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UNIVERSAL APPROACH TO THE
TAKESAKI-TAKAI v-DUALITY

Mykola Ivanovich Yaremenko®f

Abstract In this article, we generalize and simplify the proof of the Takesaki-
Takai y-duality theorem. Assume a morphismw : G — Aut (A) is a projective
representation of the locally compact Abel group G in Aut (A), mapping v :
G — G is continuous, and (A, G, w) is a dynamic system then there exists
isomorphism

T 5 Bnes” (L (G, Bl (I (G, A)))) > A® LK (L (@)
which is the equivariant for the double dual action
@ G — Aut (Env@AY (L1 (G, Env,” (Ll (G, A))))) .

These results deepen our understanding of the representation theory and are
especially interesting given their possible applications to problems of the quan-
tum theory.
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gin duality, induced representation, cross product.
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1. Introduction

Let G be a locally compact group, let Cc (G) be a space of real-valued function
with compact support.

Definition 1.1. A Radon measure on a locally compact group G is called a linear
form p on C¢ (G) such that for any compact set K C G restriction of the linear
form p to subspace C¢ (K) C C¢ (G) functions of Ce (G) which support contains
in K, is continuous in the topology of uniform convergence. The value p (¢)) of the
Radon measure p on the continuous function ¥ € C¢ (G) with compact support is
called a Radon integral of the function ).

As a consequence of the definition, we have that for any compact subset K C G
there exists a constant ¢ (K) dependent on K such that the equality

lu ()] < vl

Ce(@)

holds for all ¥ € Cc (G).
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Let Cc™ (G) be s set of all finite positive continuous functions with compact
supports. We denote by g (G) the set of all lower semicontinuous positive functions
i.e., all functions ¢ such that at every point gg of its domain satisfy the following
condition

lim inf 4 (g) = ¢ (g0) -

9g—gogeG

Definition 1.2. Let p be positive Radon measure on G, then the upper integral
w* (1) of a function ¢ € g (G) is defined by

() = sup p() .
peCct(G), »<y

The upper integral of an arbitrary positive function ¢ : G — R* is defined by

*

pr(P) = inf

M*
pEP+(G), @>9¢

Definition 1.3. The outer measure p* (E) of an arbitrary subset £ C G is an
upper integral p* (1g) of the characteristic function 15 of E.

The set M (G) of all Radon measures p on the locally compact space G is the
space of all linear forms on the vector space Cc (G) and thus M (G) is a topological
space with the x-weak or so-called wide topology of the weak convergence. If G is a
compact group then the wide topology coincides with the classical weak topology.

Wide topology in M (G) can be defined by seminorms p — sup |u (¢;)|, where

1<i<k

{¥i}1<ick € Cc (G) is an arbitrary finite sequence of functions of Ce (G).

The dual group G consists of all homomorphisms (characters) from G' to the
circle group with natural measure /i (x) = [ x (9)du (g), x € G.
The Fourier transform of a function v € L! (GQ) is given by

0 = /G ¥ (9) X (@)du(g).

Let A be a C*-algebra then we call a triplet (A, G, w) a dynamical system where
w : G — Aut (A) is a strongly continuous representation, and let H be a Hilbert
space then a triplet (H, 7, p) is called a covariant representation of (A, G, w).

The Takai duality theory is a generalization of the Takesai duality theorem for
the Neumann algebras, which are unital *-algebras of bounded operators on Hilbert
spaces that are closed in the weak operator topology. The classical Takai duality
theorem can be formulated as follows: let (A, w) be an action of an Abelian group
G then there exists an isomorphism T from the iterated product (A x,, G) X4 G to
the maximal product A ® LK (L*(G)).

