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Abstract In this paper, based on the properties of the Green’s function,
the existence of positive solutions are obtained for a Hadamard fractional
differential equation with a higher-order sign-changing nonlinearity under some
conditions by the fixed point theorem, and the existence of positive solutions
is dependent on the parameter ϱ for the Semipositive problem.
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1. Introduction
The empirical formulas of some complex mechanical processes are often expressed in
the form of power law functions, and the corresponding mechanical constitutive re-
lations do not conform to the standard “gradient” laws, such as Darcy’s law, Fourier
heat conduction and Fick diffusion. These mechanical processes have obvious mem-
orability, heritability and path dependence, and when describing mechanical pro-
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cesses with these properties, we usually construct nonlinear differential equations
with integer order differentiation, and the constructed nonlinear differential equa-
tions need to introduce some artificial empirical parameters and assumptions that
are inconsistent with the actual situation, and sometimes due to small changes
in materials or external conditions, we need to construct a new model. However,
fractional-order differential operators can simply and accurately describe mechan-
ical and physical processes with historical memory and spatial global correlation,
and the fractional-order derivative modeling is simple, the physical meaning of pa-
rameters is clear and the description is accurate, so fractional differential equation
is one of the important tools for mathematical modeling of complex mechanics,
physics, medicine and other processes. There has been a significant development
in the study of fractional differential equations in recent years, for an extensive
collection of such literature, readers can refer to [4–7, 9–12, 14–16, 18–25] and the
references therein. There are some periodic achievements for Hadamard fractional
differential equation, for example [1, 3]. In [3], the authors consider the following
BVP:

HDα
1+x(t) + ℏ(t, x(t)) = 0, for a.e.t ∈ J = [1, T ], 1 < α ≤ 2,

x(1) = 0,H Dp
1+x(T ) =

n∑
i=1

κH
i Dp

1+x(µi), 0 < p < 1,

where ℏ : [1, T ]×R → R is a given function, λi ∈ R, 1 < µi ≤ T, j = 1, 2, . . . , n, n ≥
2, and (log T )α−p−1 ̸=

∑n
i=1 κi(logµi)

α−p−1, HDα
1+ and HDp

1+are the Hadamard
fractional derivatives of order α and p, respectively. In [1], Algoudi got existence
results for the following sequential Hadamard type fractional differential equation:

(HDp
1+ + λHDp−1

1+ )x(t) = f1(t, x(t), y(t),
H Dr

1+y(t)), 1 < p ≤ 2, 0 < r < 1,

(HDq
1+ + λHDq−1

1+ )y(t) = f2(t, x(t),
H Dv

1+y(t), y(t)), 1 < q ≤ 2, 0 < v < 1,

x(1) = 0, x(e) =H Iγ1+y(η), γ > 0, 1 < η < e,

y(1) = 0, y(e) =H Iβ1+x(ζ), β > 0, 1 < ζ < e,

where f1, f2 : [1, e] × R3 → R are continuous functions, HDp
1+ ,

H Iγ1+ denote the
Hadamard fractional derivative and integral p, γ, respectively. In [2], Arul and
Karthikeyan considered fractional differential equation of Hadamard type:

HDϑ
b+x(t) = g(t, x(t),H Dϑx(t)), t ∈ (b, τ),

with an initial value x(b) = 0, x(τ) = λ
∫ σ

0
x(s)ds, σ ∈ (b, τ), λ ∈ R, where HDϑ

b+

denotes Hadamard fractional derivative of order ϑ, 1 < ϑ ≤ 2, the authors obtained
the existence and uniqueness of solutions for this equation.

