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MONOTONE ITERATIVE TECHNIQUE FOR
FRACTIONAL MEASURE DIFFERENTIAL

EQUATIONS IN ORDERED BANACH SPACE∗

Haide Gou1,†

Abstract This article is based on the monotonic iterative method in the
presence of upper and lower solutions, and investigates the existence of S-
asymptotic ω-periodic mild solutions for a class of fractional measure differen-
tial equations with nonlocal conditions in an ordered Banach spaces. Firstly,
in the case of upper and lower solutions, a monotonic iterative method is
constructed to obtain the maximal and minimal S-asymptotically ω-periodic
mild solution to our concern problem. Secondly, we establish an existence
result of S-asymptotically ω-periodic mild solutions for the mentioned with-
out assuming the existence of upper and lower S-asymptotically ω-periodic
mild solutions under generalized monotonic conditions and non compactness
measure conditions of nonlinear terms. Finally, as an application of abstract
results, an example is provided to illustrate our main findings.

Keywords Regulated functions, Henstock-Lebesgue-Stieltjes integral, mea-
sure differential equations, monotone iterative technique.
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1. Introduction

Fractional calculus has been widely applied in the study of linear and nonlinear
fractions differential equations (FDE) have emerged as challenges in the real world.
Many researchers in certain regions use FDEs extensively, making some problems
easier to approach, such as modeling nonlinear phenomena, optimal control of com-
plex systems, and other scientific research (e.g., see [42,43]). In addition, fractional
differential systems can describe nonlinear phenomena in physics, mathematics, and
engineering. These types of equations have attracted widespread attention in recent
years, as shown in [56,64,66] and their references.

The theory of measure differential equations (MDEs) encompasses some well-
known situations. When absolute continuous functions, step functions, or the sum
of absolute continuous functions and step functions are given, these systems cor-
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respond to typical ordinary differential equations, difference equations, or impulse
differential equations, respectively. Another advantage of considering MDE is that
we can model Zeno trajectories, as gas as a bounded function of change may exhibit
infinite discontinuity within a finite interval. This type of system appears in many
fields of applied mathematics, such as non smooth mechanics, game theory, etc.
see [5, 53, 67]. The early investigation of MDEs was conducted by [19, 55, 62, 65].
For a complete introduction to measure differential systems, reference can be made
to [7–10, 12]. Recently, the MDEs theory in the Rn space has been developed to
some extent [27,28,52,68].

On the other hand, as is well known, the periodic law of development or motion
of things, It is a common phenomenon in nature and human activities. However,
in real life, many the phenomenon does not have strict periodicity. In order to
better describe these mathematics, many scholars have introduced other definitions
of generalized periodicity, such as almost periodicity, asymptotic periodicity, and
asymptotic almost periodicity, pseudo almost periodicity and S-asymptotic period-
icity, see [1, 20–22]. Due to the S-asymptotically periodic functions first studied
functions in Banach space by Henŕıquez et al. [38], including some literature on
the S- asymptotic periodic solutions of fractional evolution equations, we can refer
to [14, 18, 46, 47, 58, 60]. It is worth noting that S-asymptotically period function
is first proposed and established by Henŕıquez et al. [38] is a more general ap-
proximate periodic function between asymptotic periodic functions and asymptotic
almost periodic functions.

The properties of periodic solutions to functional differential equations, integral
equations and partial differential equations have been extensively studied. Spe-
cially, because fractional derivative has genetic or memory properties, the solutions
of periodic boundary value problems for fractional differential equations can not be
extended periodically to time t in R+. Therefore, many scholars began to study vari-
ous extended solutions of periodic solutions of fractional evolution equations(such as
almost periodic solutions, asymptotically almost periodic solutions, pseudo almost
periodic solutions, asymptotically periodic solutions, S-asymptotically periodic so-
lutions and so on). For the related research on the S-asymptotically periodic solu-
tions of fractional evolution equations, one can refer to [6,13,13–18,46,47,60]. In [63],
Shu et al. discussed the existence and uniqueness of positive S-asymptotically ω-
periodic mild solutions for a class of semilinear neutral fractional evolution equations
with delay by using the contraction mapping principle on positive cones. In [48],
Li et al. discussed the positive S-asymptotically ω-periodic mild solutions for the
abstract fractional evolution equation on infinite interval.

Due to the structures of such equations, investigating their solutions is chal-
lenging. To the best of the authors’ knowledge, the existence of S-asymptotically
ω-periodic mild solutions for abstract damped elastic systems with delay is a sub-
ject that has not been treated in the literature. This fact and the interesting rela-
tionship between S-asymptotically ω-periodic mild solutions and S-asymptotically
ω-periodic functions are the main motivations of this work.

Based on previous work ideas and methods [24,25,27,30,32,39], in this work, we
investigate the existence of S-asymptotically ω-periodic mild solution to fractional
measure differential equations with nonlocal conditions and delay
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cD1+β

t u(t) +
n∑
k=1

αk
cDγk

t u(t) = Au(t) + F (t, u(t), ut)dg(t), t ≥ 0,

u(t) = Q(σ(u), u)(t) + ϕ(t), t ∈ [−r, 0],

u′(0) = Q0(u) + ψ,

(1.1)

where u(·) take values in a Banach space E; cDη
t stand for the Caputo fractional

derivative of order η, αk > 0 and all γk, k = 1, 2, · · · , n, n ∈ N, are positive real
numbers such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. We assume that A : D(A) ⊂ E → E
is a κ-sectorial operator, and A generates a strongly continuous family {Sβ,γk(t)}t≥0

of bounded and linear operators on E, f : R+ ×E ×B → E is a suitable nonlinear
function and g : R+ → R is nondeacreasing and continuous from the left, dg denote
the distributional derivative of g (see [68]), the functions Q : R+ × G(R+, E) →
E,Q0 : G(R+, E) → E, σ : G(R+, E) → E will be specified later, where G(R+, E)
denotes the space of regulated functions on R+, B := G([−r, 0], E). For t ≥ 0,
ut ∈ B is the history state defined by ut(s) = u(t + s) for s ∈ [−r, 0], ϕ ∈ B and
ϕ(0) ∈ D(A), ψ ∈ E, r > 0 is a constant.

The highlights and advantages of this paper are presented as follows:

(1) This paper is to construct the general principle for lower and upper solutions
coupled with the monotone iterative technique for the delay evolution equa-
tion involving nonlocal in ordered Banach space, and obtain the existence of
maximal and minimal S-asymptotically ω-periodic mild solutions, which will
fill the research gap in this area.

(2) The main method used in this paper is the monotone iterative technique in
the presence of the lower and upper solutions, which is an effective and widely
used method to study the nonlinear differential equations as an application
of the ordered fixed point theorem. This method can not only study the
solvability of the equations, but also obtain the iterative sequence of the so-
lutions, which provides a reasonable and effective theoretical basis for solving
the approximate solutions by computer.

(3) The existence results of S-asymptotic ω-periodic mild solutions were derived
using monotonic iteration technique, filling the research gap in this field by us-
ing regulated functions, Henstock Lebesgue Stieltjes integral is set to measure
driven equation involving multi-term time fractional derivatives.

(4) Some authors choose topological methods to study the existence of
S-asymptotic ω- periodic solutions, which is known as fixed point theory,
which has become a very powerful and important tool for studying nonlin-
ear phenomena. Specifically, the author utilized the contraction mapping
principle, Leray-Schauder alternative theorem, Schauder theorem, and Kras-
noselkii’s theorem. However, the monotonic iterative method with upper and
lower solutions is the first to be used to study related problems in ordered
Banach spaces. Therefore, our results are novel and meaningful.

The organizational structure of this article is as follows. The second part of the
paper presents preliminary details. The third part uses monotonic iteration method
to compare the upper and lower solutions with (β, γk)-resolvent family, it is proved
that S- asymptotic ω-periodic mild solution. Finally, an example was provided to



2676 H. Gou

illustrate the application of the obtained results. The conclusion section concludes
this article.

2. Preliminaries

Throughout this paper, let (E, ‖ · ‖) be an ordered Banach space with partial order
“≤” induced by the positive cone K = {u ∈ E|u ≥ θ} (θ is the zero element of
E), K is normal with normal constant N . Let r > 0 be constants, we denote by
Cb(R+, E) the Banach space of all bounded and continuous functions from R+ to
E equipped with the norm

‖u‖∞ = sup
t∈R+

‖u(t)‖

and G(R+, E) denotes the Banach space of regulated functions on R+ equipped
with a norm ‖u‖∞ = sup

t∈R+

‖u(t)‖, B := G([−r, 0], E) the Banach space of regulated

functions from [−r, 0] to E with the norm

‖φ‖B = sup
s∈[−r,0]

‖φ(s)‖.

Let SAPω(E) represent the subspace of Cb(R+, E) consisting all the E-value
S-asymptotically ω-periodic functions endowed with the uniform convergence norm
denoted by ‖ · ‖. Then SAPω(E) is a Banach space (see [38], Proposition 3.5]). If
u ∈ SAPω(E), then it is not difficult to test and verify that the function t → ut
belongs to SAPω(B) (see [46,47]).

For the rest of this paper, we define by

Ω := {u ∈ G([−r,∞), E) ∩ Cb([−r,∞), E)| u|[−r,0] ∈ B and u|R+ ∈ SAPω(E)},

that Ω is a Banach space equipped with the norm

‖u‖Ω = sup
t∈[−r,∞)

‖u(t)‖.