Considerable interest in C*-algebras is justified by many applications to the
problems of quantum mechanics for instance so-called von Neumann algebras. Some
applications of C*-algebras to quantum physics are described in [9,15]. B. Abadie [1]
considers the Cuntz-Krieger-Pimsner algebras that be a generalization of the crossed
product by the set of integer numbers and Toeplitz and Cuntz-Krieger algebras.
In [2,3], the Cuntz—Pimsner covariance condition is considered as a nondegeneracy
condition for representations of cross algebras and a groupoid model for the Cuntz—
Pimsner algebra is constructed; in [11], the author considers the C*-envelope of a
tensor algebra as the corresponding Cuntz- Krieger C*-algebra.
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We will consider the cross product of C*-algebra A x,,G as the universal envelop-
ing C*-algebra Enuv,, (Ll (G, A)) of the Banach algebra completed in the universal
norm. The covariant representation (H, m, p) can be unequivocally characterized
by morphism (p x 7) : LP (G, A)E — LB (H, H). This approach can be applied
to generalize this theory to include the pseudo-differential operators for general
quantization. Thus, we could define a binary operation as

(U1 Oy U2) (9)
=/Gw (7 (g)flv(h)) Uy (h)w (v (9) " hy (h71g), Uy (h‘lg)) dyu (h)

and U197 (g) = w (fy (9)" " hy (g7, (I (g’l))*) where v : G — G is a con-
tinuous function. So, we could define a - quantization for v : G — G, and cor-
responding pseudo-differential operators, and recover the Weyl-Wigner theory; the

next logical step in generalization is to consider p-Schatten classes. For further read-
ing consider a list of references [1-7,9-12,15,16,18] and the most recent [8,13,14,17].

2. The C*-algebra

Let A be a C*-algebra. Let G be a locally compact group equipped with Haar
measure p. Let for each g € G we define a C*-algebra isomorphism w (g) : A — A,
for each fixed ¥ € A the morphism w (g, ¥) is a continuous mapping w (-, ¥)
G — A and satisfies the semigroup condition w (g, ¥) ow (h, ¥) = w (gh, ¥) for all
g, h € G, a such defined morphism will be denoted w : G — Aut (A). The triplet
(A, G, w) is called a dynamical system.

Definition 2.1. Let H be a separable Hilbert space, 7 : G — U (H) be a
continuous unitary representation, p : A — LB (H) be a x-representation, then the
covariant representation is a set (H, m, p) under the condition 7 (g) p () 7w (9)" =
p(w(g, ¥)) for all g € G and ¢ € A. Often, the triplet (H, 7, p) is abbreviated to
duplet (7, p).

Let L? (G, A) be a Banach x-algebra of A- valued function on G, with the norm
given by
195" = [ 1% @l (o).

we assume p = 1 and the multiplication operation ® : LP (G, A) x L? (G, A) —
L? (G, A) is defined by

(W) © Wy) (g) = /G Uy () w (Vs (h'g)) du (h)

and

0,9 (g) =w (g, (4 (9‘1))*)

for any pair ¥y, Uy € LP (G, A).
The universal enveloping C*-algebra Env (LP (G, A)) of the Banach *-algebra
L? (G, A) is constructed as follows. First, we construct the free tensor algebra

T(LP (G, A) =G LP (G, A)® (LP (G, A)Q L? (G, A)) &
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® (L (G, A) ® LP (G, A) @ LP (G, A)) ...

where @ is the direct sum and ® is the tensor product. Second, the multiplica-
tion operation ® : LP (G, A) x L? (G, A) — L? (G, A)is bilinear and the tensor
product is bilinear so the natural lift is accomplished in such a way as to pre-
serve multiplication as a homomorphism. Third, the universal enveloping algebra
Env, (L? (G, A)) is a quotient space Env,, (LP (G, A)) =T (L? (G, A))/ ~, where
the equivalence relation is ¥ ® Wy — Wy @ U1 = W1 ® V5. The set I of all elements
generated by elements given by U @ Wy — Uy @ U1 — Wy ® Uy is a two-side ideal so
I lies in the kernel of the quotient map, so we have the short exact sequence

01— T(LP (G, A)) = T (LP (G, A) /T —0

since the sequence is exact, the kernel of the map coincides with the image of
the mapping before. In this interpretation, the universal enveloping C*-algebra
Env, (LP (G, A)) is defined as Env,, (LP (G, A)) =T (L* (G, A)) /I

The universal norm is given as

1]l = sup I Ly »

where mapping II is a representation of L? (G, A) in LB (H, H).
The integral transformation (p x w) : LP (G, A)E — LB (H, H) defined by

(p o ) (1) = / P (¥ (9)) 7 (9) dyt (9)

G

extends to mapping (p < w) : Env, (L? (G, A)) — LB (H, H) due to the univer-
sity of enveloping C'*-algebra.