Motivated by the excellent results above, in this paper, we consider the following
Hadamard fractional differential equation:

HDν
1+u(t) + ϱℏ(t, u(t)) = 0, 1 < t < e, (1.1)

with nonlocal Hadamard integral boundary conditions

u(i)(1) = 0, i from 0 to n− 2,H Dp0

1+u(e) =

m∑
i=1

χi

∫ ηi

1

ρi(s)
HDpi

1+u(s)dAi(s), (1.2)
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where ν, pi ∈ R1
+ = [0,+∞)(i = 0, 1, 2, · · · ,m), 0 ≤ p1 ≤ p2 ≤ . . . ≤ pm ≤ p0 <

ν−1, p0 ≥ 1, n ∈ N (natural number set), n−1 < ν ≤ n, ρi(s) ∈ L1(1, e), 0 < χi ≤
1(i = 1, 2, . . . ,m) are parameters, ℏ(t, x) may change sign and may be singular at t =
1 or t = e, Ai is a function of bounded variation,

∑m
i=1 χi

∫ ηi

1
ρi(s)

HDpi

1+u(s)dAi(s)
denotes the Riemann-Stieltjes integral with respect to Ai (i = 1, 2, . . . ,m), and
HDν

1+u, HDpi

1+u(i = 0, 1, 2, . . . ,m) are the standard Hadamard derivatives.
Compared with [1–3], positive solution of this paper depends on a parameter

and therefore the results we obtained is relatively accurate; compared with [24], the
derivatives which we used in this paper are Hadamard fractional derivatives and
the questions we considered is semipositone problem; compared with [17, 24], the
equation we considered in this paper is a very wide type, and [17,24] is special cases
of this paper, moreover, the positive solutions is dependent on parameter ϱ.

2. Preliminaries and lemmas
For the reader’s convenience, we first give some basic definitions and lemmas that
are useful for the following research, which can be found in recent literature, for
example [13].

Definition 2.1. ( [13]). Let x : (0,∞) → R1
+, the Hadamard fractional integral of

order ν > 0 of a function x is given by

HIνa+x(t) =
1

Γ(α)

∫ t

a

(ln
t

s
)ν−1x(s)

s
ds.

Definition 2.2. ( [13]). Let x : (0,∞) → R1
+, the Hadamard fractional derivative

of order ν > 0 of a continuous function x is given by

HDν
a+x(t) =

1

Γ(n− ν)

(
t
d

dt

)n ∫ t

a

x(s)

s
(
ln t

s

)ν−n+1 ds,

where n = [ν] + 1, [ν] denotes the integer part of the number ν, provided that the
right-hand side is pointwise defined on (0,∞).

Lemma 2.1. ( [13]). If ν, µ > 0, then

HIνa

(
ln(

t

a
)µ−1

)
(x) =

Γ(µ)

Γ(µ+ ν)

(
ln

x

a

)µ+ν−1

,

HDν
a

(
ln(

t

a
)µ−1

)
(x) =

Γ(µ)

Γ(µ− ν)

(
ln

x

a

)µ−ν−1

.

Lemma 2.2. ( [13]). Suppose that ν > 0 and x ∈ C[1,∞) ∩ L1[1,∞), then the
solution of Hadamard fractional differential equation HDν

1+x(t) = 0 is

x(t) = d1(ln t)
ν−1+d2(ln t)

ν−2+· · ·+dn(ln t)
ν−n, di ∈ R, i = 0, 1, · · · , n, n = [ν]+1.

Lemma 2.3. ( [13]). Suppose that ν > 0, ν is not natural number. If x ∈ C[1,∞)∩
L1[1,∞), then

x(t) =H Iν1+
HDν

1+x(t) +

n∑
k=1

dk(ln t)
ν−k,

for t ∈ (1, e], where dk ∈ R, k = 1, 2, · · · , n, and n = [ν] + 1.
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We consider the linear fractional differential equation

HDν
1+u(t) + g(t) = 0, 1 < t < e, (2.1)

with boundary condition (1.2).

Lemma 2.4. Given g ∈ L1(1, e) ∩ C(1, e), then, BVP (2.1) with boundary condi-
tions (1.2) can be expressed as

y(t) =

∫ e

1

℘(t, s)
g(s)

s
ds, t ∈ [1, e], (2.2)

where

℘(t, s) = ℘1(t, s) +
(ln t)ν−1

∆

m∑
i=1

χi

(∫ ηi

0

ρi(s)℘2i(τ, s)dAi(τ)

)
,

℘1(t, s) =
1

Γ(ν)


(ln t)ν−1(ln

e

s
)ν−p0−1 − (ln

t

s
)ν−1, 1 ≤ s ≤ t ≤ e,

(ln t)ν−1(ln
e

s
)ν−p0−1, 1 ≤ t ≤ s ≤ e,

(2.3)

