+∞).
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Remark 2.1. (i) If y(t) ∈ Cn[0,+∞), then

cDα
0 y(t) =

1

Γ(n− α)

∫ t

0

y(n)(s)

(t− s)α−n+1
ds = In−α0 y(n)(t).

(ii) If y(t) is an abstract function, then the integrals which appear in Definitions
2.2 and 2.3 are taken in Bochner’s sense.

For x ∈ H, define two operators T (t)(t ≥ 0) and S (t)(t ≥ 0) as follows:

T (t)x =

∫ ∞
0

ζα(θ)T (tαθ)xdθ, S (t)x = α

∫ ∞
0

θζα(θ)T (tαθ)xdθ, (2.1)

where

ζα(θ) =
1

α
θ−1−1/αρα(θ−1/α),

ρα(θ) =
1

π

∞∑
k=0

(−1)n−1θ−αn−1
Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞).

ζα(θ) is a probability density function defined on (0,+∞) which satisfies

ζα(θ) ≥ 0, θ ∈ (0,∞),

∫ ∞
0

ζα(θ)dθ = 1,

∫ ∞
0

θζα(θ)dθ =
1

Γ(1 + α)
. (2.2)

The following lemma about the operators T (t)(t ≥ 0) and S (t)(t ≥ 0), which
can be found in [48], will be used throughout this paper.

Lemma 2.2. The operators T (t)(t ≥ 0) and S (t)(t ≥ 0) satisfy the following
properties:

(i) For any fixed t ≥ 0, T (t) and S (t) are linear and bounded operators in H,
i.e., for any x ∈ H,

‖ T (t)x ‖≤M ‖ x ‖, ‖ S (t)x ‖≤ M

Γ(α)
‖ x ‖ . (2.3)

(ii) For every x ∈ H, t→ T (t)x and t→ S (t)x are continuous functions from
[0,∞) into H.

(iii) The operators T (t)(t ≥ 0) and S (t)(t ≥ 0) are strongly continuous.
(iv) If the semigroup T (t) is compact, then T (t) and S (t) are also compact

operators in H for t > 0, and hence they are norm continuous.

Lemma 2.3. (Krasnoselskii’s Fixed Point Theorem, see [48]). Let X be a Banach
space, let Y be a bounded closed and convex subset of X and let F1, F2 be maps of
Y into X such that F1x+ F2y ∈ Y for every pair x, y ∈ Y . If F1 is a contraction
and F2 is completely continuous, then the equation F1x + F2x = x has a solution
on Y .

According to [33, 41], we adopt the following definition of the mild solution of
(1.1).

Definition 2.4. For any given u ∈ Uad, a stochastic process x is said to be a mild
solution of (1.1) on [0, b] if x ∈ PC([0, b], L2(Ω,H)) and satisfies
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(i) x(t) is measurable and adapted to Ft;
(ii)x(t) satisfies the following integral equation

x(t) =T (t)g(x) +

∫ t

0

(t− s)α−1S (t− s)[f(s, x(s)) +B(s)u(s)]ds

+

∫ t

0

(t− s)α−1S (t− s)σ(s, x(s))dW (s) +
∑

0<ti<t

T (t− ti)Ii(x(ti)).

3. Existence and uniqueness of mild solution

To prove the main results, we list some assumptions:

(H1) Let f : [0, b] × H → H be a continuous function. Suppose also that the
following assumptions are satisfied:

(i) There exists a constant Lf such that

‖f(t, x)‖2 ≤ Lf (1+ ‖ x ‖2), t ∈ J, x ∈ H.

(ii) For some r > 0, there exists a constant Lf such that for all t ∈ J and
x, y ∈ H satisfying ‖x‖2 ≤ r, ‖y‖2 ≤ r,

‖f(t, x)− f(t, y)‖2 ≤ Lf ‖ x− y ‖2 .

(H2) Let σ : J ×H→ L0
2 be a continuous function. Suppose also that the following

assumptions are satisfied:
(i) There exists a constant Lσ such that

‖σ(t, x)‖2L0
2
≤ Lσ(1+ ‖ x ‖2), t ∈ J, x ∈ H.

(ii) For some r > 0, there exists a constant Lσ such that for all t ∈ J and
x, y ∈ H satisfying ‖x‖2 ≤ r, ‖y‖2 ≤ r,

‖σ(t, x)− σ(t, y)‖2L0
2
≤ Lσ ‖ x− y ‖2 .

(H3) Let h : J ×H→ H be a continuous function. Suppose also that the following
assumptions are satisfied:

(i) There exists a constant Lh such that

‖h(t, x)‖2 ≤ Lh(1+ ‖ x ‖2), t ∈ J, x ∈ H.

