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INITIAL VALUE PROBLEM FOR A CLASS OF
SEMI-LINEAR FRACTIONAL ITERATIVE

DIFFERENTIAL EQUATIONS
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Abstract An initial value problem of a class of semi-linear fractional order
iterative differential equations is researched in this paper. The existence of
solution is acquired in respect of Banach space C(I, I) and CK,q(I, I) for frac-
tional order iterative differential equations. Nevertheless, because the operator
is Hölder continuous rather than Lipschitz continuous, uniqueness results can
not be obtained. Additionally, a change of solution to [k, β] for the k ∈ I will
arise from a small perturbation of the initial value. Our analysis is on the
basis of the properties of Mittag-Leffler function and Schauder’s fixed point
theorem. Lastly, some examples are provided to demonstrate our results.
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1. Introduction

Iterative differential equations (IDE) are highly essential when people investigate
the movement of charged particles with retarded interaction. On the other hand,
because the use of IDE is one of the most practical approaches to research biological
modeling of the bacteria reproduction, the usage of IDE has drawn the attention of
numerous scholars.

Considering FDE with real variables can be employed in fields such as control
theory [35], biology chemical physics [24], economics [27], electrical networks [16]
that are naturally modeled by FDE, fractional derivatives are perceived as im-
portant tools to describe nonlinearity. The monographs [8, 17, 21, 30] are a great
resource for fractional calculus theory and applications. There are many papers han-
dling the existence or uniqueness of solutions to initial /boundary value problem
(IVP or BVP) for some nonlinear FDE. For example, Barrett [2] proved the exis-
tence and uniqueness of solutions for a non-integer order IVP. In [5,37], the authors
considered the IVP and BVP for FDE by applying the upper and lower solutions
method. In [11–13], the authors presented the existence and uniqueness results
for fractional nonlinear Volterra-Fredholm integro differential equations. In [15],
the authors used Gagliardo-Nirenberg inequalities, fixed point theory and operator
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theory to consider the global/local well-posedness of the semi-linear time fractional
Rayleigh-Stokes problem. In [14], the authors discussed the Hölder regularity result
for CDq

τx(τ) +A(τ)x(τ) = f(τ) concerning Caputo’s fractional derivative.
IDE offer an effective method to explore the approximation solutions and people

have researched them over the years because of their extensive applications. Some
important results regarding the existence (uniqueness) of solutions for integer or-
der differential equations or fractional iterative differential equation (FIDE) have
been obtained. For example, the authors [1] provided sufficient conditions for the
existence and uniqueness of solutions to the second order iterative dynamic BVP
with mixed derivative operators. In [3,26,36], the authors proved the existence and
uniqueness of solutions for first-order IDE. In [10], the authors investigated the exis-
tence, uniqueness, continuous dependence and Ulam stability theorems for iterative
Caputo FDE. In [22, 31], the authors proved the existence and uniqueness of solu-
tions for fractional iterative integro-differential equations. In [6, 20, 32, 34, 38], the
authors proved the existence and uniqueness of solutions FIDE using some standard
fixed point technology.

The author [4] discussed the existence, uniqueness and continuous dependence
theorems for

x′(τ) = f(τ, x(x(τ))), x(τ0) = x0, τ ∈ I = [α, β],

The authors [5] considered the following nonlinear fractional relaxation differ-
ential equation 

CDq
0+x(τ) + γx(τ) = f(τ, x(τ)), τ ∈ (0, 1],

x(0) = x0 > 0,

where q ∈ (0, 1), γ > 0, t0, x0 ∈ [0, 1] and f ∈ C([0, 1]×R+,R+). CDq
0+ is standard

Caputo fractional derivative.
The authors [7] discussed the existence of approximate solutions to FIDE

CDq
α,τx(τ) = f(τ, x(τ), x(xv(τ))), τ ∈ I,

x(τ0) = x0, x′(α) = 0,

where v ∈ R\{0}, 1 < q < 2 and f ∈ C(I3,R).
The authors [18,19] considered the following FIDE

Dq
0+x(τ) = f(τ, x(τ), x(x(τ))), x(0) = x0,

where q ∈ (0, 1), x0 ∈ [0, T ] and f ∈ C([0, T ]3,R).
The authors [23] considered the following Caputo fractional quadratic IDE