3. The Takesaki-Takai duality

Let morphism w : G — Aut(A) be a projective representation of the locally
compact Abel group G in Aut (A). We denote a C*-algebra of compact operators
on a separable Hilbert space H by LK (H). The morphism w : G — Aut (A) is
called an action of the group G. Let a triplet (A, G, w) be a dynamical system.
We obtain the dual action as the homomorphism

&« G — Aut (Env, (L* (G, A))),

then the triplet (Envw (L1 (G, A)) , G, ch) is called the dual dynamic system.

Theorem 3.1. (Variant of the Takai duality). Let G be a locally compact Abelian
group and let (A, G, w) be the dynamic system. Then,

Enuy, (Ll (G‘, Enuv, (Ll (G, A)))) isomorphically equals AQ LK (L2 (G)), so there
exists such isomorphism Y : Enuvy (Ll (G, Env,, (L* (G, A)))) —-A®

LK (L*(G)) which is equivariant for the double dual action OG-
Aut (Env@ (L1 (G‘, Env,, (L' (G, A))))) and equivariant for w @ Ad () : G —

Aut (A® LK (L*(Q))).
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Proof. The statement of the Takai duality theorem will be proven if we show that
there is a sequence of the following isomorphisms:

Eng (L' (G, Bnva (21 (G, A))))
B (11 (60 B (126, 4))))

Envs g, (Ll (G, Envrqg (Ll (G, A)))) =2 Envyguw ( L' (G, Cy (G, A))) ,
Envagw (L' (G, Co (G, A))) =% Envsgra (L' (G, Co (G, A))),

Envagra (L' (G, Co (G, A))) % Envy (L' (G ® A, Co (@),

Envy (L' (G® A, Co (@) = LK (L* (G)) ® A,

so that the isomorphism in question can be presented as T = Y50 Y4030 T50Yy,
where A is left translation.

Let K be compact, by construction, the set Co (K x H, A) is a dense subspace
of Envg (L1 (H, Env,, (Ll (K, A)))) Since the topology of C¢ (K, A) is induced
by the topology of L!- norm, we presume Cq (K, A) C Env, (L1 (K, A)) is in-
variant under homomorphism S and there is f (h, g) € Co (H x K, A) such that
f(h, g) =B (s (h)) (g9) where ; € Cc (H, Env, (L* (K, A))).

The proof will follow from the next statements.

Statement 1. The isomorphism
Ty : Eng (L' (G, B, (L(G, A))))
By g, (B (G Enva (L1 (G, A))))
maps dense subalgebras
T, cc(éxc,: A)‘ﬂ?cc(exé, A)
sothat T1 () (9, x) = x (9) f (x g) forall (g, x) € GxG and f € C¢ (G x G, A).

Statement 2. Let G be an Abelian group and let C¢ (A, G, w ) be a dynamical
system then the mapping T, : Co (G x G, A) — Co (G, Cp (G, A)) is given by
Ts (f = Jaf( x (h) dji(x), the mapping

Ty i Bnvg g, (1! (G, Envra (L' (G, A)))) = Envags (L (G, Co (G, A))

is an isomorphism.

Statement 3. Let G be an Abelian group and let (A, G, w ) be a dynamical
system then there exists an isomorphism

Tg : EnvA@,w (Ll (G, Co (G, A))) — Em))@m (Ll (G, Co (G, A)))

such that equality Y3 (f) (g, h) =w ™1 (h, f (g, h)) holds for all
fe€Ce(G, Cy (G, A)).