(ii) For some r > 0, there exists a constant Lh such that for all t ∈ J and
x, y ∈ H satisfying ‖x‖2 ≤ r, ‖y‖2 ≤ r,

‖h(t, x)− h(t, y)‖2 ≤ Lh ‖ x− y ‖2 .

(H4) Let Ii : H→ H be a continuous function for every i = 1, 2, · · ·, p. Suppose also
that the following assumptions are satisfied:

(i) There exist constants Mi (i = 1, 2, · · ·, p) such that

‖Ii(x)‖2 ≤Mi‖x‖2, i = 1, 2, · · ·, p, x ∈ H.

(ii) For some r > 0, there exist constants M i (i = 1, 2, · · ·, p) such that for all
t ∈ J and x, y ∈ H satisfying ‖x‖2 ≤ r, ‖y‖2 ≤ r,

‖Ii(x)− Ii(y)‖2 ≤M i‖x− y‖2 i = 1, 2, · · ·, p.

We are now ready to state our main results.
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Theorem 3.1. Assume that −A generates a compact C0-semigroup T (t)(t ≥ 0)
of uniformly bounded operators in Hilbert space H. If the assumptions (H1)(i),
(H2)(i), (H3) and (H4) are satisfied, then impulsive fractional stochastic systems
with nonlocal conditions (1.1) has at least one mild solution in PC([0, b], L2(Ω,H))
provided that

N +M2p

p∑
i=1

Mi <
1

5
(3.1)

and

M2b2Lh + M2p

p∑
i=1

M i <
1

2
(3.2)

are satisfied, where

N = M2b2Lh + c0bLf + c0Lσ, c0 =
M2

Γ2(α)
· b

2α−1

2α− 1
.

Proof. For any constant r > 0, let

Br = {x ∈ PC([0, b], L2(Ω,H)) : ‖x‖2PC ≤ r}.

It is easy to see that Br is a bounded closed convex set in PC([0, b], L2(Ω,H)).

Define two operators F1 and F2 on Br as follows:

(F1x)(t) =T (t)g(x) +
∑

0<ti<t

T (t− ti)Ii(x(ti)), t ∈ [0, b],

(F2x)(t) =

∫ t

0

(t− s)α−1S (t− s)f(s, x(s))ds+

∫ t

0

(t− s)α−1S (t− s)B(s)u(s)ds

+

∫ t

0

(t− s)α−1S (t− s)σ(s, x(s))dW (s), t ∈ [0, b].

Obviously, x is a mild solution of (1.1) if and only if the operator equation x =
F1x+ F2x has a solution.

Next we prove that F1 + F2 has a fixed point by Krasnoselskii’s Fixed Point
Theorem. For this, we proceed in several steps.

Step 1. We prove that there exists a positive number r0 such that F1x+F2y ∈ Br0
whenever x, y ∈ Br0 .

In fact, choose

r0 ≥
5
(
N + c0‖B‖2∞

∫ b
0
E‖u(s)‖2ds

)
1− 5

(
N +M2p

∑p
i=1Mi

) ,

then for every pair x, y ∈ Br0 and t ∈ J , by Lemma 2.1, Lemma 2.6, conditions
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(H1)(i), (H2)(i) and Hölder inequality, we have

E‖(F1x)(t) + (F2y)(t)‖2

≤5E‖T (t)g(x)‖2 + 5E
∥∥∥∥ ∑

0<ti<t

T (t− ti)Ii(x(ti))

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

(t− s)α−1S (t− s)f(s, y(s))ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

(t− s)α−1S (t− s)B(s)u(s)ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

(t− s)α−1S (t− s)σ(s, y(s))dW (s)

∥∥∥∥2
≤5M2b

∫ b

0

Lh(1 + E‖x(s)‖2)ds+ 5M2p

p∑
i=1

Mi(E‖x(ti)‖2)

+ 5c0

∫ t

0

Lf (1 + E‖y(s)‖2)ds+ 5c0

∫ t

0

E‖B(s)u(s)‖2ds

+
5M2

Γ2(α)

∫ t

0

(t− s)2α−2Lσ(1 + E‖y(s)‖2)ds

≤5M2b2Lh(1 + r0) + 5M2pr0

p∑
i=1

Mi + 5c0bLf (1 + r0)

+ 5c0‖B‖2∞
∫ b

0

E‖u(s)‖2ds+ 5c0Lσ(1 + r0)

= 5
(
N +M2p

p∑
i=1

Mi

)
r0 + 5

(
N + c0‖B‖2∞

∫ b

0

E‖u(s)‖2ds
)

≤r0.