CDq
0+x(τ) = f(τ, x(τ), x(x(τ))), x(0) = x0,

where q ∈ (0, 1), x0 ∈ [0, T ] and f ∈ C([0, T ]3,R).
Motivated by the papers [4, 5, 7, 18, 19, 23], we’ll discuss the fractional iterative

IVP with linear term

CDq
α+x(τ) + γx(τ) = f(τ, x(τ), x(xv(τ))), τ ∈ I, 0 < q < 1 (1.1)
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subject to boundary condition
x(α) = xa, (1.2)

where xa ∈ I, γ > 0, v ∈ R \ {0}, 0 ≤ α ≤ αv, βv ≤ β, CDq
α+ is starded Caputo

fractional derivative and f ∈ C(I3,R).
As far as we are aware, no study on IVP (1.1)-(1.2) of fractional order iterative

has been done, hence we hope to make some progress in this area with this paper.
Compared to the paper [5], our nonlinear term f has two space variables, the latter
of which is an iteration term. Compared to the papers [18, 19, 23], equation (1.1)
involves a linear term γx(τ), which can be considered as a perturbation to an
equation. It can be handled quite differently without it. The existence results were
obtained in Banach space C(I, I) and CK,q(I, I) by employing the properties of
Mittag-Leffler function and Schauder’s fixed point theorem. However, the operator
is just Hölder continuous rather than Lipschitz continuous, which prevents obtaining
uniqueness results. This paper also discusses the continuous dependence of the
solutions.

2. Some definitions and lemmas

Some fractional calculus theory concepts and other basic knowledge are presented
in this section.

Let C(I,R) be the set of all continuous functions from I into R with the norm
‖x‖ = sup{| x(τ) |; τ ∈ I}.

Definition 2.1. (see [21, 28]) The Riemann-Liouville fractional integral of order
q > 0 of a function x ∈ C(I,R) is given by

Iqα+x(τ) =

∫ τ

α

(τ − ς)q−1

Γ(q)
x(ς)dς

provided that the right-hand side is pointwise defined on (0,∞), and Γ(q) is the
Euler gamma function defined by Γ(q) =

∫∞
0
τ q−1e−τdτ .

Definition 2.2. (see [21, 28]) The Caputo’s fractional order derivative of order
q > 0, n ∈ N of a continuous function h : (0,∞)→ R is given by

CDq
α+h(τ) = In−qα+ Dnh(τ) =

1

Γ(n− q)

∫ τ

α

h(n)(ς)

(τ − ς)q+1−n dς,

where n = [q] + 1, and [q] represents the integer part of the real number q. The
Laplace transform is given as

L{CDq
α+h(τ)} = ςqH(ς)−

n−1∑
k=0

ςq−k−1h(k)(α),

where H(ς) = L{h(τ)} denotes the Laplace transform of h(τ).

Let us review the Mittag-Leffler function

Eq,p(z) =

∞∑
k=0

zk

Γ(qk + p)
, q > 0, p ∈ R, z ∈ C,
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and the Wright-type function

Mθ(z) =

∞∑
k=0

(−z)k

k!Γ(1− θ(k + 1))
, θ ∈ (0, 1), z ∈ C.

For additional information, read Kilbas [21] and Mainardi [25]. When limited to
the real line, the function Eα,β is real analytic and represents a full function.

The Laplace transform for the Mittag-Leffler function with two parameters is as
follows:

L{τp−1Eq,p(−γτ q)} =
ςq−p

ςq + γ
, (R(ς) >| γ |

1
q ), (2.1)

where τ ≥ 0, R(ς) denotes the real part of ς, γ ∈ R.

Lemma 2.1. (see [33, Lemma 2]) Let 0 < q ≤ 2 and p ∈ R+. For all z < 0,
Eq(·), Eq,p(·) and Eq,p(·) are non-negative.

Moreover, Eq,q(0) = 1
Γ(q) . For any τ1, τ2 ≥ 0 and γ > 0,

Eq,p(−γτ q1 )→ Eq,p(−γτ q2 ) as τ1 → τ2.

Lemma 2.2. (see [29]) The following equality holds for γ > 0, 0 < q < 1,

d

dτ
Eq(−γτ q) = −γτ q−1Eq,q(−γτ q), τ > 0,

where Eq(·) = Eq,1(·).