Statement 4. Let G be a locally compact group and let (A, GG, w ) be a dynamical
system then there exists an isomorphism Y5 = Y5 T4 such that

Y5 : Envagw (L' (G, Co (G, A))) — LK (L* (G)) ® A.
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Proof of Statement 1. In order to prove statement 1, we must show that

1T (HIF = 1IfII-
Let f1, fo € Ceo (H X K, A) then

((h, g) ¥ Ly, (B) x (R, Ly, (h71s)) (9)) € Cc (H x K, A),

so that £, x (s, € Cc (K, A) C Env, (L' (K, A)) and we have

(L, xLy,) (s) (9)

/ / Ch (htyw (b, (b, (6, (1)), tg)) dpusc (8) dyagr (h).

Thus, we obtain those equalities
(Ug, * Lg,) (x) (9)

= [ [ 0T (1 0 (0 @) ') dn () ()

and dual

0*6MM>
//efl (t,)C () x (Hw (t, a(éf; (t‘lg)) : Zx) dfi (C) dpu (t)
hold for all fi, fo € Co (Gx G, A) and for all fi, fo € Co (Gx G, A) c
Envsg,, (L (G, Envrg (L} (G, A)))). Then, we have a homomorphism
T, cc(éxa, A)OLUQC’C<G><G, A).
We write the equalities

Crin (9) ®w) (9) (tri(n) (7)) (0

w (g trn (971) 0
w(g T () (g 0)
=w (g, f(x.97"))"

=w (

g, s () (971))

)=(
=x(9)
=x (9)

=x(9) " s (%) (9)
=T () (X) (9) -

In general, every continuous in the inductive topology * -homomorphism is

bounded in the topology of the universal norm thus this * -homomorphism extends

to a representation on Env,, (L' (G, A)).
Let U : G — U (H) be a unitary representation and (U, p) be a covariant rep-

resentation of the dynamic system (Env;d (Ll (G‘, A)) , G, Al w) ,and (V, )

be a covariant representation of (A, G, I d), then we denote

mqamm=LMﬂwU@W@
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so that A = (U, p) : Envg_1q, (L1 (G, Enwgg (L1 (G A)))) 5 LB (H), and

pi= (Vo)) = [ 7 (£ @)V @)dia).
Next, we have A~ (g) 0 ¢ (X¢) = x (9) ¢ (X¢) o A™' (g). Let us take a € A,
Y € Co (G) and ¢ € C¢ (é) so that all linear combinations a ® ¢ ® i constitute a
dense subset of C¢ (G' x G, A), so that

Ug)V (0 A (@@ 6@0) =TV ()7 (@) V(6)U ()
=7 (w(ga)V (A (9) 06 (X)) U9)U ()
x(9)V (6m(w(g.0)V (A7 (9,6) Ule) U @)
=x(@ VU A(a® 1)
V (x)U (g). Next, we write
V(@)U ()
=7 (w(g, b))V (A (9, 6)) U9) U ()
(w

/ m(T1(f) O 9)V () U (g) dit (x) dp (9)

:/ fﬁ(f(Xv 9)) x(9)V () U (g) dir (x) dp ()

= [ [ 7 DUV (0 b 9) i (0
GJG

so, we obtain || Y1 (f)|| < ||f|l, the similarly, we obtain ||f|| < ||T1 (f)|| and Ty :
Envy, (L1 <C¥, Env,, (L1 (G, A)))) — Envs_1g, (Ll (G, Envrg (Ll (G’, A))))
is an isomorphism, statement 1 is proven.

Proof of Statement 2. The isomorphism Envjg (Ll (G’, A)) — Co (G, A) given
by (¥X)a can be constructed as an extension of the mapping a ® ¢ — a ®g§ that is
defined on the span of bases as A ® C* (é’) > Envpg (L1 (é, A)) —Co (G, A) =
Co (G) ® A. The mapping T3 := (¥X) s ® Id is equivariant isomorphism since

A ®w) <g>/¢<x>ﬁdu X
G
- /G (A @ w) (9)% 00 X @A ().

statement 2 is proven. O

Proof of Statement 3. Since w™! (h, ¢ (h)) is an isomorphism Cj (G, A) —
Co (G, A), statement 3 follows from