Define a positive cone KΩ by

KΩ = {u ∈ Ω|u(t) ∈ K, t ∈ [−r,∞)},

with the normal constant N. Then Ω is an ordered Banach space with the partial
order relation “≤” induced by the cone KΩ. Similarly, B is also an order Banach
space whose partial ordering “≤” induced by a positive cone

KB = {φ ∈ B|φ(s) ∈ K, s ∈ [−r, 0]}

with the normal constant N.
A partition of [a, b] is a finite collection of pairs {([ti−1, ti], ei), i = 1, 2, · · · , n},

where [ti−1, ti] are nonoverlapping subintervals of [a, b], ei ∈ [ti−1, ti], i = 1, · · · , n
and

⋃n
i=1[ti−1, ti] = [a, b]. A gauge δ on [a, b] is a positive function on [a, b]. For a

given guage δ we say that a partition is δ-fine if [ti−1, ti] ⊂ (ei − δ(ei), ei + δ(ei)),
i ∈ {1, · · · , n}. Let u(t−) and u(t+) denote the left limit and right limit of the
function u at the point t, respectively.
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Definition 2.1. [61] A function u : [a, b] → E is said to be regulated on [a, b], if
the limits

lim
s→t−

u(s) = u(t−), t ∈ (a, b] and lim
s→t+

u(s) = u(t+), t ∈ [a, b)

exist and are finite.

Denote by G([a, b], E) the space of all regulated function from [a, b] into E.
Obviously, the space G([a, b], E) is a Banach space endowed with the supremum
norm.

Definition 2.2. [61] A set B ⊂ G([a, b], E) is called equiregulated, if for every
ε > 0 and τ ∈ [a, b], there exists δ > 0 such that

(i) If u ∈ B, t ∈ [a, b] and t ∈ (τ − δ, τ), then ‖u(τ−)− u(t)‖E < ε.

(ii) If u ∈ B, t ∈ [a, b] and t ∈ (τ, τ + δ), then ‖u(t)− u(τ+)‖E < ε.

Lemma 2.1. [61] Let {un}∞n=1 be a sequence of functions from [a, b] to E. If un
converge pointwisely to u0 as n → ∞ and the sequence {un}∞n=1 is equiregulated,
then un converges uniformly to u0.

Lemma 2.2. [9, 61] Let B ⊂ G([a, b], E). If B is bounded and equiregulated, then
the set co(B) is also bounded and equiregulated, where co(B) define the closed convex
hull of B.

Lemma 2.3. [51] Assume that B ⊂ G([a, b], E) is equiregulated and, for every
t ∈ [a, b] the set {u(t) : u ∈ B} is relatively compact in E. Then the set B is
relatively compact in G([a, b], E).

Next, we will review the definition of Henstock-Lebesgue-Stieljes integral.

Definition 2.3. [61] A function ψ : [0, b] → E is said to be Henstock-Lebesgue-
Stieltjes integrable w.r.t. g : [0, b] → R, if there exists a function denoted by
(HLS)

∫ ·
a

: [0, b]→ E such that, for every ε > 0, there is a gauge δε on [0, b] with∥∥∥ n∑
i=1

ψ(ei)(g(ti)−g(ti−1))−
(

(HLS)

∫ ti

0

ψ(s)dg(s)−(HLS)

∫ ti−1

0

ψ(s)dg(s)
)∥∥∥ < ε,

for every δε-fine partition {(ei, [ti−1, ti]) : i = 1, 2, . . . , n} of [0, b].

Denote by HLSpg([a, b],R)(p > 1) the space of all p-ordered Henstock-Lebesgue-
Stieltjes integral regulated from [a, b] to R with respect to g, which norm ‖ · ‖HLSpg
defined by

‖ψ‖HLSpg =
(

(HLS)

∫ b

a

‖ψ(s)‖pdg(s)
) 1
p

.

Lemma 2.4. [32] Let p, q > 1 such that 1
p + 1

q = 1, Ψ ∈ HLSpg([a, b],R+) and

g : [a, b] → R be regulated. Then the function H(t) =
∫ t

0
(t − s)βΨ(s)dg(s) is

regulated and

H(t)−H(t−) ≤
(∫ t

t−
(t− s)qβdg(s)

) 1
q

Ψ(t)(∆−g(t))
1
p , t ∈ (a, b],

H(t+)−H(t) ≤
(∫ t

t+
(t+ − s)qβdg(s)

) 1
q

Ψ(t)(∆+g(t))
1
p , t ∈ [a, b),

where ∆+g(t) = g(t+)− g(t) and ∆−g(t) = g(t)− g(t−).
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Lemma 2.5. [23] Let for t ∈ [a, b], Z(t) be weakly relatively compact in E. Suppose
that B ⊂ L1

µ([a, b], E) is a bounded set and there is a function N(·) ∈ L1
µ([a, b],R+)

such that ‖b(t)‖E ≤ N(t) µ-a.e. t ∈ [a, b] for all b ∈ B. If for every b ∈ B, b(t) ∈
Z(t) for µ-a.e. t ∈ [a, b], then B is weakly relatively compact in L1

µ([a, b], E), where
L1
µ([a, b], E) be the set of all µ-integrable functions, µ is a measure.

Definition 2.4. [57] An (β, γk)-resolvent family {Sβ,γk(t)}t≥0 on E is said to be
positive, if Sβ,γk(t)x ≥ θ for each x ≥ θ, x ∈ E, and t ≥ 0.

Definition 2.5. [57] An (β, γk)-resolvent family {Sβ,γk(t)}t≥0 on E is said to be
equicontinuous, if the function t → Sβ,γk(t) is continuous from (0,∞) → L(E) on
the operator norm ‖ · ‖L(E).

Definition 2.6. The Riemann-Liouville fractional integral of a function
f ∈ L1

loc([0,∞), E) of order η > 0 with lower limit zero is defined as follows

Iηf(t) =

∫ t

0

(t− s)η−1

Γ(η)
f(s)ds, t > 0

and I0f(t) = f(t), provided that side integral is point-wise defined in [0,∞).

Definition 2.7. Let η > 0 be given and denote m = [η]. The Caputo fractional
derivative of order η > 0 of a function f ∈ Cm([0,∞), E) with lower limit zero is
given by

cDηf(t) = Im−ηDmf(t) =

∫ t

0

(t− s)m−η−1

Γ(m− η)
Dmf(s)ds,

and cD0f(t) = f(t), where Dm = dm/dtm and [·] is ceiling function.

Let A be a closed linear operator on the Banach space E with domain D(A) and
denote by ρ(A) the resolvent set of A.

Definition 2.8. [42]. Let E be a Banach space and let β > 0, γk, αk, k = 1, 2, . . . n
be real positive numbers. Then A is called the generator of (β, γk)-resolvent family
if there exists κ ≥ 0 and a strongly continuous function Sβ,γk : R+ → L(E) such
that {

λβ+1 +

n∑
k=1

αkλ
γk : Re(λ) > κ

}
⊂ ρ(A)

and

λβ
(
λβ+1 +

n∑
k=1

αkλ
γk −A

)−1

u =

∫ ∞
0

Sβ,γk(t)udt,

where Re(λ) > κ and u ∈ E.

An operator A is said to be κ-sectorial of angle θ if there exist θ ∈ [0, π2 ) and
κ ∈ R such that its resolvent is in the sector

κ+ Sθ :=
{
κ+ λ : λ ∈ C, |arg(λ)| < π

2
+ θ
}
\{ω},

and

‖(λ−A)−1‖ ≤ M

|λ− ω|
, λ ∈ ω + Sθ.
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Lemma 2.6. [42] Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, . . . n be
given, µ > 0 and κ < 0. Assume that A is a κ-sectorial operator of angle γkπ

2 .
Then A generates a (β, γk)-resolvent family Sβ,γk(t) satisfying the estimate

‖Sβ,γk(t)‖ ≤ C

1 + |κ|(tβ+1 +
∑n
k=1 αkt

γk)
, t ≥ 0, (2.1)

for some constant C > 0 depending only on β, γk.

Definition 2.9. [38] A function u ∈ Cb(R+, E) is called S-asymptotically ω-
periodic if there exists ω such that

lim
t→∞

‖u(t+ ω)− u(t)‖ = 0, ∀t ≥ 0.

In this case, we say that ω is an asymptotic of u. It is clear that if ω is an asymptotic
period for u, then every kω, k = 1, 2, · · · , is also an asymptotic period of u.

In view of Lemma 2.14 in paper [29], we give the definition of a mild solution
for the problem (1.1) below.

Definition 2.10. Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, . . . n
be given and A be a generator of a bounded (β, γk)-resolvent family {Sβ,γk(t)}t≥0.
Then a regulated function u(·) : R+ → E is said to be mild solution of problem
(1.1) if u(t) = Q(σ(u), u)(t) + ϕ(t), u′(0) = Q0(u) + ψ and satifies the following
integral equation

u(t) =Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s), t ≥ 0, (2.2)

where Tβ,γk(t) = (ϕβ ∗Sβ,γk)(t). Moreover, if u is S-asymptotically ω-periodic, then
it is called S-asymptotically ω-periodic mild solution of problem (1.1).