Lemma 2.3. (see [29]) The following equality holds for γ > 0, q > 0 and m ∈ Z,
then

dm

dτm
Eq(−γτ q) = −γτ q−mEq,q+1−m(−γτ q), τ > 0.

Lemma 2.4. (see [25]) The Wright-type function has the following properties for
each τ > 0,∫ ∞

0

νκMθ(ν)dν =
Γ(κ+ 1)

Γ(θκ+ 1)
, Mθ(τ) ≥ 0, for − 1 < κ <∞. (2.2)

Remark 2.1. (see [39]) The Mittag-Leffler function and Wright-type function have
the following formula

Eq(−z) =

∫ ∞
0

Mq(ν)e−zνdν, Z ∈ C. (2.3)

Lemma 2.5. (see [21, pp.140–141], [5]) Let h ∈ C(I,R), γ > 0, then the solution
to FDE

CDq
α+x(τ) + γx(τ) = h(τ), τ ∈ I, 0 < q < 1 (2.4)

is affected by the initial condition (1.2) which is the same as the integral equation

x(τ) = xaEq(−γ(τ − α)q) +

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)h(ς)dς.
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Sketch of Proof. By applying Laplace transform for both sides of (2.4), we obtain

ςqX(ς)− ςq−1xa + γX(ς) = H(ς),

where X(ς) and H(ς) represent the Laplace transform of x(τ) and h(τ), respectively.
It then follows

X(ς) =
ςq−1xa +H(ς)

ςq + γ
. (2.5)

By applying inverse Laplace transform for both sides of (2.5), we have

x(τ) = xaEq(−γ(τ − α)q) + h(τ) ∗ [(τ − α)q−1Eq,q(−γ(τ − α)q)],

where ∗ is the convolution operator. Therefore, it follows

x(τ) = xaEq(−γ(τ − α)q) +

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)h(ς)dς.

3. Existence result in C(I, I)

We investigate the existence of solutions to FDE (1.1)-(1.2) by Schauder’s fixed
point theorem [9].

The following conditions are provided to handle our problem,
(H1) The function f ∈ C(I3,R) is a Carathéodory function;
(H2) α, β ≥ 0 and satisfy α ≤ αv, βv ≤ β, v ∈ R\{0}.

Consider the operator T : C(I, I)→ C(I,R) as follows:

(Tx)(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x(ς), x(xv(ς)))dς.

(3.1)

Recall that we require α ≤ x(τ) ≤ β, for any α ≤ τ ≤ β, in a bid to make solutions
to (1.1)-(1.2) be well-defined. Thus, if x ∈ C(I, I) is a fixed point of the operator
T , x is a solution to (1.1)-(1.2) so that α ≤ (Tx)(τ) ≤ β for every τ ∈ I. Then the
next step is to investigate the operator equation

T (x) = x.

Theorem 3.1. Let (H1) and (H2) hold. If
(H3) there exist constant constants fm and fM so that

fm ≤ f(τ, x, y) ≤ fM , (τ, x, y) ∈ I3,M = max{| fm |, | fM |};

(H4) one of the subsequent assumptions satisfies:

(i) M(1− Eq(−γ(β − α)q)) ≤ γMa or

(ii) xa = α, γ(β − xa) ≥ fM (1− Eq(−γ(β − α)q)),

fm(1− Eq(−γ(β − α)q)) ≥ γxa(1− Eq(−γ(β − α)q)), f(t, x, y) ≥ 0, or

(iii) xa = β, fm ≥ γxa(1− Eq(−γ(β − α)q)), f(t, x, y) ≤ 0,
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where Ma = max{xaEq(−γ(β − α)q)− α, β − xa}.
Then there is a minimum of one solution for the fractional BVP (1.1)-(1.2) in

C(I, I).