W (g, A@w)(g, ¥) (h) =w™! (hw (9. ¢ (97'N)))
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=w ™ (g7, 0 (97'h))
=\ ow) (9w (h, ¢(h),

so that Tg (f) (97 h) = Wil (hv f (97 h)) H

Proof of Statement 4. Let A be a modular function on G, namely, A : G — R
is a continuous homomorphism and the equality

A(g) /G i (hg) dp (h) = /G & (h) du ()

holds for all 1y € C¢ (G). Next, we must show that Envy (L' (G, Co(G))) =
LK (L?(G)). The Envy (L* (G, Co (G))) is simple. We define a natural covariant
representation (M, 1) of (Co(G), G, X\) as M (¢) ¢ (9) = ¥ (g9) ¢ (9) where [
G —->U (L2 (G)) is the left-regular representation and M operator of pointwise
multiplication. Let k € C¢ (G x G) then A (h’lg) k (g, h’lg) = Y (h,g), Y, €
Cc (G x G) so that

/G (M (b (9. ) 1(9) @1, @2) 2 dpt (9)
— / / Ui (9, 1) or (97 ") 2o () du () dpe (h)

GJG
— [ [ Al b g o (670 7 sl e 0)
- / / k(h, )1 (9) o2 (B) dp(g) du (1)

GJG

The kernel k € Co (G x G) C L? (G x G) defines a compact Hilbert-Schmidt op-
erator. Since C¢ (G) is dense in L? (G) we have LK (L* (G)) belongs to the image of
a compact Hilbert-Schmidt operator with kernel k mapping Envy (L* (G, Cj (G))).
Assume 1) € Cc (G x G) we denote k (h, g) = A (g71) ¢ (hg™*, h) so ¢ =1, and
Envy (L' (G, Co (G))) = LK (L? (G)) follows from the density of Cc (G x G) in
Envy (L' (G, Co (G))).

So, since

A(t)%/aw(g, ht) ¢ (g~ ht) du(g)
=/G(p®1d) (t, ) (g h) 7 (t) o (g h) dp(g)

the mapping given by integration [ (g,h) (97 *h)du(g) defines an equivariant
isomorphism

(Em})\ (L1 (G, Cy (G))) , G p® Id) — (LK (L2 (G)) , G, Ad (7')) ,

where p is a right translation of the group G on itself.
Thus, we obtain the existence of the equivariant isomorphism

Y5 : Envagra (L (G, Co (G, A))) — LK (L*(G)) ® A,

statement 5 is proven so proof of the variant of the Takai duality theorem is com-
pleted. O
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4. The general cross product C*-algebra

Let v : G — G be a continuous mapping, we define an enveloping C*-algebra
Env,Y (L? (G, A)) as T (LP (G, A)) /I where mapping [ is the two-sided ideal gen-
erated by elements

U @Wy -V @ ¥y — Uy O, ¥y,

where a binary operation ©, is defined by
(W1 @y ¥2) (9)
= [w (@™ v ) v t)w (3 (0 e (h9) W (7)) da ().
G

Thus, we generalized the Takai duality theory on 7-case as follows.

Theorem 4.1. (v-variant of the Takai duality). Let G be a locally compact Abelian
group, let v : G — G be a continuous mapping, and let (A, G, w) be the dynamic

system. Then, Enuvg” (Ll (G’, Enuv,” (Ll (G, A)))) isomorphically equals A ®
LK (L?(G)), so there exists such isomorphism

T 5 Enwy” (L' (G, B (L1 (G, A)))) = A® LK (L*(G))
which is equivariant for the double dual action
& G— Aut (Env(;ﬂ (Ll (G‘, Env, (L' (G, A))))) .

The proof is similar to the previous theorem.

5. Conclusions

This paper dedicated to dynamical systems and C*-algebras. We establish that the
enveloping C*-algebra Enuvg” (Ll (G’, Env,” (L1 (G, A)))) with a pointwise con-
vergence topology is isomorphically identical to maximal product A ® LK (L2 (G’))
In our future works, we will generalize this statement to include the classes of non-

abelian groups G and wide class functions v : G — G, we also plan to develop a
new approach to its application to symmetry in quantum mechanics.
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