Moreover, we noted that by the estimate (2.1) and (2.3) and (2.4) in paper [29],
hence there exists a constant C > 0 such that, we have

‖Tβ,γk(t)‖L(E) ≤ Ctβ−γk . (2.3)

Denote M := sup
t≥0
‖Sβ,γk(t)‖ < +∞,M > 0., in view of (2.1) and (2.3) and (2.4)

in paper [29], we have

‖ϕ1+β−γk ∗ Sβ,γk(t)‖ ≤ C
∫ t

0

ϕ1+β−γk(t− τ)ϕγk−β−ε(τ)dτ

= Cϕ1−ε(t)

= Ct−ε. (2.4)

And then, we note that∫ ∞
0

1

1 + |κ|tβ+1
dt =

|κ|−
1

β+1π

(β + 1) sin( π
β+1 )
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for 1 < β + 1 < 2 and therefore Sβ,γk(t) is integrable. Hence, we have

‖(ϕ1 ∗ Sβ,γk)(t)‖ =
∥∥∥∫ t

0

Sβ,γk(s)ds
∥∥∥

≤
∫ t

0

‖Sβ,γk(s)‖ds

≤
∫ t

0

C

1 + |κ|(sβ+1 +
∑n
k=1 αks

γk)
ds

< C

∫ ∞
0

1

1 + |κ|sβ+1
ds

=
C|κ|−

1
β+1π

(β + 1) sin( π
β+1 )

.

Moreover, we denote

M̃ := sup
t≥0
‖(ϕ1 ∗ Sβ,γk)(t)‖ =

C|κ|−
1

β+1π

(β + 1) sin( π
β+1 )

. (2.5)

In addition, we present the definitions of lower and upper solutions for the
nonlocal problem (1.1).

Definition 2.11. If a function v ∈ Ω with v|R+ ∈ C(R+, E)∩C1+β(R+, E) satisfies
Av(0) ≤ A[Q(u)(0) + ϕ(0)] and

cD1+β
t v(t) +

n∑
k=1

αk
cDγk

t v(t) ≤ Av(t) + F (t, v(t), vt)dg(t), t ≥ 0,

v(t) ≤ Q(σ(v), v)(t) + ϕ(t), t ∈ [−r, 0],

v′(0) ≤ Q0(v) + ψ,

then v(t) is named a lower solution of nonlocal problem (1.1). And if the inequalities
in above are all reversed, then v(t) is named an upper solution of nonlocal problem
(1.1).

We give the definition of upper and lower mild solution to problem (1.1).

Definition 2.12. If a function v ∈ Ω satisfies

v(t) ≤Sβ,γk(t)[Q(σ(v), v)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(v)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(v), v)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, v(s), vs)dg(s),

then v(t) is named a lower mild solution of nonlocal problem (1.1). And if the
inequality in above is reversed, then v(t) is named an upper mild solution of nonlocal
problem (1.1).
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The Hausdorff measure of noncompactness of a bounded subset S of E is defined
to be the infimum of the set of all real numbers ε > 0 such that S can be covered
by a finite number of balls radius smaller than ε, that is,

α(S) = inf{ε > 0 : S ⊂ ∪ni=1B(ξi, ri), ξi ∈ E, ri < ε(i = 1, . . . , n), n ∈ N},

where B(ξi, ri) denotes the open ball centered at ξi and of radius ri.

Lemma 2.7. [4, 41] Let S, T be bounded subsets of E and λ ∈ R. Then

(1) α(S) = 0 if and only if S is relatively compact;

(2) S ⊆ T implies α(S) ≤ α(T );

(3) α(S) = α(S);

(4) α(S ∪ T ) = max{α(S), α(T )};
(5) α(λS) = |λ|α(S), where λS = {x = λz : z ∈ S};
(6) α(S + T ) ≤ α(S) + α(T ), where S + T = {x = y + z : y ∈ S, z ∈ Z};
(7) α(co(S)) = α(S).

Let W be a subset of G([a, b], E). For each fixed t ∈ [a, b], we denote W (t) =
{x(t) : x ∈W}.

Lemma 2.8. [9] Let W ⊂ G([a, b], E) be bounded and equiregulated on [a, b]. Then
α(W (t)) is regulated on [a, b].

Lemma 2.9. [9] Let W ⊂ G([a, b], E) be bounded and equiregulated on [a, b]. Then
α(W ) = sup{α(W (t)) : t ∈ [a, b]}.

Lemma 2.10. [11] Let E be a Banach space and B ⊂ E be bounded. Then there
exists a countable subset B0 ⊂ B, such that α(B) ≤ α(B0).

Denote by LSg([a, b], E) the space of all functions f : [a, b] → E that are
Lebesgue-Stieltjes integrable with respect to g. Let µg be the Lebesgue-stieltjes
measure on [a, b] induced by g.

Lemma 2.11. [36] Let W0 ⊂ LSg([a, b], E) be a countable set. Assume that there
exists a positive function k ∈ LSg([a, b],R+) such that ‖w(t)‖ ≤ k(t) µg-a.e. holds
for all w ∈W0. Then we have

α
(∫ b

a

W0(t)dg(t)
)
≤ 2

∫ b

a

α(W0(t))dg(t).

Lemma 2.12. [44] Let T > 0. Assume that a,m ∈ G([0, T ],R+). If the function
y ∈ G([0, T ],R+) satisfies the inequality

y(t) ≤ m(t) +

∫ t

0

a(s)y(s)dg(s)

for every t ∈ [0, T ], then

y(t) ≤ m(t) +

∫ t

0

a(s)m(s)e
∫ t
s
a(τ)dg(τ)dg(s).
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3. Main result

For v, w ∈ Ω with v ≤ w, we denote the order interval {u|v ≤ u ≤ w} ⊂ Ω by [v, w].
Furthermore, we denote {u(t)|v(t) ≤ u(t) ≤ w(t), t ∈ [−r,∞)} in E by [v(t), w(t)]
and {ut|vt ≤ ut ≤ wt, t ∈ [0,∞)} in B by [vt, wt], respectively.

Theorem 3.1. Let E be an ordered Banach space, whose positive cone K ⊂ E is
normal. Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, . . . n be given. A is

an κ-sectorial operator of angle
γkπ

2
, k = 1, 2, · · · , n with κ < 0, and A generates

a positive and compact (β, γk)-resolvent family {Sβ,γk(t)}t≥0 on E. Assume that
ω > 0 is a constant and the nonlocal problem (1.1) has a lower mild solution v(0)

and an upper mild solution w(0) with v(0) ≤ w(0). If ϕ ∈ KB, Q(σ(u), u)(0)+ϕ(0) ∈
K ∩ D(A) and ψ ∈ K, F : R+ × E × B → E is continuous as well as the following
conditions are established:

(H1) For each constant R > 0, there exists P (·) ∈ HLSpg(R+,R+) for some p > 1
such that

sup
‖u‖≤R

‖F (t, u(t), ut)‖ ≤ P (t)W (R), t ≥ 0,

where W : [0,+∞)→ R+ is a continuous nondecreasing function and

lim
R→+∞

inf
W (R)

R
= w0 < +∞.

(H2) (1) There exists ω > 0 such that for all x ∈ E, φ ∈ B

lim
t→∞

‖F (t+ ω, x, φ)− F (t, x, φ)‖ = 0.

(2) F (t, u, ut) is measurable for all u ∈ G(R+, E).

(H3) For any t ∈ R+, x1, x2 ∈ E and φ1, φ2 ∈ B with v(0)(t) ≤ x1 ≤ x2 ≤ w(0)(t)

and v
(0)
t ≤ φ1 ≤ φ2 ≤ w(0)

t ,

F (t, x2, φ2)− F (t, x1, φ1) ≥ θ.

(H4) (1) The nonlocal functions Q(σ(u), u), Q0(u) is increasing in order interval
[v(0), w(0)];

(2) Q : R+ × G([−r,+∞), E) → E,Q0 : G([−r,+∞), E) → E are continuous
and compact mapping, σ : G([−r,+∞), E) → E is continuous and there are two
positive constants c0, c1, d0, d1 such that

‖Q0(u)‖ ≤ c0‖u‖+ d0, ‖Q(σ(u), u)‖ ≤ c1‖u‖+ d1, u ∈ G([−r,+∞), E).

Then the problem (1.1) has minimal and maximal S-asymptotically ω-periodic mild
solutions u, u ∈ [v(0), w(0)], which can be obtained by the monotone iterative proce-
dures starting from v(0) and w(0), respectively.

Proof. For each u ∈ [v(0), w(0)], we have ut ∈ [v
(0)
t , w

(0)
t ] = [v(0)(t + s), w(0)(t +

s)] ⊂ SAPω(B) for t ∈ R+, s ∈ [−r, 0]. Define an operator Q : [v(0), w(0)] →
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G([−r,+∞), E) by

(Qu)(t) =



Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s), t ≥ 0,

Q(σ(u), u)(t) + ϕ(t), t ∈ [−r, 0].

(3.1)

By (H2)(2), the integral
∫ t

0
Tβ,γk(t − s)F (s, u(s), us)dg(s) is well defined. Clearly,

if Q admit a fixed point in G([−r,+∞), E), then the system (1.1) admits a mild
solution.

Now, we complete the proof by six steps.