Proof. We firstly prove that T (C(I, I)) ⊂ C(I, I).
Eq(−γ(τ − α)q) ≥ 0 is known from Lemma 2.1, which means that for any

τ − α ≥ ς ≥ 0, (τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q) ≥ 0 is true. Furthermore, based
on Lemma 2.3, when m = 1 and Eq(0) = 1, we know that∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)dς =
1

γ

(
1−Eq(−γ(τ − α)q)

)
≥ 0. (3.2)

Lemma 2.2 tells us that Eq(−γ(τ − α)q) is monotonously decreasing concerning τ .
Therefore, for τ ∈ I, we have

0 < Eq(−γ(β − α)q) ≤ Eq(−γ(τ − α)q) ≤ Eq(0) = 1. (3.3)

For any τ ∈ I, from (H3-H4), (3.2)-(3.3), we have

| (Tx)(τ) |≤xaEq(−γ(τ − α)q)+ |
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)

× f(ς, x(ς), x(xv(ς)))dς |

≤xa +
1

γ
M
(
1− Eq(−γ(τ − α)q)

)
≤xa +

1

γ
M
(
1− Eq(−γ(β − α)q)

)
≤β,

and

| (Tx)(τ) |≥xaEq(−γ(τ − α)q)− |
∫ τ−α

0

(τ − α− ς)q−1Eq,q(−γ(τ − α− ς)q)

× f(ς, x(ς), x(xv(ς)))dς |

≥xaEq(−γ(β − α)q)− 1

γ
M
(
1− Eq(−γ(τ − α)q)

)
≥xaEq(−γ(β − α)q)− 1

γ
M
(
1− Eq(−γ(β − α)q)

)
≥α.

It indicates that T is a self-mapping operator

T : C(I, I)→ C(I, I).

We handle the case (H4)(ii) and (H4)(iii) in a manner similar to that of (H4)(i).
Next, we prove that T is an operator that is completely continuous.

Let {xn} be a sequence with xn → x in C(I, I). Then, from (3.2), for each
τ ∈ I, we get

(| Txn)(τ)− (Tx)(τ) |

= |
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)(f(ς, xn(ς), xn(xvn(ς)))
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− f(ς, x(ς), x(xv(ς))))dς |

≤ sup
ς∈I
| f(ς, xn(ς), xn(xvn(ς)))− f(ς, x(ς), x(xv(ς)))) | 1

γ

(
1− Eq(−γ(τ − α)q)

)
,

which implies that

‖Txn−Tx‖ ≤ sup
ς∈I
| f(ς, xn(ς), xvn(ς))−f(ς, x(ς), xv(ς))) | 1

γ

(
1−Eq(−γ(τ − α)q)

)
.

We can sum up by using condition (H1) and Lebesgue’s dominated convergence
theorem that

‖Txn − Tx‖ → 0 as n→∞.

T is hence continuous. For τ1 = α and α < τ2 ≤ β, from (3.2) and (3.3) and Lemma
2.1, we have

| (Tx)(τ2)− (Tx)(τ1) |

= |
∫ τ2−α

0

(τ2 − ς − α)q−1Eq,q(−γ(τ2 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς

+ xaEq(−γ(τ2 − α)q)− xaEq(−γ(τ1 − α)q) |

≤M
γ

(
1− Eq(−γ(τ2 − α)q)

)
+ | xaEq(−γ(τ2 − α)q)− xa |

=

{
M

γ
+ xa

}(
1− Eq(−γ(τ2 − α)q)

)
→ 0 as τ2 → α.

For α < τ1 < τ2 ≤ β, from Lemma 2.1 and (3.2), we have

| (Tx)(τ2)− (Tx)(τ1) |
= | xaEq(−γ(τ2 − α)q)− xaEq(−γ(τ1 − α)q)

+

∫ τ2−α

0

(τ2 − ς − α)q−1Eq,q(−γ(τ2 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς

−
∫ τ1−α

0

(τ1 − ς − α)q−1Eq,q(−γ(τ1 − ς − α)q)f(ς, x(ς), x(xv(ς)))dς |

≤xa | Eq(−γ(τ2 − α)q)− Eq(−γ(τ1 − α)q) | +M |
∫ τ2−α

0

(τ2 − ς − α)q−1

× Eq,q(−γ(τ2 − ς − α)q)dς −
∫ τ1−α

0

(τ1 − ς − α)q−1Eq,q(−γ(τ1 − ς − α)q)dς |

=xa | Eq(−γ(τ2 − α)q)− Eq(−γ(τ1 − α)q) |

+
M

γ
(Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q))

=

{
M

γ
+ xa

}
(Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q)).