It then follows that F1 + F2 maps Br0 to Br0 .

Step 2. F1 is a contraction on Br0 .

For any x, y ∈ Br0 and t ∈ J , it follows from (H3) and (H4) that

E‖(F1x)(t)− (F1y)(t)‖2

≤2E
∥∥∥∥T (t)

∫ t

0

[h(s, x(s))− h(s, y(s))]ds

∥∥∥∥2
+ 2E

∥∥ p∑
i=1

T (t− ti)[Ii(x(ti)− Ii(y(ti)]
∥∥2

≤
(
2M2b2Lh + 2M2p

p∑
i=1

M i

)
‖x− y‖2PC ,

which implies that

‖F1x− F1y‖2PC ≤ 2
(
M2b2Lh + M2p

p∑
i=1

M i

)
‖x− y‖2PC .
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By (3.2), we easily see that F1 is a contraction on Br0 .

Step 3. F2 is a completely continuous operator.
Firstly, we show that the mapping F2 is continuous on Br0 . For this purpose, let

xm → x in Br0 , then we have

f(t, xm(t))→ f(t, x(t)), σ(t, xm(t))→ σ(t, x(t)), (m→∞).

Moreover, by Hölder inequality and Lebesgue dominated convergence theorem, we
can get

E
∥∥∥∥∫ t

0

(t− s)α−1S (t− s)
[
f(s, xm(s))− f(s, x(s))

]
ds

∥∥∥∥2
≤
(

M

Γ(α)

)2 ∫ t

0

(t− s)2α−2ds
∫ t

0

E‖f(s, xm(s))− f(s, x(s))‖2ds

≤ b2α−1

2α− 1

(
M

Γ(α)

)2 ∫ t

0

E‖f(s, xm(s))− f(s, x(s))‖2ds

→0 (m→∞).

On the other hand, from Lemma 2.1, Hölder inequality and Lebesgue dominated
convergence theorem, we obtain

E
∥∥∥∥∫ t

0

(t− s)α−1S (t− s)
[
σ(s, xm(s))− σ(s, x(s))

]
dW (s)

∥∥∥∥2
≤
(

M

Γ(α)

)2 ∫ t

0

(t− s)2α−2E‖σ(s, xm(s))− σ(s, x(s))‖2ds

→ 0 (m→∞).

By the above discuss, we obtain the following relation:

E‖F2(xm)− F2(x)‖2

≤ 2 E
∥∥∥∥ ∫ t

0

(t− s)α−1S (t− s)
[
f(s, xm(s))− f(s, x(s))

]
ds

∥∥∥∥2
+ 2 E

∥∥∥∥∫ t

0

(t− s)α−1S (t− s)
[
σ(s, xm(s))− σ(s, x(s))

]
dW (s)

∥∥∥∥2
→ 0 (m→∞),

which means that F2(x) is continuous in Br0 .
Secondly, we prove that for any t ∈ J , V (t) = {F2(x)(t), x ∈ Br0} is relatively

compact in H. It is obvious that V (0) is relatively compact in H. Let 0 < t ≤ b be
given. For any ε ∈ (0, t) and ν > 0, define an operator F ε,ν on Br0 by

(F ε,νx)(t)

=α

∫ t−ε

0

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ)[f(s, x(s)) +B(s)u(s)]dθds

+ α

∫ t−ε

0

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ)σ(s, x(s))dθdW (s)
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=T (εαν)α

∫ t−ε

0

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ − εαν)[f(s, x(s)) +B(s)u(s)]dθds

+ T (εαν)α

∫ t−ε

0

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ − εαν)σ(s, x(s))dθdW (s).

Then the set {(F ε,νx)(t) : x ∈ Br} is relatively compact in H because T (εαν) is
compact. From (H1)(i), (H2)(i), Lemma 2.1, Lemma 2.6 and Hölder inequality, we
get that

E‖(F1x)(t)− (F ε,νx)(t)‖2

≤ 4E
∥∥∥∥α ∫ t

0

∫ ν

0

θζα(θ)(t− s)α−1T ((t− s)αθ)[f(s, x(s)) +B(s)u(s)]dθds

∥∥∥∥2
+ 4E

∥∥∥∥α ∫ t

t−ε

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ)[f(s, x(s)) +B(s)u(s)]dθds

∥∥∥∥2
+ 4E

∥∥∥∥α ∫ t

0

∫ ν

0

θζα(θ)(t− s)α−1T ((t− s)αθ)σ(s, x(s))dθdW (s)