Step I. The set {Qu : u(·) ∈ Ω} is equiregulated.
For any b > 0, t0 ∈ [−r, b), we have

‖(Qu)(t)− (Qu)(t+0 )‖
≤‖(Sβ,γk(t)− Sβ,γk(t+0 ))[Q(σ(u), u)(0) + ϕ(0)]‖

+ ‖[(ϕ1 ∗ Sβ,γk)(t)− (ϕ1 ∗ Sβ,γk)(t+0 )][ψ +Q0(u)]‖

+

n∑
k=1

αkM

Γ(1 + β − γk)

∣∣∣ ∫ t

0

(t− s)β−γkds

−
∫ t+0

0

(t+0 − s)β−γkds
∣∣∣‖[Q(σ(u), u)(0) + ϕ(0)]‖

+

∫ t+0

0

‖[Tβ,γk(t− s)− Tβ,γk(t+0 − s)]F (s, u(s), us)‖dg(s)

+

∫ t

t+0

‖Tβ,γk(t− s)F (s, u(s), us)‖dg(s)

≤‖Sβ,γk(t)− Sβ,γk(t+0 )‖L(E) · ‖ϕ(0)‖+M |t− t+0 | · ‖[ψ +Q0(u)]‖

+

n∑
k=1

αkM
∣∣∣ t1+β−γk − (t+0 )1+β−γk

Γ(2 + β − γk)

∣∣∣‖Q(σ(u), u)(0) + ϕ(0)‖

+W (R)

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)P (s)dg(s)

+ CW (R)

∫ t

t+0

(t− s)β−γkP (s)dg(s)

=J1(t) + J2(t) + J3(t) + J4(t) + J5(t), (3.2)

where

J1(t) = ‖Sβ,γk(t)− Sβ,γk(t+0 )‖L(E) · ‖Q(σ(u), u)(0) + ϕ(0)‖,
J2(t) = M |t− t+0 | · ‖ψ +Q0(u)‖,

J3(t) =

n∑
k=1

αkM
∣∣∣ t1+β−γk − (t+0 )1+β−γk

Γ(2 + β − γk)

∣∣∣ · ‖Q(σ(u), u)(0) + ϕ(0)‖,
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J4(t) = W (r)

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)P (s)dg(s),

J5(t) = CW (r)

∫ t

t+0

(t− s)β−γkP (s)dg(s).

By J2(t) and J3(t), we get that J2(t)→ 0 and J3(t)→ 0 as t→ t+0 independently
of u ∈ Ω. Since the compactness of Sβ,γk(t) and Tβ,γk(t) for t > 0, we have J1(t)→ 0
and applying dominated convergence theorem, we get that J4(t) → 0 as t → t+0
independently of u ∈ Ω. Let H(t) =

∫ t
0
(t− s)β−γkP (s)dg(s). In view of Lemma 2.4,

we get H(t) is a regulated function on R+. Therefore,

J5(t) =CW (r)

∫ t

t+0

(t− s)β−γkP (s)dg(s)

≤CW (r)
(
‖H(t)−H(t+0 )‖+

∫ t+0

0

‖((t− s)β−γk

− (t+0 − s)β−γk)P (s)‖dg(s)
)

→0 as t→ t+0 ,

we have ‖(Qu)(t)− (Qu)(t+0 )‖Ω → 0 as t→ t+0 independently of u ∈ Ω.
Similarly, one can demonstrate that for any t0 ∈ (−r, b], ‖(Qu)(t)− (Qu)(t+0 )‖Ω

→ 0 as t→ t+0 . According to the arbitrariness of b, one can find that u(t) is defined
on [−r,+∞). On the other hand, it is easy to see limt→∞ ‖u(t + ω) − u(t)‖ = 0.
Hence, assert that {Qu : u(·) ∈ Ω} is equiregulated.

Step II. We verify that Q : Ω→ Ω is continuous operator.
Let {u(n)} ⊂ Ω be a sequence such that u(n) → u(t) in Ω as n → ∞, then,

u(n)(t)→ u(t) in E and u
(n)
t → ut in B for every t ≥ 0 as n→∞. For t ∈ R+, by

the continuity of F and Q,Q0, when n→∞, we have

F (t, u(n)(t), u
(n)
t )→ F (t, u(t), ut), Q0(u(n))→ Q0(u),

Q(σ(u(n), u(n))→ Q(σ(u), u)

and
‖F (t, u(n)(t), u

(n)
t )− F (t, u(t), ut)‖ ≤ 2P (t)W (r). (3.3)

Moreover, for each t ≥ 0, we have

‖Q(un)(t)−Q(u)(t)‖
≤Sβ,γk(t)‖Q(σ(u(n)), u(n))−Q(σ(u), u)‖

+ (ϕ1 ∗ Sβ,γk)(t)‖Q0(u(n))−Q0(u)‖

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)‖Q(σ(u(n)), u(n))−Q(σ(u), u)‖

+ C

∫ t

0

(t− s)β−γk‖F (s, u(n)(s), u(n)
s )− F (s, u(s), us)‖dg(s). (3.4)

By (3.3)-(3.4) and the dominated convergence theorem for the Henstock-Lebesgue-
Stieltjes integral, for each t ≥ 0, we get that ‖Q(u(n))(t) − Q(u)(t)‖Ω
→ 0 as n→∞.
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Moreover, by Step I, it can shown that {Q(u(n))}∞n=1 is equiregulated. Therefore,
by Lemma 2.1, we get that Q(u(n)) converge uniformly to Q(u). Thus, Q is a
continuous operator.

Step III. We show that Q([v(0), w(0)]) ⊂ Ω.
For any u ∈ [v(0), w(0)], the operator (Qu) is defined on [−r,∞), and since

ϕ ∈ B, we have Qu|[−r,0] ∈ B. Thus, we show that the function

f : t→Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s) ∈ SAPω(E), t ≥ 0. (3.5)

Since u|R+ ∈ SAPω(E) and ut ∈ SAPω(B) for all t ≥ 0, ‖u(t + ω) − u(t)‖ ≤ ε
and ‖ut+ω − ut‖B ≤ ε become arbitrarily small by choosing t large enough. Hence,
by the continuity of F , there exists a constant tε,1 > 0 such that, for every t ≥ tε,1,
we have

‖F (t, u(t+ ω), ut+ω)− F (t, u(t), ut)‖ ≤
ε

2
(3.6)

and we can find a positive constant tε,2 sufficiently large such that for t ≥ tε,2, by
(H1), we have

‖F (t+ ω, u(t+ ω), ut+ω)− F (t, u(t+ ω), ut+ω)‖ ≤ ε

2
. (3.7)

Then for t > tε := max{tε,1, tε,2}, by (3.5), we get

f(t+ ω)− f(t)

=Sβ,γk(t+ ω)[Q(σ(u), u)(0) + ϕ(0)]

+ (ϕ1 ∗ Sβ,γk)(t+ ω)[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t+ ω)[Q(σ(u), u)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t+ ω − s)F (s, u(s), us)dg(s)

− Sβ,γk(t)ϕ(0)− (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

−
n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]

−
∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s)

=Sβ,γk(t+ ω)ϕ(0)− Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)]

+
(

(ϕ1 ∗ Sβ,γk)(t+ ω)− (ϕ1 ∗ Sβ,γk)(t)
)

[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t+ ω)[Q(σ(u), u)(0) + ϕ(0)]

−
n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]
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+

∫ ω

0

Tβ,γk(t+ ω − s)F (s, u(s), us)dg(s)

+

∫ t

0

Tβ,γk(t− s)(F (s+ ω, u(s+ ω), us+ω)− F (s, u(s), us))dg(s)

+

∫ t

0

Tβ,γk(t− s)(F (s, u(s+ ω), us+ω)− F (s, u(s), us))dg(s)

:=J1(t) + J2(t) + J3(t) + J4(t) + J5(t). (3.8)

Then

‖f(t+ ω)− f(t)‖ ≤ ‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖+ ‖J4(t)‖+ ‖J5(t)‖. (3.9)

Hence, we have

‖J1(t)‖
≤‖Sβ,γk(t+ ω)[Q(σ(u), u)(0) + ϕ(0)]‖+ ‖Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)]‖
≤(‖Sβ,γk(t+ ω)‖+ ‖Sβ,γk(t)‖) · ‖Q(σ(u), u)(0) + ϕ(0)‖

≤ 2C‖Q(σ(u), u)(0) + ϕ(0)‖
1 + |κ|(tβ+1 +

∑n
k=1 αkt

γk)
,

it is implies that ‖J1(t)‖ tend to 0 as t→∞.
On the other hand, by (2.1) we have supt>τ ‖tSβ,γk(t)‖ < ∞, for each τ > 0.

Since A is an ω-sectorial of angle γk
π
2 then ‖L[Sβ,γk ](λ)‖ → 0 as λ → 0. Thus, by

the vector-valued Hardy-Littlewood theorem (see [2], Theorem 4.2.9), we obtain

‖(ϕ1 ∗ Sβ,γk)(t)‖ → 0 as t→∞. (3.10)

By (2.4), it is implies that

‖ϕ1+β−γk ∗ Sβ,γk(t)‖ → 0 as t→∞. (3.11)

Hence, we have

‖J2(t)‖ ≤ ‖(ϕ1 ∗ Sβ,γk)(t+ ω)[ψ +Q0(u)]− (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]‖
≤ ‖(ϕ1 ∗ Sβ,γk)(t+ ω)− (ϕ1 ∗ Sβ,γk)(t)‖ · ‖ψ +Q0(u)‖.

By (3.10), we deduce that ‖J2(t)‖ tend to 0 as t→∞.