(3.4)
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From (2.5) and Remark 2.1, it follows from 1− e−z ≤ y and e−z ≤ 1 for z ≥ 0 that

Eq(−γ(τ1 − α)q)− Eq(−γ(τ2 − α)q)

≤
∫ ∞

0

Mα(ν) | e−γ(τ1−α)qν − e−γ(τ2−α)qν | dν

=

∫ ∞
0

Mα(ν)e−γ(τ1−α)qν | 1− e−γ((τ2−α)q−(τ1−α)q)ν | dν

≤γ((τ2 − α)q − (τ1 − α)q)

∫ ∞
0

Mα(ν)νdν

=
γΓ(2)

Γ(1 + q)
((τ2 − α)q − (τ1 − α)q)

≤ γΓ(2)

Γ(1 + q)
(τ2 − τ1)q,

(3.5)

where α < τ1 < τ2 ≤ β and we use the inequality

(τ2 − α)q − (τ1 − α)q ≤ max{1, q}(τ2 − α)max{0,q−1}(τ2 − τ1)min{q,1} ≤ (τ2 − τ1)q.

Thus,

| (Tx)(τ2)− (Tx)(τ1) |≤
{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
(τ2 − τ1)q

−→0 as τ2 → τ1.

(3.6)

We assert that T is a completely continuous operator on the basis of Arzelá-Ascoli
theorem. By Schauder’s fixed point theorem, the problem (1.1)-(1.2) has at least
one solution in C(I, I).

Corollary 3.1. The fractional order iterative differential equation (1.1)-(1.2) has
at least one continuous solution, if γ → 0, v → 1 and α → 0+ as demonstrated by
Ibrahim (2012) and (2013).

4. Existence and an estimate of the result in
CK,q(I, I)

Assuming that K is a positive constant and E ⊂ R is a compact interval, we present
the following set:

CK,q(E,R) = {x ∈ C(E,R) || x(τ1)− x(τ2) |≤ K | τ1 − τ2 |q}

for any τ1, τ2 ∈ R. Note that CK,q(E,R) ⊆ C(E,R) is a complete metric space.

Theorem 4.1. Let (H1)-(H4) hold. The solution to the IVP (1.1)-(1.2) can be
acquired in CK,q(I, I), and CK,q(I, I) owns all its solutions for

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
.

Proof. Based on Theorem 3.1, we know that

T : C(I, I)→ C(I, I),



Initial value problem for a class of semi-linear fractional ... 2741

and T has a minimum of one solution in C(I, I). Consider α < τ1 < τ2 ≤ β. Then
from (3.4), (3.5) and (3.6), we have

| (Tx)(τ2)− (Tx)(τ1) |≤ K | τ1 − τ2 |q .

Furthermore, for τ1 = α and α < τ2 ≤ β, from Theorem 3.1, we have

| (Tx)(τ2)− (Tx)(τ1) |≤
{
M

γ
+ xa

}
| 1− Eq(−γ(τ2 − α)q) | .

From Lemma 2.4 and Remark 2.1, we have

| 1− Eq(−γ(τ2 − α)q) | =| Eq(0)− Eq(−γ(τ2 − α)q) |

=|
∫ ∞

0

Mα(ν)dν −
∫ ∞

0

Mα(ν)e−γ(τ2−α)qνdν |

≤
∫ ∞

0

Mα(ν) | 1− e−γ(τ2−α)qν | dν

≤ γ(τ2 − α)q
∫ ∞

0

Mα(ν)νdν

=
γΓ(2)

Γ(1 + q)
(τ2 − τ1)q,

where we use the inequality

1− e−z ≤ z for z ≥ 0.

In summary, for τ1, τ2 ∈ I, we have

| (Tx)(τ2)− (Tx)(τ1) |≤ K | τ1 − τ2 |q .

As a result, at least one solution for the IVP (1.1)-(1.2) exists in CK,q(I, I).

Theorem 4.2. Let (H1-H4) hold. There are constants K1, K2 > 0 such that

(H5) | f(τ, x1, y1)−f(τ, x2, y2) |≤ K1 | x1−x2 | +K2 | y1−y2 |

for τ ∈ I, xi, yi ∈ I(i = 1, 2). Then two solutions x1 and x2 of problems (1.1)-(1.2)
satisfy

‖ x1 − x2 ‖≤ K
1

1−q min{1,v}
T .