℘2i(t, s) =
1

Γ(ν − pi)


(ln t)ν−pi−1(ln

e

s
)ν−p0−1 − (ln

t

s
)ν−pi−1, 1 ≤ s ≤ t ≤ e,

(ln t)ν−pi−1(ln
e

s
)ν−p0−1, 1 ≤ t ≤ s ≤ e,

(2.4)

for i = 1, 2, . . . ,m, and ∆ = Γ(ν)
Γ(ν−p0)

−
∑m

i=1
χiΓ(ν)
Γ(ν−pi)

∫ ηi

1
ρi(s)(ln s)

ν−pi−1dAi(s).

Proof. This proof is similar to Lemma 2.4 of [8] and we omit it here.

Lemma 2.5. The functions ℘1 and ℘ given by (2.2) have the following properties:

(1) ℘1(t, s) ≥ 1
Γ(ν) (ln t)

ν−1 ln s(ln e
s )

ν−p0−1, ∀t, s ∈ [1, e];

(2) ℘1(t, s) ≤ 1
Γ(ν−1) (ln s)(ln

e
s )

ν−p0−1,∀t, s ∈ [1, e];

(3) ℘1(t, s) ≤ 1
Γ(ν−1) (ln t)

ν−1(ln e
s )

ν−p0−1;

(4) ℘(t, s) ≤ J(s), J(s) = 1
Γ(ν−1) (ln s)(ln

e
s )

ν−p0−1+ 1
∆

∑m
i=1 χi

(∫ ηi

1
ρi(s)℘2i(τ, s)

×dAi(τ)) for all t, s ∈ [1, e], i = 1, 2, . . . ,m;

(5) 1
ν−1 (ln t)

ν−1J(s) ≤ ℘(t, s) ≤ σ(ln t)ν−1, where

σ =
1

Γ(ν)
(ln

e

s
)ν−p0−1

[
ν − 1 +

1

∆

m∑
i=1

χi(

∫ ηi

0

ρi(s)(ln s)
ν−p0−1dAi(τ)

]
,

for ∀t, s ∈ [1, e].

Proof. The proof is similar to that of Lemma 2.4 of [8] and we omit it here.

Lemma 2.6. Assume that χi ≥ 0 for all i = 1, 2, . . . ,m, ∆ > 0, g ∈ L1(1, e) ∩
C(1, e) and g(t) > 0 for all t ∈ (1, e). Then the solution u of problem (2.1) and
(1.2) satisfies the inequality u(t) ≥ 1

ν−1 (ln t)
ν−1u(t′) for all t, t′ ∈ [1, e].
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Proof. By means of Lemma 2.5, for all t, t′ ∈ [1, e], we get

u(t) =

∫ e

1

℘(t, s)
g(s)

s
ds

≥
∫ e

1

1

ν − 1
(ln t)ν−1J(s)

g(s)

s
ds

≥ 1

ν − 1
(ln t)ν−1

∫ e

1

℘(t′, s)
g(s)

s
ds

=
1

ν − 1
(ln t)ν−1u(t′).

In order to get our main results, the following Guo-Krasnosel’skii fixed point
theorem is presented below.

Theorem 2.1. Let E be a Banach space and let R ⊂ E be a cone in E. Assume
Λ1 and Λ2 are bounded open subsets of E with θ ∈ Λ1 ⊂ Λ1 ⊂ Λ2, and let A :
R ∩ (Λ1 ⊂ Λ2) → R be a completely continuous operator such that

(i) ∥Av∥ ≤ ∥v∥, v ∈ R ∩ ∂Λ1 and ∥Av∥ ≥ ∥v∥, v ∈ R ∩ ∂Λ2,
or

(ii)∥Av∥ ≥ ∥v∥, v ∈ R ∩ ∂Λ1 and ∥Av∥ ≤ ∥v∥, v ∈ R ∩ ∂Λ2. Then A has a fixed
point in R ∩ (Λ1 ⊂ Λ2).

3. Main results
In this section, we investigate the solvability for higher-order Hadamard fractional
differential model with a sign-changing nonlinearity. First, we propose the assump-
tions which we will use.