∥∥∥∥2
+ 4E

∥∥∥∥α ∫ t

t−ε

∫ ∞
ν

θζα(θ)(t− s)α−1T ((t− s)αθ)σ(s, x(s))dθdW (s)

∥∥∥∥2
≤4M2α2b2α−1

2α− 1

∫ t

0

E‖f(s, x(s)) +B(s)u(s)‖2ds
(∫ ν

0

θζα(θ)dθ

)2

+
4M2α2ε2α−1

(2α− 1)Γ2(1 + α)

∫ t

t−ε
E‖f(s, x(s)) +B(s)u(s)‖2ds

+ 4M2α2

∫ t

0

(t− s)2(α−1)E‖σ(s, x(s))‖2L0
2
ds

(∫ ν

0

θζα(θ)dθ

)2

+
4M2α2

Γ2(1 + α)

∫ t

t−ε
(t− s)2(α−1)E‖σ(s, x(s))‖2L0

2
ds

≤4M2α2b2α−1

2α− 1

(
2bLf (1 + r0) + 2‖B‖2∞

∫ b

0

E‖u(s)‖2ds
)(∫ ν

0

θζα(θ)dθ

)2

+
4M2α2ε2α−1

(2α− 1)Γ2(1 + α)

(
2Lf (1 + r0)ε+ 2‖B‖2∞

∫ b

0

E‖u(s)‖2ds
)

+
4M2α2b2α−1

2α− 1
Lσ(1 + r0)

(∫ ν

0

θζα(θ)dθ

)2

+
4M2α2ε2α−1

(2α− 1)Γ2(1 + α)
Lσ(1 + r0)→ 0 (ε, ν → 0).

Hence, there are relatively compact sets arbitrarily close to the set V (t)(t > 0) in
H. Therefore, the set V (t) is relatively compact in H.

Finally, we prove that F1(Br0) equicontinuous on J .

For any x ∈ Br0 and 0 ≤ t1 < t2 ≤ b, we have

E‖(F1x)(t2)− (F1x)(t1)‖2

+ 6E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S (t2 − s)
[
f(s, x(s)) +B(s)u(s)

]
ds

∥∥∥∥2
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+ 6E
∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
S (t2 − s)

[
f(s, x(s)) +B(s)u(s)

]∥∥∥∥2
+ 6E

∥∥∥∥∫ t1

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

][
f(s, x(s)) +B(s)u(s)

]∥∥∥∥2
+ 6E

∥∥∥∥∫ t2

t1

(t2 − s)α−1S (t2 − s)σ(s, x(s))dW (s)

∥∥∥∥2
+ 6E

∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
S (t2 − s)σ(s, x(s))dW (s)

∥∥∥∥2
+ 6E

∥∥∥∥∫ t1

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

]
σ(s, x(s))dW (s)

∥∥∥∥2
=I1 + I2 + I3 + I4 + I5 + I6.

In order to prove E‖(Fx)(t2)− (Fx)(t1)‖2 → 0(t2− t1 → 0) , we only need to show
Ii → 0 independently of x ∈ Br0 when t2 − t1 → 0 for i = 1, 2, · · ·, 6.

For I1 and I4, we obtain by (H2)(i), (H3)(i), Lemma 2.1 and Lemma 2.6 that

I1 = 6E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S (t2 − s)
[
f(s, x(s)) +B(s)u(s)

]
ds

∥∥∥∥2
≤ 6M2

Γ2(α)

∫ t2

t1

(t2 − s)2α−2ds
∫ t2

t1

E‖f(s, x(s)) +B(s)u(s)‖2ds

≤
6M2

[
2bLf (1 + r0) + 2‖B‖2∞

∫ b
0
E‖u(s)‖2ds

]
Γ2(α)

· (t2 − t1)2α−1

2α− 1

→ 0 (t2 − t1 → 0),

I4 = 6E
∥∥∥∥∫ t2

t1

(t2 − s)α−1S (t2 − s)σ(s, x(s))dW (s)

∥∥∥∥2
≤ 6M2

Γ2(α)

∫ t2

t1

(t2 − s)2α−2E‖σ(s, x(s))‖2ds

≤ 6M2Lσ(1 + r0)

Γ2(α)
· (t2 − t1)2α−1

2α− 1

→ 0 (t2 − t1 → 0).