Where

KT =
1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2)β1−qmin{1,v}

+ max{1, vq}(β − α)qmax{v−1,0}KK2].

If (
1− Eq(−γ(β − α)q)

)
(K1 +K2) ≤ γ,

then

‖ x1 − x2 ‖≤ K̃
1

1−q min{1,v}
T ,
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where

K̃T =
γ −

(
1− Eq(−γ(β − α)q)

)
(K1 +K2)(

1− Eq(−γ(β − α)q)
)

max{1, vq}(β − α)qmax{v−1,0}KK2

.

Proof. We can infer that there is at least one solution to problem (1.1)-(1.2) from
Theorem 3.1. Let x1 and x2 be two solutions of (1.1)-(1.2). Then from Lemma 2.5,
we have

x1(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x1(ς), x1(xv1(s)))dς,

x2(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x2(ς), x2(xv2(s)))dς.

For τ ∈ I, from (H5), we obtain

| T (x1)(τ)− T (x2)(τ) |

= |
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − a)q)f(ς, x1(ς), x1(xv1(s)))dς

−
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x2(ς), x2(xv2(s)))dς |

≤
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q) | f(ς, x1(ς), x1(xv1(s)))

− f(ς, x2(ς), x2(xv2(s))) | dς

≤
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[K1 | x1(ς)− x2(ς) |

+K2 | x1(xv1(s))− x2(xv2(s)) |]dς

≤
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[K1 | x1(ς)− x2(ς) |

+K2 | x1(xv1(s))− x1(xv2(s)) |] +K2 | x1(xv2(s))− x2(xv2(s)) |]dς

≤
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[(K1 +K2) ‖ x1 − x2 ‖

+KK2 | xv1(ς)− xv2(ς) |q]dς

≤
∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)[(K1 +K2) ‖ x1 − x2 ‖

+ max{1, vq}(β − α)qmax{v−1,0}KK2 ‖ x1 − x2 ‖qmin{1,q}]dς

≤ 1

γ

(
1− Eq(−γ(τ − α)q)

)
[(K1 +K2) ‖ x1 − x2 ‖

+ max{1, vq}(β − α)qmax{v−1,0}KK2 ‖ x1 − x2 ‖qmin{1,q}].
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From ‖ x1 − x2 ‖≤ β, we obtain

‖ T (x1)− T (x2) ‖≤ 1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2)β1−qmin{1,v}

+ max{1, vq}(β − α)qmax{v−1,0}KK2] ‖ x1 − x2 ‖qmin{1,v}

=KT ‖ x1 − x2 ‖qmin{1,v} .

We know that T is Hölder continuous rather than Lipschitz continuous since αmin
{1, v} ≤ α < 1. Assume that T has fixed points x1 and x2, then

‖ x1 − x2 ‖=‖ T (x1)− T (x2) ‖≤ KT ‖ x1 − x2 ‖qmin{1,v} .

Thus, ‖ u1 − u2 ‖≤ K
1

1−q min{1,v}
T .

In general, we get

‖ x1 − x2 ‖≤
1

γ

(
1− Eq(−γ(β − α)q)

)
[(K1 +K2) ‖ x1 − x2 ‖

+ max{1, vq}(β − α)qmax{v−1,0}KK2 ‖ x1 − x2 ‖qmin{1,v}]

≤ 1

γ

(
1− Eq(−γ(β − α)q)

)
(K1 +K2) ‖ x1 − x2 ‖

+
1

γ

(
1− Eq(−γ(β − α)q)

)
max{1, vq}(β − α)qmax{v−1,0}

×KK2 ‖ x1 − x2 ‖qmin{1,v} .

Thus,

‖ x1 − x2 ‖≤
γ −

(
1− Eq(−γ(β − α)q)

)
(K1 +K2) ‖ x1 − x2 ‖qmin{1,v}(

1− Eq(−γ(β − α)q)
)

max{1, vq}(β − α)qmax{v−1,0}KK2

,

which means that

‖ x1 − x2 ‖

≤
{

γ −
(
1− Eq(−γ(β − α)q)

)
(K1 +K2)(

1− Eq(−γ(β − α)q)
)

max{1, vq}(β − α)qmax{v−1,0}KK2

} 1
1−q min{1,v}

.