(H1) 0 ≤ p1 < p2 < . . . < pm ≤ p0 < ν − 1 and

∆ =
Γ(ν)

Γ(ν − p0)
eν−p0−1 −

m∑
i=1

χiΓ(ν)

Γ(ν − pi)

∫ ηi

1

ρi(s)(ln s)
ν−βi−1dAi(s) > 0.

(H2) The function ℏ ∈ C((1, e)×[0,∞), R) may be singular at t = 1 and (or) t =
e, and there exist the functions θ, ν ∈ C((1, e), [0,∞), ϑ ∈ C([1, e]× [0,∞), [0,∞))
such that −θ(t) ≤ ℏ(t, x) ≤ ν(t)ϑ(t, x) for all t ∈ (1, e) and x ∈ [0,∞) with
0 <

∫ e

1
θ(t)dtt < ∞, 0 <

∫ e

1
ω(t)dtt < ∞.

(H3) There exist a ∈ (1, e−1
2 ) such that ℏ∞ = limu→∞ mint∈[a,e−a]

ℏ(t,u)
u = ∞.

(H4) There exist a ∈ (1, e−1
2 ) such that lim infu→∞ mint∈[a,e−a] ℏ(t, u) > M0,

with M0 = (2σ
∫ e

1
θ(s)dss ) /(ln a)

α−1
∫ e−a

a
J(s)dss ), and

ϑ∞ = limu→∞ maxt∈[1,e]
ϑ(t,u)

u = 0, where J and σ are given in Section 2.
Next, let’s consider the following fractional differential equation:

HDν
1+x(t) + ϱ (ℏ(t, [x(t)− ϱϖ(t)]⋆) + θ(t)) = 0, 1 < t < e, (3.1)

with nonlocal Hadamard integral conditions

x(i)(1) = 0, i is from 0 to n− 2,H Dp0

1+x(e) =

m∑
i=1

χi

∫ ηi

1

ρi(s)
HDpi

1+x(s)dAi(s),

(3.2)
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where ϱ > 0 and ς⋆(t) = ς(t) if ς(t) ≥ 0, and ς⋆(t) = 0 if ς(t) < 0. Here, ϖ(t) =∫ e

1
℘(t, s)θ(s)dss , t ∈ [1, e] is the solution of problem

HDν
1+ϖ(t) + θ(t) = 0, 1 < t < e,

ϖ(i)(1) = 0, i is from 0 to n− 2,H Dp0

1+ϖ(e) =

m∑
i=1

χi

∫ ηi

1

ρi(s)
HDpi

1+ϖ(s)dAi(s).

By (H1)-(H2), we get ϖ(t) ≥ 0 for all t ∈ [1, e]. We will show that there exists a
solution x for problem (3.1)-(3.2) with x(t) ≥ ϱϖ(t) on [1, e] and x(t) > λϖ(t) on
(1, e). Under the circumstances, u = x− ϱϖ represents the positive solution to the
problem (1.1-1.2). Hence, in the following we shall investigate problem (3.1-3.2).

By means of Lemma 2.4, a positive solution of equation

x(t) = ϱ

∫ e

1

℘(t, s) (ℏ(s, [x(s)− ϱϖ(s)]⋆) + θ(s))
ds

s
= 0, 1 < t < e,

is a positive solution for problem (3.1-3.2).
So let’s think about Banach space X = C([1, e]) with the superemun norm ∥ · ∥,

and let’s define a cone

K = {x ∈ X : x(t) ≥ 1

ν − 1
(ln t)ν−1∥x∥,∀t ∈ [1, e]}.

For ϱ > 0, we introduce the operator T : X → X, which is defined by

Tx(t) = ϱ

∫ e

1

℘(t, s) (ℏ(s, [x(s)− ϱϖ(s)]⋆) + θ(s))
ds

s
, 1 < t < e, x ∈ X.

Obviously, if x is the fixed point of the operator T , then x is the solution to the
problem (3.1-3.2).
Lemma 3.1. If (H1-H2) hold, then the operator T : K → K is a completely
continuous operator.
Proof. Let x ∈ K be fixed. By using (H1-H2), we deduce that Tx(t) < ∞ for all
t ∈ [1, e]. Besides, by means of Lemma 2.5, for all t, t′ ∈ [1, e], we have

Tx(t) ≤ ϱ

∫ e

1

J(s) (ℏ(s, [x(s)− ϱϖ(t)]⋆) + θ(s))
ds

s
, x ∈ X,

Tx(t) ≥ ϱ

ν − 1

∫ e

1

(ln t)ν−1J(s) (ℏ(s, [x(s)− ϱϖ(s)]⋆) + θ(s))
ds

s
,

≥ 1

ν − 1
(ln t)ν−1Tx(t′).