‖J3(t)‖ ≤‖
n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t+ ω)[Q(σ(u), u)(0) + ϕ(0)]

−
n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]‖

≤
n∑
k=1

αk‖[(ϕ1+β−γk ∗ Sβ,γk)(t+ ω)

− (ϕ1+β−γk ∗ Sβ,γk)(t)]‖ · ‖Q(σ(u), u)(0) + ϕ(0)‖.

By (3.11), we have ‖J3(t)‖ tend to 0 as t→∞.
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By (H1), we have

‖J4‖ ≤
∫ ω

0

‖Tβ,γk(t+ ω − s)‖ · ‖F (s, u(s), us)‖dg(s)

≤ CW (r)

∫ ω

0

(t+ ω − s)β−γkP (s)dg(s).

Thus, ‖J4(t)‖ tend to 0 as t→∞. By (3.6), (3.7) and (H1), we have

‖J5‖

≤
∫ t

0

‖Tβ,γk(t− s)‖ · ‖F (s+ ω, u(s+ ω), us+ω)

− F (s, u(s+ ω), us+ω)‖dg(s)

+

∫ t

0

‖Tβ,γk(t− s)‖ · ‖F (s, u(s+ ω), us+ω)− F (s, u(s), us)‖dg(s)

≤4CW (r)
(∫ tε

0

(t− s)q(β−γk)dg(s)
) 1
q ‖P‖HLSpg + ε

∫ t

tε

‖Tβ,γk(t− s)‖dg(s)

+ 4CW (r)
(∫ tε

0

(t− s)q(β−γk)dg(s)
) 1
q ‖P‖HLSpg + ε

∫ t

tε

‖Tβ,γk(t− s)‖dg(s)

≤8CW (r)
(∫ tε

0

(t− s)q(β−γk)dg(s)
) 1
q ‖P‖HLSpg + 2ε

∫ t

0

‖Tβ,γk(t− s)‖dg(s),

which implies that ‖J5(t)‖ tends to 0 ad t→∞. Thus, from the above results, we
have

lim
t→∞

‖f(t+ ω)− f(t)‖ = 0.

Combining this with the definition Q, we have Q(SPAω(E)) ⊂ SPAω(E), and
combining this fact with Step II, we obtain (Qu) ∈ Ω for any u ∈ [v(0), w(0)],
Q([v(0), w(0)]) ⊂ Ω.

Step IV. We check that Q : [v(0), w(0)]→ [v(0), w(0)] is a monotonically increasing
operator. Since {Sβ,γk(t)}t≥0 is positive, thus (ϕ1 ∗ Sβ,γk)(t), (ϕ1+β−γk ∗ Sβ,γk)(t)
and Tβ,γk(t) = (ϕβ ∗ Sβ,γk)(t) are also positive. On the one hand, in view of
Definition 2.10, Definition 2.11, and the positivity of operators {Sβ,γk(t)}t≥0, (ϕ1 ∗
Sβ,γk)(t), (ϕ1+β−γk ∗ Sβ,γk)(t) and Tβ,γk(t) = (ϕβ ∗ Sβ,γk)(t), we can deduce that
for any t ∈ [0,∞), v(0)(t) ≤ (Qv(0))(t), together with v(0)(t) = ϕ(t) = (Qv(0))(t) for
t ∈ [−r, 0], we get v(0) ≤ Qv(0). Similarly, Qw(0) ≤ w(0) is available.

On the other hand, let u(1), u(2) ∈ [v(0), w(0)] with u(1) ≤ u(2), we can see

v(0)(t) ≤ u(1)(t) ≤ u(2)(t) ≤ w(0)(t), t ∈ [−r, a],

v
(0)
t ≤ u

(1)
t ≤ u

(2)
t ≤ w

(0)
t , t ∈ [0,∞).

Thus, by (H1), (H2) and the positivity of Sβ,γk(t)(t ≥ 0), Tβ,γk(t)(t ≥ 0), we can
get

Qu(1) ≤ Qu(2).

Consequently, Q : [v(0), w(0)]→ [v(0), w(0)] is a monotonically increasing operator.
Now, we establish two iterative sequences {v(n)} and {w(n)} in [v(0), w(0)] by

v(n) = Qv(n−1), w(n) = Qw(n−1), n = 1, 2, · · · . (3.12)
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Using the monotonicity of Q, we can easily confirm that {v(n)} and {w(n)} satisfy:

v(0) ≤ v(1) ≤ v(2) ≤ · · · ≤ v(n) ≤ · · · ≤ w(n) ≤ · · · ≤ w(2) ≤ w(1) ≤ w(0). (3.13)

Step V. We prove that {v(n)} and {w(n)} are convergent in Ω.
For any a > 0, let V = {v(n)|n ∈ N} and V0 = {v(n−1)|n ∈ N}. Then V (t) =

(QV0)(t) for t ∈ [−r, a]. In fact, v(n)(t) = ϕ(t) for t ∈ [−r, 0], thus, {v(n)(t)} is
relatively compact on E for t ∈ [−r, 0]. For ∀ε ∈ (0, t), we define a set {(QεV0)(t)}
by

QεV0(t) := {Qεv(n)(t)|v(n) ∈ V0, t ∈ [0, a]},
where

Qεv(n)(t)

=Sβ,γk(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]

+ (ϕ1 ∗ Sβ,γk)(t− ε)[ψ +Q0(v(n−1))]

+

n∑
k=1

αk

∫ t−ε

0

(t− s)β−γk
Γ(1 + β − γk)

Sβ,γk(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]ds

+

∫ t−ε

0

Tβ,γk(t− s)F (s, v(n−1)(s), v(n−1)
s )dg(s), t ≥ 0.

And by the compactness of {Sβ,γk(t)}t≥0, we obtain that the set QεV0(t) is
relatively compact in E for all ε ∈ (0, t). Moreover, for every v(n) ∈ V0 and t ∈ [0, a],
from the following inequality

‖Qv(n)(t)−Qεv(n)(t)‖
≤‖((ϕ1 ∗ Sβ,γk(t)− ϕ1 ∗ Sβ,γk(t− ε))[ψ +Q0(v(n−1))]‖

+ ‖
n∑
k=1

αk

∫ t

t−ε

(t− s)β−γk
Γ(1 + β − γk)

Sβ,γk(s)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]ds‖

+ ‖
∫ t

t−ε
Tβ,γk(t− s)F (s, v(n−1)(s), v(n−1)

s )dg(s)‖

≤Mε(‖ψ‖+ c0‖v(n)‖∞ + d0) +

n∑
k=1

αkMε1+β−γk

Γ(2 + β − γk)
(‖ϕ(0)‖+ c1‖v(n)‖∞ + d1)

+ CW (r)

∫ t

t−ε
(t− s)β−γkP (s)dg(s)

≤Mε(‖ψ‖+ c0‖v(n)‖∞ + d0) +

n∑
k=1

αkMε1+β−γk

Γ(2 + β − γk)
(‖ϕ(0)‖+ c1‖v(n)‖∞ + d1)

+ CW (r)
(
‖H(t)−H(t− ε)‖

+

∫ t−ε

0

|(t− s)β−γk − (t− ε− s)β−γk |P (s)dg(s)
)

→0 as ε→ 0,

thus, the set {(QV0)(t)} is relatively compact, which implies that {v(n)(t)} is rela-
tively compact on E for t ∈ [0, a]. Thus, we have proved that {v(n)(t)} is relatively
compact on E for t ∈ [−r, a].
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Therefore, {v(n)} is relatively compact in G([−r, a], E) by the Arzelà-Ascoli
Theorem, which implies that there is convergent subsequence in v(n). Combing
with the monotonicity and the normality of the cone, we have {v(n)} and {w(n)}
themselves are convergent, i.e., there exist u, u ∈ G([−r, a], E), such that

u(t) = lim
n→∞

v(n)(t), u(t) = lim
n→∞

w(n)(t), t ∈ [−r, a].

By the arbitrariness of a, we have u and u are defined on [−r,∞). On the other
hand, it is easy to see limt→∞ ‖u(t+ω)−u(t)‖ = 0 and limt→∞ ‖u(t+ω)−u(t)‖ = 0.
Hence, we can deduce that there exist u, u ∈ Ω, such that

u(t) = lim
n→∞

v(n)(t), u(t) = lim
n→∞

w(n)(t), t ∈ [−r,∞). (3.14)

Taking limit in (3.12), we have

u = Qu, u = Qu.

Therefore u, u ∈ Ω are fixed points of Q and they are the S-asymptotically ω-
periodic mild solution of the problem (1.1).

Step VI. We claim that u and u are the minimal and maximal S-asymptotically
ω-periodic mild solutions of the nonlocal problem (1.1), respectively.

Taking limit of both ends of (3.12), we can deduce from (3.14) that

u = Qu, u = Qu. (3.15)

Applying (3.13), we can get u, u ∈ [v(0), w(0)] ⊂ Ω that are fixed points of Q and
u ≤ u. In fact, let u ∈ [v(0), w(0)] is an arbitrary fixed point of Q, then for every
t ∈ [−r,∞), we have v(0)(t) ≤ u(t) ≤ w(0)(t), and

v(1)(t) = (Qv(0))(t) ≤ (Qu)(t) = u(t) ≤ (Qw(0))(t) = w(1)(t),

namely,
v(1) ≤ u ≤ w(1).

Repeat this process, we get

v(n) ≤ u ≤ w(n), n = 1, 2, · · · .