In a similar way, for I2 and I5, we get

I2 = 6E
∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
S (t2 − s)

[
f(s, x(s)) +B(s)u(s)

]∥∥∥∥2
≤ 6M2

Γ2(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]2
ds

∫ t1

0

E‖f(s, x(s)) +B(s)u(s)‖2ds

≤
6M2

[
2Lfb(1 + r0) + 2‖B‖2∞

∫ b
0
E‖u(s)‖2ds

]
Γ2(α)

×
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]2
ds

→ 0 (t2 − t1 → 0),
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I5 = 6E
∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
S (t2 − s)σ(s, x(s))

∥∥∥∥2
≤ 6M2

Γ2(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]2E‖σ(s, x(s))‖2ds

≤ 6M2Lσ(1 + r0)

Γ2(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]2
ds

→ 0 (t2 − t1 → 0).

Further, for I3 and I6, if t1 = 0, 0 < t2 < b, it is easy to see I3 = I6 = 0, so for
t1 > 0 and 0 < ε < t1 small enough, we have that

I3 =6E
∥∥∥∥ ∫ t1

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

][
f(s, x(s)) +B(s)u(s)

]
ds

∥∥∥∥2
≤12E

∥∥∥∥∫ t1−ε

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

][
f(s, x(s)) +B(s)u(s)

]
ds

∥∥∥∥2
+ 12E

∥∥∥∥∫ t1

t1−ε
(t1 − s)α−1

[
S (t2 − s)−S (t1 − s)

][
f(s, x(s)) +B(s)u(s)

]
ds

∥∥∥∥2
≤12 sup

s∈[0,t1−ε]
‖S (t2 − s)− (t1 − s)‖2

(
2Lfb(1 + r0) + 2‖B‖2∞

∫ b

0

E‖u(s)‖2ds
)

× t2α−11 − ε2α−1

2α− 1

+ 12

(
2M

Γ(α)

)2(
2Lfb(1 + r0) + 2‖B‖2∞

∫ b

0

E‖u(s)‖2ds
) ε2α−1

2α− 1

→0 (t2 − t1 → 0 and ε→ 0).

I6 =6E
∥∥∥∥ ∫ t1

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

]
σ(s, x(s))dW (s)

∥∥∥∥2
≤12E

∥∥∥∥∫ t1−ε

0

(t1 − s)α−1
[
S (t2 − s)−S (t1 − s)

]
σ(s, x(s))ds

∥∥∥∥2
+ 12E

∥∥∥∥∫ t1

t1−ε
(t1 − s)α−1

[
S (t2 − s)−S (t1 − s)

]
σ(s, x(s))ds

∥∥∥∥2
≤12 sup

s∈[0,t1−ε]
‖S (t2 − s)−S (t1 − s)‖2Lσ(1 + r0)

t2α−11 − ε2α−1

2α− 1

+ 12

(
2M

Γ(α)

)2

Lσ(1 + r0)
ε2α−1

2α− 1

→0 (t2 − t1 → 0 and ε→ 0).

This implies that F1(Br0) is equicontinuous.
Hence by the Arzela-Ascoli theorem one has that F2 is a completely continuous

operator. Thus, by Lemma 2.7, F1 +F2 has at least a fixed point x ∈ Br0 , which is
just the mild solution of system (1.1).

This completes the proof of Theorem 3.1.
Furthermore, if conditions (H1)(ii) and (H2)(ii) also hold, we can obtain the

uniqueness theorem for system (1.1).
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Theorem 3.2. Assume that −A generates a compact C0-semigroup T (t)(t ≥ 0) of
uniformly bounded operators in Hilbert space H. Suppose the assumptions (H1)-(H4)
hold, then impulsive fractional stochastic systems with nonlocal conditions (1.1) has
an unique mild solution in PC([0, b], L2(Ω,H)) provided that (3.1) and

4

(
M2b2Lh + M2p

p∑
i=1

M i + c0Lfb+ c0Lσb

)
< 1, (3.3)

are satisfied.

Proof. Introduce the mapping F : PC([0, b], L2(Ω,H))→ PC([0, b], L2(Ω,H)) by

(Fx)(t) = (F1x)(t) + (F2x)(t), t ∈ [0, b].