Hence, Tx(t) ≥ 1
v−1 (ln t)

v−1∥Tx∥ for all t ∈ [1, e], then we deduce that Tx ∈ K,
and therefore, T (K) ⊂ K. By using the standard method, we get the operator
T : K → K is a completely continuous operator.
Theorem 3.1. Suppose that condition (H1-H3) hold, there exists ϱ⋆ > 0, for any
ϱ ∈ (0, ϱ⋆), such that boundary value problem (1.1-1.2) has at least one positive
solution.
Proof. Let’s pick a positive number, such that R1 > σ(ν − 1)

∫ e

1
θ(s)dss > 0, and

we define the set Ω1 = {x ∈ K : ∥x∥ < R1}.
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Let’s introduce

ϱ⋆ = min

{
1, R1

(
Υ1

∫ e

1

J(s)(ν(s) + θ(s))

)−1
}

with Υ1 = max{maxt∈[1,e],u∈[0,R1] ϑ(t, u), 1}.
Let ϱ ∈ (0, ϱ⋆]. Since ϖ(t) ≤ σ(ln t)ν−1

∫ e

1
θ(s)dss for all t ∈ [1, e], we deduce for

any x ∈ K ∩ ∂Ω1 and t ∈ [1, e],

[x(t)− ϱϖ(t)]⋆ ≤ x(t) ≤ ∥x∥ ≤ R1,

then
x(t)− ϱϖ(t)

≥ 1

ν − 1
(ln t)ν−1∥x∥ − ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

=(ln t)ν−1

(
R1

ν − 1
− ϱσ

∫ e

1

θ(s)
ds

s

)
≥(ln t)ν−1

(
R1

ν − 1
− ϱ⋆σ

∫ e

1

θ(s)
ds

s

)
≥(ln t)ν−1

(
R1

ν − 1
− σ

∫ e

1

θ(s)
ds

s

)
≥0.

So for any x ∈ K ∩ ∂Ω1 and t ∈ [1, e], by (H2), we have

Tx(t) ≤ϱ

∫ e

1

J(s) ((ν(s)ϑ(s, [x(s)− ϱϖ(s)]⋆)) + θ(s))
ds

s

≤ϱ⋆Υ1

∫ e

1

J(s)(ν(s) + θ(s))
ds

s

≤R1

=∥x∥.

Hence, we get
∥Tx∥ ≤ ∥x∥,∀x ∈ K ∩ ∂Ω1. (3.3)

Furthermore, for a, by (H3), we pick a positive constant L > 0 such that

L > 2(ν − 1)2
(
ϱ(ln a)2(ν−1)

∫ e−a

a

J(s)
ds

s

)−1

.

By (H3), we deduce that there exists a constant L0 > 0 such that

ℏ(t, u) ≥ Lu,∀t ∈ [a, e− a], u ≥ L0. (3.4)

Now we define R2 = max{2R1, 2(ν − 1)L0/(ln a)
ν−1} and let Ω2 = {x ∈ K : ∥x∥ <
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R2}. Then for any x ∈ K ∩ ∂Ω2, we have

x(t)− ϱϖ(t) ≥ 1

ν − 1
(ln t)ν−1∥x∥ − ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

=(ln t)ν−1

(
R2

ν − 1
− ϱσ

∫ e

1

θ(s)
ds

s

)
≥(ln t)ν−1

(
R1

ν − 1
− ϱ⋆σ

∫ e

1

θ(s)
ds

s

)
≥(ln t)ν−1

(
R1

ν − 1
− σ

∫ e

1

θ(s)
ds

s

)
≥0.

Hence, we have

[x(t)− ϱϖ(t)]
⋆
=x(t)− ϱϖ(t)

≥ 1

ν − 1
(ln t)ν−1

(
R2

ν − 1
− ϱσ

∫ e

1

θ(s)
ds

s

)
≥ (ln a)ν−1R2

2(ν − 1)

≥L0,∀t ∈ [a, e− a].