Let n→∞, we can see u ≤ u ≤ u. Therefore u and u, respectively, are the minimal
and maximal S-asymptotically ω-periodic mild solutions of nonlocal problem (1.1)
in [v(0), w(0)], and u, u can be obtained by the iterative sequences (3.12) starting
from v(0) and w(0), respectively.

Theorem 3.2. Let E be an ordered Banach space, whose positive cone K ⊂ E is
normal. Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, . . . n be given. A is

an κ-sectorial operator of angle
γkπ

2
, k = 1, 2, · · · , n with κ < 0, and A generates

a positive and equicontinuous (β, γk)-resolvent family {Sβ,γk(t)}t≥0 on E. Assume
that ω > 0 is a constant and the nonlocal problem (1.1) has a lower mild solution v(0)

and an upper mild solution w(0) with v(0) ≤ w(0). If ϕ ∈ KB, Q(σ(u), u)(0)+ϕ(0) ∈
K∩D(A) and ψ ∈ K, F : R+×E×B → E is continuous and satisfies the conditions
(H1)-(H4) and the following conditions
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(H5) For each t ∈ R+, and monotone sequence {u(n)} ⊂ [v(0), w(0)], there exist

constants Lf ≥ 0, 0 < Lh <
Γ(2+β−γk)(1−2M̃Lg)

2M(Γ(2+β−γk)+
∑n
k=1 |αk|aβ−γk+1)

such that

α({F (t, u(n)(t), u
(n)
t )}) ≤ Lf

(
α({u(n)(t)}) + sup

s∈[−r,0]

α({u(n)
t (s)})

)
,

α({Q0(u(n)(t))}) ≤ Lgα({u(n)(t)}), α({Q(σ(u(n)(t)), u(n)(t))}) ≤ Lhα({u(n)(t)}).

Then the nonlocal problem (1.1) has minimal and maximal S-asymptotically ω-
periodic mild solutions u, u ∈ [v(0), w(0)], which can be obtained by the monotone
iterative procedures starting from v(0) and w(0), respectively.

Proof. Let Q be defined by (3.1). From the proof of Theorem 3.1, we know that
Q : [v(0), w(0)] → [v(0), w(0)] is a continuous increasing operator and v(0) ≤ Qv(0),
Qw(0) ≤ w(0). Hence, the iterative sequences v(n) and w(n) defined by (3.12) satisfy
(3.13). By {Sβ,γk(t)}t≥0 is an equicontinuous resolvent family, by the Step. I of
proof of Theorem 3.1, we get {v(n)} and {w(n)} are bounded and equiregulated in
t ∈ [−r,+∞).

Next, we prove that {v(n)} and {w(n)} are convergent in Ω.
For ∀a > 0, restrict {v(n)} to interval [−r, a]. Let V = {v(n)|n ∈ N} and

V0 = {v(n−1)|n ∈ N}. Then V = (QV0). From V0 = V ∪ {v(0)} it follow that
α(V0(t)) = α(V (t)) for t ∈ [−r, a].

For t ∈ [−r, 0], in view of the fact that v(n)(t) = Qv(n−1)(t) = ϕ(t), we can see

α(V (t)) = 0, t ∈ [−r, 0]. (3.16)

For t ∈ [0, a], we have

sup
s∈[−r,0]

α({v(n)
t (s)}) = sup

s∈[−r,0]

α({v(n)(t+ s)}) ≤ α({v(n)(t)}). (3.17)

By Lemma 2.2, we have

α(V (t)) =α({QV0(t)})

=α
({
Sβ,γk(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]

+ (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(v(n−1))]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, v(n−1)(s), v(n−1)
s )dg(s)

})
≤α({Sβ,γk(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]})

+ α
({∫ t

0

Sβ,γk(t)[ψ +Q0(v(n−1))]ds
})

+ α
({ n∑

k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]
})

+ α
({∫ t

0

Tβ,γk(t− s)F (s, v(n−1)(s), v(n−1)
s )dg(s)

})
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=α0 + α1 + α2 + α3.

First of all, we have

α0 :=α(Sβ,γk(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]})
≤2Mα({Q(σ(v(n−1)), v(n−1))(0)})
=2MLhα(V (t)).

By Lemma 2.12, (H5), (2.5) and (3.17), we have

α1 := α
({

(ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(v(n−1))]
})

≤ 2M̃α({(ψ +Q0(v(n−1))(t))})

≤ 2M̃α({Q0(v(n−1))(t)})
= 2M̃Lgα(V (t)),

α2 := α
({ n∑

k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(v(n−1)), v(n−1))(0) + ϕ(0)]
})

≤ 2

n∑
k=1

|αk|
∫ t

0

(t− s)β−γk
Γ(1 + β − γk)

‖Sβ,γk(t− s)‖L(E)

×α({Q(σ(v(n−1)), v(n−1))(0)})ds

≤
2MLh

∑n
k=1 |αk|aβ−γk+1

Γ(2 + β − γk)
α(V (t)),

α3 := α
({∫ t

0

Tβ,γk(t− s)F (s, v(n−1)(s), v(n−1)
s )dg(s)

})
≤ 2

∫ t

0

‖Tβ,γk(t− s)‖L(E) · α({F (s, v(n−1)(s), v(n−1)
s )})ds

≤ 2C

∫ t

0

(t− s)β−γkα({F (s, v(n−1)(s), v(n−1)
s )})dg(s)

≤ 2Caβ−γk+1

β − γk + 1
Lf

∫ t

0

α(V (s))dg(s).

Consequently, for t ∈ [0, a], we have

α(V (t)) ≤2MLhα(V (t)) +
2MLh

∑n
k=1 |αk|aβ−γk+1

Γ(2 + β − γk)
α(V (t))

+ 2M̃Lgα(V (t)) +
2Caβ−γk+1

β − γk + 1
Lf

∫ t

0

α(V (s))dg(s).

Since Γ(2 + β − γk)[1− 2MLh − 2M̃Lg] > 2MLh
∑n
k=1 |αk|aβ−γk+1, it gives that

α(V (t)) ≤
2Caβ−γk+1LfΓ(1 + β − γk)

∫ t
0
α(V (s))dg(s)

Γ(2 + β − γk)[1− 2MLh − 2M̃Lg]− 2MLh
∑n
k=1 |αk|aβ−γk+1

.
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Hence, by Bellman inequality, α(V (t)) ≡ 0 in [0, a]. Combining with (3.16), we
have α(V (t)) ≡ 0 in [−r, a], which shows that {v(n)(t)} is precompact on E for
any t ∈ [−r, a]. We can similarly show that {w(n)(t)} is also precompact on E
for t ∈ [−r, a]. Hence, there are convergent subsequences in {v(n)} and {w(n)}.
Combining with the monotonicity and the normality of the cone, it is clear that
{v(n)} and {w(n)} themselves are convergent, i.e., there exist u, u ∈ C([−r, a], E),
such that

u(t) = lim
n→∞

v(n)(t), u(t) = lim
n→∞

w(n)(t), t ∈ [−r, a].

According to the arbitrariness of a, one can find that u and u are defined on
[−r,∞). On the other hand, it is easy to see limt→∞ ‖u(t + ω) − u(t)‖ = 0 and
limt→∞ ‖u(t+ω)−u(t)‖ = 0. Hence, we can deduce that there exist u, u ∈ Ω, such
that

u(t) = lim
n→∞

v(n)(t), u(t) = lim
n→∞

w(n)(t), t ∈ [−r,∞). (3.18)

And by the Step.VI of proof of Theorem 3.1, u, u are the minimal and maximal S-
asymptotically ω-periodic mild solutions of the problem (1.1), which can be obtained
by monotone iterative sequences starting from v(0) and w(0).

Theorem 3.3. Let E be an ordered Banach space, whose positive cone K ⊂ E is
normal, Let 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and αk ≥ 0, k = 1, 2, . . . n be given. A is

an κ-sectorial operator of angle
γkπ

2
, k = 1, 2, · · · , n with κ < 0, and A generates

positive and equicontinuous (β, γk)-resolvent family {Sβ,γk(t)}t≥0 on E. Assume
that ω > 0 is a constant, ϕ ∈ KB, Q(u)(0) + ϕ(0) ∈ K ∩ D(A) and ψ ∈ K,
F : R+ ×K ×KB → E, Q : R+ ×G([−r,+∞), E)→ E,Q0 : G([−r,+∞), E)→ E
are continuous, σ : G([−r,+∞), E)→ E is continuous and F (t, θ, θ) ≥ θ for t ≥ 0.
If the condition (H2) and the following conditions are established:

(H6) For any R > 0, t ≥ 0, x1, x2 ∈ K with θ ≤ x1 ≤ x2, ‖xi‖ ≤ R and
φ1, φ2 ∈ KB with θ ≤ φ1 ≤ φ2, ‖φi‖B ≤ R,

F (t, x2, φ2) ≥ F (t, x1, φ1) ≥ θ.

(H7) For any t ≥ 0, x ∈ E and φ ∈ B, there exist functions pi(·) ∈ HLSpg(R+,R+)
for some p > 1 and nondecreasing functions Fi ∈ C(R+,R+)(i = 1, 2) as well as a
positive constant K such that

‖F (t, x, φ)‖ ≤ p1(t)F1(‖x‖) + p2(t)F2(‖φ‖B) +K,

where Fi and pi satisfy

lim inf
l→+∞

Fi(l)
l

:= ζi < +∞, i = 1, 2.