5. Continuous dependence of solutions

We address the continuous dependence of the solutions to (1.1) by utilizing integral
inequalities as a useful tool. Let’s give a slight modification to the initial value, that
is,

x(α) = xa + ε, (5.1)

where ε can be any kind of constant.

Theorem 5.1. Assume that the Theorem 4.2’s conditions are met. Suppose that
IVP (1.1)-(1.2) has a solution x(τ) and ω(τ) is the solution of

CDq
α,ω(τ) + γω(τ) = f(τ, ω(τ), ω(ωv(τ))),

ω(α) = xa + ε, τ ∈ I.
(5.2)
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Let γ1 be a positive root of equation

γ1 =| ε | +KT γ
qmin{1,v}
1 .

Then
‖ x− ω ‖≤ γ1. (5.3)

If in addition (
1− Eq(−γ(β − α)q)

)
(K1 +K2) ≤ γ,

and let γ2 be a positive root of equation

γ2 =| ε | +K̃T γ
qmin{1,v}
2 ,

then
‖ x− ω ‖≤ γ2. (5.4)

Proof. Recall that we just need to change xa to xa + ε in (H4) in a bid to make
the solution to (5.2) be well-defined.

Lemma 2.5 indicates that

x(τ) =xaEq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, x(ς), x(xv(s)))dς,
(5.5)

and

ω(τ) =(xa + ε)Eq(−γ(τ − α)q)

+

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)f(ς, ω(ς), ω(ωv(s)))dς,
(5.6)

which are the equivalent integral solution to (1.1)-(1.2) and (5.2), respectively.
(5.5) minus (5.6), given condition (H5), for any sufficiently small ε we get

| x(τ)− ω(τ) |≤ | ε | Eq(−γ(τ − α)q) +

∫ τ−α

0

(τ − ς − α)q−1Eq,q(−γ(τ − ς − α)q)

× | f(ς, x(ς), x(xv(s)))− f(ς, ω(ς), ω(ωv(s))) | dς

≤ | ε | +
∫ τ−α

0

| Eq,q(−γ(τ − ς − α)q)[K1 | u(ς)− ω(ς) |

+K2 | x(xv(s))− ω(ωv(s)) |]dς.

Comparable to Theorem 4.2’s proof, from ‖ x− ω ‖≤ β, we have

‖ x− ω ‖≤| ε | +KT ‖ x− ω ‖qmin{1,v},

which means (5.3). Generally speaking, we get

‖ x− ω ‖≤| ε | +K̃T ‖ x− ω ‖qmin{1,v},

which means (5.4).

Remark 5.1. Theorem 5.1 tells us the solution to [k, β] for k between α and β will
vary if the condition (5.1) is slightly perturbed.

Remark 5.2. Our results can be used to the fractional IVP:
cDq

α+x(τ) + γx(τ) = f(τ, x(τ), x(xv1(τ)), · · · , x(xvn(τ)), n ∈ N+,

x(α) = xa, xa ∈ I, τ ∈ I, 0 < q < 1.
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6. Examples

Example 6.1. Consider the fractional IVP

cD0.5
0+ x(τ) + γx(τ) =

1√
τ2 + 1 + 99

sin2(x(x(τ))),

x(0) = 0, γ > 0,

(6.1)

where function f is defined by

f(τ, x, x(x(τ))) =
1√

τ2 + 1 + 99
sin2(x(x(τ))),

q = 0.5, v = 1, α = 0, β = π, xa = 0. It is evident that (H1-H2) are valid. In
addition, we obtain

0 ≤ f(τ, x(τ), x(x(τ))(τ)) ≤ 1√
τ2 + 1 + 99

≤ 1

100
.

Taking fm = 0, fM = 1
100 , if γ satisfies the following inequality equation

1

100γ
(1− E0.5(−

√
πγ)) ≤ π, (6.2)

employing Theorem 3.1, we know that for every value of γ, the solution to (6.1)
exists such that (6.2) holds.