Clearly, the mild solution of system (1.1) is equivalent to the fixed point of the
operator F . By Step 1 of Theorem 3.1, we know that F (Br0) ⊂ Br0 . For any
x1, x2 ∈ Br0 and t ∈ J , we have

E‖(Fx2)(t)− (Fx1)(t)‖2

≤4E‖T (t)[g(x2)− g(x1)]‖2 + 4E
∥∥ ∑

0<ti<t

T (t− ti)[Ii(x2(ti))− Ii(x1(ti))]
∥∥2

+ 4E
∥∥∫ t

0

(t− s)α−1S (t− s)[f(s, x2(s))− f(s, x1(s))]ds
∥∥2

+ 4E
∥∥∫ t

0

(t− s)α−1S (t− s)[σ(s, x2(s))− σ(s, x1(s))]dW (s)
∥∥2

≤4M2b

∫ b

0

E
∥∥h(s, x2(s))− h(s, x1(s))

∥∥2ds
+ 4M2p

p∑
i=1

E
∥∥Ii(x2(ti))− Ii(x1(ti))

∥∥2
+

4M2

Γ2(α)

b2α−1

2α− 1

∫ t

0

E
∥∥f(s, x2(s))− f(s, x1(s))

∥∥2ds
+

4M2

Γ2(α)

b2α−1

2α− 1

∫ t

0

E
∥∥σ(s, x2(s))− σ(s, x1(s))

∥∥2ds
≤4M2bLh

∫ b

0

E
∥∥x2(s)− x1(s)

∥∥2ds+ 4M2p

p∑
i=1

M iE
∥∥x2(ti)− x1(ti)

∥∥2
+

4M2

Γ2(α)

b2α−1

2α− 1
Lf

∫ t

0

E
∥∥x2(s)− x1(s)

∥∥2ds
+

4M2

Γ2(α)

b2α−1

2α− 1
Lσ

∫ t

0

E
∥∥x2(s))− x1(s)

∥∥2ds
≤4M2b2Lh

∥∥x2 − x1∥∥2PC + 4M2p

p∑
i=1

M i

∥∥x2 − x1∥∥2PC
+

4M2

Γ2(α)

b2α−1

2α− 1
Lfb

∥∥x2 − x1∥∥2PC +
4M2

Γ2(α)

b2α−1

2α− 1
Lσb

∥∥x2 − x1∥∥2PC
=4

(
M2b2Lh + M2p

p∑
i=1

M i + c0Lfb+ c0Lσb

)∥∥x2 − x1∥∥2PC
:=κ

∥∥x2 − x1∥∥2PC .
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Hence
‖(Fx2)− (Fx1)‖2PC ≤ κ‖x2 − x1‖2PC .

We have by (3.3) that F is a contraction mapping on Br0 . Thus, by the well known
contraction mapping principle we know that F has a unique fixed point x ∈ Br0 ,
that is, x(t) is the unique mild solution of system (1.1).

This completes the proof of Theorem 3.2.

4. Existence of optimal controls

In this section, we investigate the existence of optimal controls.
Let xu denote the mild solution of system (1.1) corresponding to the control

u ∈ Uad. Consider the Lagrange problem (P):

Find an optimal pair (x0, u0) ∈ PC([0, b], L2(Ω,H))× Uad such that

J (x0, u0) ≤ J (xu, u), for all (xu, u) ∈ PC([0, b], L2(Ω,H))× Uad, (4.1)

where the cost function

J (xu, u) = E
(∫ b

0

L (t, xu(t), u(t))dt

)
.

Assume that

(L1) The functional L : J ×H× U→ R ∪ {∞} is Ft measurable.
(L2) For any t ∈ J , L (t, ·, ·) is sequentially lower semicontinuous on H× U.
(L3) For any t ∈ J and x ∈ H, L (t, x, ·) is convex on U.
(L4) There exist two constants d1 ≥ 0, d2 > 0, ξ is nonnegative and ξ ∈ L1(J,R)
such that

L (t, x, u) ≥ ξ(t) + d1E‖x‖2 + d2E‖u‖2.

Now we are in a position to present the existence of optimal controls for problem
(P).

Theorem 4.1. Let hypothesis of Theorem 3.2 and (L1)-(L4) hold. Suppose that B
is a strongly continuous operator, then Lagrange problem (P) admits at least one
optimal pair, that is, there exists an admissible state-control pair

(x0, u0) ∈ PC([0, b], L2(Ω,H))× Uad,

such that

J (x0, u0) ≤ J (xu, u), for all (xu, u) ∈ PC([0, b], L2(Ω,H))× Uad. (4.2)

Proof. Without loss of generality, we suppose that

inf{J (xu, u)|u ∈ Uad} = ε < +∞.

Otherwise, there is nothing to prove. It follows from (L4) that ε > −∞. We
obtain by definition of infimum that there is a minimizing sequence of feasible pairs
(xm, um) ∈ PC([0, b], L2(Ω,H))× Uad such that

J (xm, um)→ ε, m→∞,
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where xm is a mild solution of system (1.1) corresponding to um ∈ Uad.
Note that {um} ⊂ Uad(m = 1, 2, · · ·), which implies that {um} ∈ L2

F (J, U) is
bounded. Thus, there exists u0 ∈ L2

F (J, U) and a subsequence extracted from {um}
(still denoted {um}) such that

um
w−→ u0 (m→∞).