(H8) The nonlocal functions Q(σ(u), u), Q0(u) are bounded and increasing for u ∈
G([−r,+∞),K) with ‖u‖C ≤ R such that

lim inf
R→∞

Q0(R)

R
:= η < +∞, lim inf

R→∞

Q(σ(R), R)

R
:= η1 < +∞.
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(H9) For any R > 0, t ≥ 0, and the monotone increasing sequence {u(n)} ⊂
B̄(θ,R), there exist constants Lf , Lg, Lh ≥ 0 such that

α({F (t, u(n)(t), u
(n)
t )}) ≤ Lf

(
α({u(n)(t)}) + sup

s∈[−r,0]

α({u(n)
t (s)})

)
,

α({Q0(u(n)(t))}) ≤ Lgα({u(n)(t)}), α({Q(σ(u(n)(t)), u(n)(t))}) ≤ Lhα({u(n)(t)}).

(H10) The function s 7→
∫ ·

0
(· − s)β−γkdg(s) belongs to HLSqg(R+,R+).

Then the nonlocal problem (1.1) has at least a S-asymptotically ω-periodic pos-
itive mild solution u ∈ G([−r,∞),K) provided that

(M +

n∑
k=1

αkM1)η1 + M̃η + C sup
t≥0

(∫ t

0

(t− s)q(β−γk)dg(s)
) 1
q

× (ζ1‖p1‖HLSpg + ζ2‖p2‖HLSpg ) < 1, (3.19)

and 1
q + 1

p = 1.

Proof. Let a be any positive constant. For given ϕ ∈ KB, ‖ϕ‖B ≤ R. Define

ΩR =
{
u ∈ C([−r,∞),K)

∣∣‖u(t)‖ ≤ R, t ∈ R+;u|[−r,0] ∈ B, u(t) = ϕ(t), t ∈ [−r, 0]
}
,

and the operator Q : ΩR → K by

(Qu)(t) =



Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

+

n∑
k=1

αk(ϕ1+β−γk ∗ Sβ,γk)(t)[Q(σ(u), u)(0) + ϕ(0)]

+

∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s), t ∈ [0, a],

Q(u)(t) + ϕ(t), t ∈ [−r, 0].

(3.20)

From the hypothesis (H6)-(H8), the positivity of Sβ,γk(t)(t ≥ 0) and the definition
of ΩR, it follows that the positive mild solution of nonlocal problem (1.1) in R+ is
equivalent to the fixed point of Q.

Step I. We check that there is a constant R0 > 0 such that Q(ΩR0
) ⊂ ΩR0

.
In view of (2.4), we observe that as M1 := sup

t≥0
‖ϕ1+β−γk ∗ Sβ,γk(t)‖ < +∞.

Indeed, if this were not so, it would follows that for any R > 0, there exists
u ∈ ΩR such that ‖Qu‖ > R. In view of (2.5) and (3.20), for any t ≥ 0, we have

‖(Qu)(t)‖
≤‖Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)] + (ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]

+

n∑
k=1

αk

∫ t

0

(t− s)β−γk
Γ(1 + β − γk)

Sβ,γk(s)[Q(σ(u), u)(0) + ϕ(0)]ds

+

∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s)‖

≤‖Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)]‖+ ‖(ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]‖
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+
∥∥∥ n∑
k=1

αk

∫ t

0

(t− s)β−γk
Γ(1 + β − γk)

Sβ,γk(s)[Q(σ(u), u)(0) + ϕ(0)]ds
∥∥∥

+
∥∥∥∫ t

0

Tβ,γk(t− s)F (s, u(s), us)dg(s)
∥∥∥

≤‖Sβ,γk(t)[Q(σ(u), u)(0) + ϕ(0)]‖+ ‖(ϕ1 ∗ Sβ,γk)(t)[ψ +Q0(u)]‖

+ ‖
n∑
k=1

αk

∫ t

0

(t− s)β−γk
Γ(1 + β − γk)

Sβ,γk(s)[Q(σ(u), u)(0) + ϕ(0)]ds‖

+

∫ t

0

‖Tβ,γk(t− s)‖ · ‖F (s, u(s), us)‖dg(s)

≤M(‖ϕ‖B +Q(σ(R), R) + M̃(‖ψ‖+Q0(R))

+
( n∑
k=1

αkM1

)
(‖ϕ‖B +Q(σ(R), R)

+ C
(
F1(R)

(∫ t

0

[p1(s)]pdg(s)
) 1
p

+ F2(R)
(∫ t

0

[p2(s)]pdg(s)
) 1
p

+K
)

×
(∫ t

0

(t− s)q(β−γk)dg(s)
) 1
q

≤(M +

n∑
k=1

αkM1)(‖ϕ‖B +Q(σ(R), R) + M̃(‖ψ‖+Q0(R))

+ C sup
t≥0

(∫ t

0

(t− s)q(β−γk)dg(s)
) 1
q

(F1(R)‖p1‖HLSpg

+ F2(R)‖p2‖HLSpg +K). (3.21)

Hence, according to the above calculation, we can see

R <(M +

n∑
k=1

αkM1)(‖ϕ‖B +Q(σ(R), R)) + M̃(‖ψ‖+Q0(R))

+ C sup
t≥0

(∫ t

0

(t− s)q(β−γk)dg(s)
) 1
q

× (F1(R)‖p1‖HLSpg + F2(R)‖p2‖HLSpg +K).

Dividing both sides by R and taking the lower limit as R→∞, we can get

(M +

n∑
k=1

αkM1)η1 + M̃η + C sup
t≥0

(∫ t

0

(t− s)q(β−γk)dg(s)
) 1
q

× (ζ1‖p1‖HLSpg + ζ2‖p2‖HLSpg ) ≥ 1,

which is a contradiction (3.19). Thus, there is a constant R0 > 0 such that
Q(ΩR0) ⊂ ΩR0 .

Step II. The set {Qu : u(·) ∈ ΩR} is equiregulated. For any b > 0, any t0 ∈ [−r, b),
we have

‖(Qu)(t)− (Qu)(t+0 )‖
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≤‖(Sβ,γk(t)− Sβ,γk(t+0 ))[Q(σ(u), u)(0) + ϕ(0)]‖

+ ‖[(ϕ1 ∗ Sβ,γk)(t)− (ϕ1 ∗ Sβ,γk)(t+0 )][ψ +Q0(u)]‖

+

n∑
k=1

αkM

Γ(1 + β − γk)

∣∣∣ ∫ t

0

(t− s)β−γkds

−
∫ t+0

0

(t+0 − s)β−γkds
∣∣∣‖Q(σ(u), u)(0) + ϕ(0)‖

+

∫ t+0

0

‖[Tβ,γk(t− s)− Tβ,γk(t+0 − s)]F (s, u(s), us)‖dg(s)

+

∫ t

t+0

‖Tβ,γk(t−s)(t− s)F (s, u(s), us)‖dg(s)

≤‖Sβ,γk(t)− Sβ,γk(t+0 )‖L(E) · ‖Q(σ(u), u)(0) + ϕ(0)‖

+ M̃ |t− t+0 | · ‖ψ +Q0(u)‖

+

n∑
k=1

αkM
∣∣∣ t1+β−γk − (t+0 )1+β−γk

Γ(2 + β − γk)

∣∣∣‖Q(σ(u), u)(0) + ϕ(0)‖

+ (F1(‖u‖)
∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)p1(s)dg(s)

+ F2(‖us‖B)

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)p2(s)dg(s)

+K

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)dg(s)

+ CF1(‖u‖)
∫ t

t+0

(t− s)β−γkp1(s)dg(s)

+ CF2(‖us‖B)

∫ t

t+0

(t− s)β−γkp2(s)dg(s)

+ CK

∫ t

t+0

(t− s)β−γkdg(s)

=I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t) + I7(t) + I8(t) + I9(t), (3.21)

where

I1(t) = ‖Sβ,γk(t)− Sβ,γk(t+0 )‖L(E) · ‖Q(σ(u), u)(0) + ϕ(0)‖,

I2(t) = M̃ |t− t+0 | · ‖ϕ+Q0(u)‖,

I3(t) =

n∑
k=1

αkM
∣∣∣ t1+β−γk − (t+0 )1+β−γk

Γ(2 + β − γk)

∣∣∣ · ‖Q(σ(u), u)(0) + ϕ(0)‖,

I4(t) = (F1(‖u‖)
∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)p1(s)dg(s),



2696 H. Gou

I5(t) = F2(‖us‖B)

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)p2(s)dg(s),

I6(t) = K

∫ t+0

0

‖Tβ,γk(t− s)− Tβ,γk(t+0 − s)‖L(E)dg(s),

I7(t) = CF1(‖u‖)
∫ t

t+0

(t− s)β−γkp1(s)dg(s),

I8(t) = CF2(‖us‖B)

∫ t

t+0

(t− s)β−γkp2(s)dg(s),

I9(t) = CK

∫ t

t+0

(t− s)β−γkdg(s).

By the expression of I2(t) and I3(t), we derive that I2(t) → 0 and I3(t) → 0
as t → t+0 independently of u ∈ Ω. Since the compactness of Sβ,γk(t) and Tβ,γk(t)
for t > 0 yields the continuity in the sense of uniform operator topology. We get
that I1(t) → 0 and applying dominated convergence theorem on I4(t), I5(t), I6(t)
and I9(t), we can derive that I4(t), I5(t), I6(t), I9(t) → 0 as t → t+0 independently

of u ∈ Ω. Let H1(t) =
∫ t

0
(t − s)β−γkp1(s)dg(s), H2(t) =

∫ t
0
(t − s)β−γkp2(s)dg(s).