Additionally, from the Mean Value Theorem we have

1√
τ2 + 1 + 99

| sin2 v1−sin2 v2 |=
1√

τ2 + 1 + 99
| sin 2θ || v1−v2 |≤

1

100
| v1−v2 |,

where θ ∈ [0.π]. Taking K1 = 0 and K2 = 1
100 , we get

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
=

Γ(2)

100Γ(1.5)
,

1− qmin{1, v} =
1

2
,

1

1− qmin{1, v}
= 2,

max{1, vq}(β − α)qmax{v−1,0} = 1.

By simple calculation, we have

KT =
1

γ
(1− E0.5(−

√
πγ))

[√
π

100
+

Γ(2)

104Γ(1.5)

]
,

where γ satisfies equation (6.2).
Thus, by Theorem 4.1, there is a solution for equation (6.1) in CK, 12 , where

K = Γ(2)
100Γ(1.5) . By Theorem 4.2, any two solutions x1, x2 ∈ CK, 12 (0, π) of (6.1)

satisfy

‖ x1 − x2 ‖≤
1

γ2
(1− E0.5(−

√
πγ))2

[√
π

100
+

Γ(2)

104Γ(1.5)

]2

.
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Example 6.2. Consider the fractional IVP

cD0.5
0+ x(τ) + γx(τ) = cos(τ)

(
1√

1 + x2(τ)
+ sin(x(x(τ)))

)
,

x(0) = 0.1, γ > 0 τ ∈ [0, 1],

(6.3)

where the function f is defined by

f(τ, x, x(x(τ))) = cos(τ)

(
1√

1 + x2(τ)
+ sin(x(x(τ)))

)
,

q = 0.5, v = 1, α = 0, xa = 0.1, β = 1. It is evident that (H1-H2) are valid. In
addition, we get

−2 ≤ f(τ, x(τ), x(x(τ))(τ)) ≤ 2.

Taking fm = −2, fM = 2, we assume that γ satisfies the inequality equation that
follows

(1− E0.5(−γ)) ≤ 2γMa, Ma = max {0.1E0.5(−γ), 0.9} . (6.4)

Employing Theorem 3.1 we know that for every value of γ, the solution to (6.3)
exists such that (6.4) holds. Furthermore, it is simple to infer that for any (x1, y1),
(x2, y2) ∈ R× R and τ ∈ [0, 1]

|f(τ, x1, y1)− f(τ, x2, y2)| ≤ |cos(τ)|

[
| 1√

1 + x2
1

− 1√
1 + x2

2

|+ |sin y2
1 − sin y2

2 |

]
≤ |x1 − x2|+ |y1 − y2|.

Taking K1 = 1 and K2 = 1, we get

K =

{
M

γ
+ xa

}
γΓ(2)

Γ(1 + q)
=

(20 + γ)Γ(2)

10Γ(1.5)
,

1− qmin{1, v} =
1

2
,

1

1− qmin{1, v}
= 2,

max{1, vq}(β − α)qmax{v−1,0} = 1.

By simple calculation, we have

KT =
1

γ
(1− E0.5(−γ))(K + 2),

where γ satisfies equation (6.4).

Thus, according to Theorem 4.1, the solution to equation (6.3) can be found in

CK, 12 , where K = (20+γ)Γ(2)
10Γ(1.5) . By Theorem 4.2, any two solutions x1, x2 ∈ CK, 12 (0, 1)

of (6.3) satisfy

‖ x1 − x2 ‖≤
1

γ2
(1− E0.5(−

√
πγ))2(K + 2)2.
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7. Conclusions

This paper addressed the existence, uniqueness and continuous dependence of so-
lutions to the IVP of semi-linear FIDE. More specifically, we changed IVP into a
fixed point problem employing the Laplace transform and some relations in frac-
tional calculus. Schauder’s fixed point theorem was utilized to explain the existence
of solutions for FIDE. Unfortunately, because the operator is only Hölder continuous
rather than Lipschitz continuous, uniqueness results can not be acquired. Moreover,
continuous dependence of solutions offers a potential way to characterize the error
estimates between approximate and explicit solutions to these kinds of problems.
Lastly, some examples have been provided to demonstrate the findings.

Even if there have been a lot of works on FIDE thus far, there are still a lot
of issues that need to be resolved. As far as we are aware, The FIDE coupled
system has not been studied extensively. Hence, we intend to look into those more
intriguing and challenging problems in our further research.
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