Since Uad is convex and closed, from the Marzur theorem [24], we deduce that
u0 ∈ Uad.

Let x0 be the mild solution of (1.1) corresponding to u0. It follows the bounded-
ness of {um}, {u0}, one can check that there exists a positive number r0 such that
‖xm‖2PC ≤ r0, ‖x0‖2PC ≤ r0. For t ∈ J , we have

E‖xm(t)− x0(t)‖2

≤ 4E‖T (t)[g(xm)− g(x0)]‖2 + 4E
∥∥ ∑

0<ti<t

T (t− ti)[Ii(x2(ti))− Ii(x0(ti))]
∥∥2

+ 4E
∥∥∥∥ ∫ t

0

(t− s)α−1S (t− s)
[(
f(s, xm(s))− f(s, x0(s))

)
+
(
B(s)um(s)−B(s)u0(s)

)]
ds

∥∥∥∥2
+ 4E

∥∥∥∥ ∫ t

0

(t− s)α−1S (t− s)[σ(s, xm(s))− σ(s, x0)]dW (s)

∥∥∥∥2
≤4M2b

∫ b

0

E
∥∥h(s, xm(s))− h(s, x0(s))

∥∥2ds
+ 4M2p

p∑
i=1

E
∥∥Ii(xm(ti))− Ii(x0(ti))

∥∥2
+

4M2

Γ2(α)

b2α−1

2α− 1

∫ t

0

2E
∥∥f(s, xm(s))− f(s, x0(s))

∥∥2
+

4M2

Γ2(α)

b2α−1

2α− 1

∫ t

0

2E
∥∥B(s)um(s)−B(s)u0(s)

∥∥ds
+

4M2

Γ2(α)

b2α−1

2α− 1

∫ t

0

E
∥∥σ(s, xm(s))− σ(s, x0(s))

∥∥2ds
≤4M2b2Lh

∥∥xm − x1∥∥2PC + 4M2p

p∑
i=1

M i

∥∥xm − x0∥∥2PC
+

8M2

Γ2(α)

b2α−1

2α− 1
Lfb

∥∥xm − x0∥∥2PC +
4M2

Γ2(α)

b2α−1

2α− 1
Lσb

∥∥xm − x0∥∥2PC
+

8M2

Γ2(α)

b2α−1

2α− 1

∥∥Bum −Bu0∥∥2
L2

F (J, U)

=4

(
M2b2Lh + M2p

p∑
i=1

M i + 2c0Lfb+ c0Lσb

)∥∥xm − x0∥∥2PC
+ 8c0

∥∥Bum −Bu0∥∥2
L2

F (J, U),
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which means

∥∥xm − x0∥∥2PC ≤ 8c0
∥∥Bum −Bu0∥∥2

L2
F (J, U)

1− 4

(
M2b2Lh + M2p

∑p
i=1M i + 2c0Lfb+ c0Lσb

) .

Since B is strongly continuous, we get

∥∥Bum −Bu0∥∥2
L2

F (J, U)
s−→ 0 (m→∞).

Consequently, ∥∥xm − x0∥∥2PC s−→ 0 (m→∞).

Thus, by (L1)-(L4)and Balder’s theorem (see Theorem 2.1 [3]), we can deduce

that (x, u)→ E
(∫ b

0
L (t, x(t), u(t))dt

)
is sequentially lower semicontinuous in the

strong topology of L1
F (J, H) and weak topology of L2

F (J, U) ⊂ L1
F (J, U). Hence,

J is weakly lower semicontinuous on L2
F (J, U). Therefore, we obtain

ε = lim
m→∞

E
(∫ b

0

L (t, xm(t), um(t))dt

)
≥ E

(∫ b

0

L (t, x0(t), u0(t))dt

)
= J (x0, u0)

≥ ε,

which implies that u0 ∈ Uad is a minimum of J .

This completes the proof of Theorem 4.1.

Remark 4.1. The result of Theorem 4.1 can be extended to the noninstantaneous
impulsive fractional stochastic evolution equations with nonlocal conditions. The
corresponding result that appear are also new.

Remark 4.2. In recent paper [16], Dhayal et al. studied the existence of optimal
multicontrol pairs for a class of noninstantaneous impulsive fractional stochastic
differential systems. In [15], Dhayal et al. obtained the optimal pair for a nonlin-
ear system governed by the fractional differential equation by using the resolvent
family and approximation techniques. In [14], Dhayal et al. discussed the approx-
imate and trajectory controllability for a class of fractional stochastic differential
equations with noninstantaneous impulses. Inspired by [14–16], in the future, we
will investigate the fractional stochastic evolution equations with nonlocal initial
conditions and noninstantaneous impulsive.