By Lemma 2.4, we known that H(t) is a regulated function on R+. Therefore, we
have

I7(t) =CF1(R)

∫ t

t+0

(t− s)β−γkp1(s)dg(s)

≤CF1(R)
(
‖H1(t)−H1(t+0 )‖+

∫ t+0

0

‖((t− s)β−γk

− (t+0 − s)β−γk)p1(s)‖dg(s)
)

→0 as t→ t+0 independently of u,

and

I8(t) =CF2(R)

∫ t

t+0

(t− s)β−γkp2(s)dg(s)

≤CF2(R)
(
‖H2(t)−H2(t+0 )‖+

∫ t+0

0

‖((t− s)β−γk

− (t+0 − s)β−γk)p2(s)‖dg(s)
)

→0 as t→ t+0 independently of u.

Therefore, ‖(Qu)(t)− (Qu)(t+0 )‖Ω → 0 as t→ t+0 . independently of u ∈ ΩR.

Similarly, one can demonstrate that for any t0 ∈ (−r, b], ‖(Qu)(t)− (Qu)(t+0 )‖Ω
→ 0 as t→ t+0 . According to the arbitrariness of b, one can find that u(t) is defined
on [0,∞). On the other hand, it is easy to see limt→∞ ‖u(t+ω)−u(t)‖ = 0. Hence,
assert that {Qu : u(·) ∈ ΩR} is equiregulated.

Step III. We finally show that the operator Q has a positive fixed point on ΩR0 .

We know that Q : ΩR0
→ ΩR0

is a monotonic increasing operator based on
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(H6)-(H8) and the proof Theorem 3.1.

Let v0 = θ ∈ K and establish the iterative sequence {v(n)} by

v(n) = Qv(n−1), n = 1, 2, · · · . (3.22)

Then according to the monotonicity of Q, one can find {v(n)} ⊂ K and

θ = v(0) ≤ v(1) ≤ · · · ≤ v(n) ≤ · · · . (3.23)

Similar to the proof of Theorem 3.2, we can get α({v(n)(t)}) ≡ 0 in [−r, a], that is,
{v(n)(t)} is precompact, hence, it has a convergent subsequence v(nk) → u ∈ Ω1,
combined with its monotonicity (3.23) and the normality of cone K, it is easy to
know that

v(n) → u ∈ G([−r, a],K), n→∞.

Taking limit of both ends of (3.22), and by the continuity of Q, we can get u = Qu,
which shows that u ∈ G([−r, a],K) is a positive mild solution of the nonlocal
problem (1.1). By the arbitrariness of a, we get that u(t) is defined on [−r,∞).
On the other hand, by the method of Step.III of Theorem 3.1, it is easy to see
limt→∞ ‖u(t + ω) − u(t)‖ = 0, which implies that u(t) is a S-asymptotically ω-
periodic mild solution for t ≥ 0. Hence, we know that the nonlocal problem (1.1)
has at least a S-asymptotically ω-periodic positive mild solution u in G([−r,∞),K).

4. Applications

In this section, we give an example to illustrate our main results. Let
β, γk > 0(k = 1, 2, . . . , n) be such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. Consider the

following measure driven differential equation:

cD1+β
0+ u(t, x) +

n∑
k=1

αk
cDγku(t, x) = ∆u(t, x) + τu(t, x)

+
sin(u(t+ s))

1 + e2t
dg(t), (t, x) ∈ R+ × [0, π], s ∈ [−r, 0],

u(t, 0) = u(t, π) = 0, t ∈ R+,

u(t, x) =
∫ a

0
θ(t, s) log(1 + |u(s, x)|)ds+ ϕ(t, x), (t, x) ∈ [−r, 0]× [0, π],

∂u(t, x)

∂t
|t=0 =

|u(t, x)|
6 + |u(t, x)|

+ ψ(x), x ∈ [0, π],

(4.1)

where ∆ is Laplace operator, a > 0, τ < 0 are constant, g : [0, π] → R is a non-
deacresing, left continuous function, θ(t, s) is a continuous function from [0,∞) ×
[−r, 0] to R+. Furthermore, define the operator A : D(A) ⊂ E → E by Au =
∆u+ τu and

D(A) = {u ∈ E : u, u′ are absolutely continuous, u′′ ∈ E, u(0) = u(π) = 0}.

Then it is well known that the operator A is κ-sectorial with κ = τ < 0 and angle
π
2 (and hence of angle γkπ

2 ) for all γk ≤ 1, k = 1, 2, · · · , n). Since β, γk > 0, k =
1, 2, · · · ,m be such that 0 < β ≤ γm ≤ · · · ≤ γ1 ≤ 1, by Lemma 2.7 , we deduce
that A generates a bounded (β, γk)-resolvent family {Sβ,γk(t)}t≥0.
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We choose the workspace E = L2([0, π],R), which is an ordered Banach space
with L2−norm ‖ · ‖2 and partial-order “ ≤ ”, K = {u ∈ L2([0, π],R) : u(x) ≥
0, a.e. x ∈ [0, π]} is a normal cone. Note B := G([−r, 0]× [0, π], E) with the normal
cone KB = {u ∈ B : u(t, x) ∈ K, t ∈ [−r, 0], a.e. x ∈ [0, π]}. We define

f(t, x, u(t, x), u(t+ s, x)) =
sin(u(t+ s))

1 + e2t
, t ∈ R+, s ∈ [−r, 0],

Q0(u(t, x)) =
|u(t, x)|

6 + |u(t, x)|
, Q(u(t, x)) =

∫ a

0

θ(t, s) log(1 + |u(s, x)|)ds.

For u ∈ [0, π], we set ϕ(t) = ϕ(t, ·), ψ = ψ(·), u(t) = u(t, ·), ut(s) = u(t+ s, ·) and

F (t, u(t), ut) = f(t, ·, u(t, ·), u(t+ s, ·)), Q0(u) =
|u|

6 + |u|
,

Q(u) =

∫ a

0

θ(t, s) log(1 + |u|)ds.

Then, equation (4.1) can be transformed into the form of abstract nonlocal problem
(1.1) in L2([0, π],R).

Further, from the definition of functions f and Q0, we have

‖F (t, u(t), ut)‖ ≤
1

2
‖u‖, ‖Q0(u(t, x))‖ ≤ 1

6
‖u‖, ‖Q(u(t, x))‖ ≤

∫ a

0

θ(t, s)ds‖u‖.

We deduce that condition (H4) is satisfied with c0 = 1
6 and d0 = 0, c1 =

∫ a
0
θ(t, s)ds

and d1 = 0. Additionally, (H1) is satisfied with P (t) = 1
2 and W (r) = r.

Theorem 4.1. Assume that ω > 0, f : R+ × [0, π] ×K ×KB → E be continuous
and the conditions (H2) is satisfied. If the following conditions
(A1) f(t, x, 0, 0) ≥ 0 for (t, x) ∈ R+ × [0, π], and there is a function 0 ≤ w =
w(t, x) ∈ G([−r,∞)× [0, π]) satisfying limt→∞ w(t+ ω, ·)− w(t, ·) = 0, such that

cD1+β
0+ w(t, x) +

n∑
k=1

αk
cDγkw(t, x)

≥ ∆u(t, x) + τu(t, x) + f(t, x, w(t, x), w(t+ s, x))dg(t),

(t, x) ∈ R+ × [0, π], s ∈ [−r, 0],

w(t, 0) = w(t, π) = 0, t ∈ R+,

w(t, x) ≥
∫ a

0

θ(t, s) log(1 + |w(s, x)|)ds+ ϕ(t, x), (t, x) ∈ R+ × [0, π],

∂w(x, 0)

∂t
≥ Q0(w(t, x)) + ψ(x), x ∈ [0, π].

(A2) there exists a constant l > 0 such that for any x ∈ [0, π], t ∈ R+ and 0 ≤ x1 ≤
x2 ≤ w(·, t), 0 ≤ φ1 ≤ φ2 ≤ wt,

f(t, x2, φ2)− f(t, x1, φ1) ≥ θ
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hold, then all the conditions in Theorem 3.1 are satisfied, our results can be applied
to system (4.1). Also, the problem (4.1) has minimal and maximal S-asymptotically
ω-periodic solutions u, u ∈ G([−r,∞), L2([0, π],R) ∩ SAPω(L2([0, π],R)) between 0
and w, which can be obtained by monotone iterative sequences starting from 0 and
ω.

Proof. From the condition (A1), it follows that v0 ≡ 0 and w0 = w(x, t) ≥ 0
are lower and upper S-asymptotically ω-periodic mild solutions of the problem
(4.1), respectively. Thus, by the condition (A2), one can find that the condition
(H2) holds. Therefore, from Theorem 3.1, we can obtain that the problem (4.1)
has minimal and maximal time S-asymptotically ω-periodic mild solutions u, u ∈
G([−r,∞), E)∩SAPω(E), which can be obtained by monotone iterative sequences
starting from 0 and w, respectively.

5. Conclusions

This article establishes some results on the existence of maximal and minimal S-
asymptotic ω- periodic mild solutions of fractional measure differential equations in
order Banach space by using the method of upper and lower solutions. In further
work, we investigate the existence of S-asymptotic ω-periodic mild solutions for a
class of Hilfer fractional measure differential equations.
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