Remark 4.3. The uniqueness of the solution is a prerequisite for discussing optimal
control, so it is necessary that the mild solution of (1.1) should be unique.
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5. Application

To illustrate the main result, we consider the following fractional stochastic control
system

∂
2
3

∂t
2
3

x(z, t)− ∂2

∂s2
x(z, t) =

( sin t

10
+
x(z, t)

t+ 10

)
+

1

10

( 1

1 + et
+
| x(z, t) |

1+ | x(z, t) |
)dW (t)

dt

+

∫ 1

0

K(z, s)u(s, t)ds, z ∈ [0, 1], t ∈ [0, 1], t 6= 1

2
,

∆x(
1

2
, z) =

| x(z, t) |
5+ | x(z, t) |

, z ∈ [0, 1],

x(0, t) = x(π, t) = 0, t ∈ [0, 1],

x(z, 0) =

∫ 1

0

1

8

(
e−t + sin(x(z, s))

)
ds, z ∈ [0, 1],

(5.1)
where W (t) is a standard one dimensional Brownian motion defined on the filtered
probability space (Ω,F , {Ft}t≥0, P ).

In order to write the above system (5.1) into the abstract form of (1.1), let

H = U = L2[0, 1] with the norm ‖w‖ =
( ∫ 1

0
|w(z)|2dz

) 1
2 . Define the operator

A : D(A) ⊂ H→ H by

D(A) = {w ∈ H | w′, w′′ ∈ X,w(0) = w(1) = 0}, Aw = −∂
2w

∂z2
.

We know that −A generates a compact, analytic semigroup T (t)(t ≥ 0) in H and

T (t)v = Σ∞n=1e
−n2t(v, vn)vn, ‖T (t)‖ ≤ e−t < 1, t > 0,

where vn =
√

2 sin(ns), n = 1, 2, · · · is the orthogonal set of eigenvectors in A.
Moreover, we assume that K : [0, 1] × [0, 1] → R is continuous, and the admissible
control set

Uad = {u ∈ U | ‖u‖L2
F
≤ 1}.

For any t ∈ [0, 1], let

x(t)(z) = x(z, t), B(t)u(t)(z) =

∫ 1

0

K(z, s)u(s, t)ds,

f(t, x(t))(z) =
sin t

10
+
x(z, t)

t+ 10
, σ(t, x(t))(z) =

1

10

( 1

1 + et
+
| x(z, t) |

1+ | x(z, t) |
)
,

I1(x(t))(z) =
| x(z, t) |

5+ | x(z, t) |
, h(t, x(t))(z) =

1

8

(
e−t + sin(x(z, s))

)
.

Then the problem (5.1) can be rewritten into the abstract form of (1.1) with the
cost function

J (x, u) = E
(∫ b

0

∫ 1

0

|x(z, t)|2dzdt+

∫ b

0

∫ 1

0

|u(z, t)|2dzdt
)
.

We can easily check that the assumptions (H1)-(H4) holds with  Lf =  Lσ = 1
50 , Lf =

Lσ = 1
100 ,  Lh = Lh = 1

32 and M1 = M1 = 1
25 . In addition,

N +M2p

p∑
i=1

Mi <
1

32
+ 1.68 · 1

25
≈ 0.09 <

1

5
,
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M2b2Lh + M2p

p∑
i=1

M i =
1

32
+

1

25
<

1

2
,

M2b2Lh + M2p

p∑
i=1

M i + c0Lfb+ c0Lσb <
1

32
+

1

25
+ 1.68 · 1

50
≈ 0.1 < 0.25.

Hence, by Theorem 4.1, system (5.1) has at least one optimal pair.

6. Conclusions

In this paper, the optimal controls for a class of impulsive stochastic fractional evo-
lution equations with nonlocal initial conditions in a Hilbert space is studied. More
precisely, by utilizing the fractional calculus, stochastic analysis theory, and fixed
point theorems, we obtained the existence and uniqueness of mild solutions and
optimal pairs for these equations. Finally, an example is provided to show the effec-
tiveness of the proposed results. There are two direct issues which require further
study. We will investigate the fractional stochastic evolution equations for order
α ∈ (1, 2] with nonlocal initial conditions and noninstantaneous impulsive. Also,
we will be devoted to study the optimal controls problem for fractional stochastic
partial differential inclusions with nonlocal initial conditions.
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