(3.5)

Then for any x ∈ K ∩ ∂Ω2 and t ∈ [a, e− a], by (3.4) and (3.5), we have

Tx(t) ≥ϱ

∫ e−a

a

℘(t, s) (ℏ(s, [x(s)− ϱϖ(s)]⋆) + θ(s))
ds

s

≥ϱ

∫ e−a

a

℘(t, s)L[x(s)− ϱϖ(s)]
ds

s

≥ ϱL

ν − 1

∫ e−a

a

(ln t)ν−1J(s)
(ln a)ν−1R2

2(ν − 1)

ds

s

≥ϱL(ln a2(ν−1))R2

2(ν − 1)2

∫ e−a

a

J(s)
ds

s

≥R2

=∥x∥.

Hence, we conclude
∥Tx∥ ≥ ∥x∥,∀x ∈ K ∩ ∂Ω2. (3.6)

By (3.3),(3.6) and Theorem 3.1, we get that T has a fixed point x1 ∈ K ∩ (Ω2 \Ω1),
that is R1 ≤ ∥x1∥ ≤ R2. Since ∥x1∥ ≥ R1, we have

x1(t)− ϱϖ(t) ≥ (ln t)ν−1

(
∥x1∥
ν − 1

− σϱ

∫ e

1

θ(s)
ds

s

)
≥ (ln t)ν−1

(
R1

ν − 1
− σ

∫ e

1

θ(s)
ds

s

)
= Λ1(ln t)

ν−1,

and so x1(t) ≥ ϱϖ(t) + Λ1(ln t)
ν−1 for all t ∈ [1, e], where Λ1 = R1

ν−1 − σ
∫ e

1
θ(s)dss .
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Let u1(t) = x1(t) − ϱϖ(t) for all t ∈ [1, e]. Then u1 is a positive solution of
problem (1.1-1.2) with u1(t) ≥ Λ1(ln t)

ν−1for all t ∈ [1, e]. This completes the proof
of Theorem 3.1.
Theorem 3.2. Assume that (H1), (H2) and (H4) hold. Then there exists ϱ⋆ > 0
such that, for any ϱ ≥ ϱ⋆, the boundary value problem (1.1-1.2) has at least one
positive solution.
Proof. By (H4), there exists Υ2 > 0 such that

ℏ(t, u) ≥ 2σ

∫ e

1

θ(s)ds

(
(ln a)ν−1

∫ e−a

a

J(s)
ds

s

)−1

,∀t ∈ [a, e− a], u ≥ Υ2.

Let’s define

ϱ⋆ = Υ2

(
(ln a)ν−1σ

∫ e−a

a

J(s)
ds

s

)−1

.

Let’s assume ϱ ≥ ϱ⋆. Let R3 = 3(ν− 1)ϱσ
∫ e

1
θ(s)dss and Ω3 = {x ∈ K : ∥x∥ < R3}.

Then for any x ∈ K ∩ ∂Ω3, we have

x(t)− ϱϖ(t) ≥ 1

ν − 1
(ln t)ν−1∥x∥ − ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

=(ln t)ν−1

(
R3

ν − 1
− ϱσ

∫ e

1

θ(s)
ds

s

)
≥2(ln t)ν−1ϱσ

∫ e

1

θ(s)
ds

s

≥2(ln t)ν−1ϱ⋆σ

∫ e

1

θ(s)
ds

s

=
2Υ2(ln t)

ν−1

(ln a)ν−1

≥0,∀t ∈ [1, e].

(3.7)

Hence, for any x ∈ K ∩ ∂Ω3 and t ∈ [a, e− a], we get

[x(t)− ϱϖ(t)]⋆ = x(t)− ϱϖ(t) ≥ 2Υ2(ln t)
ν−1

(ln a)ν−1
≥ Υ2.

Therefore, for any x ∈ K ∩ ∂Ω3 and t ∈ [a, e− a], we have

Tx(t) ≥ϱ

∫ e−a

a

℘(t, s)ℏ(s, [x(s)− ϱϖ(s)]⋆)
ds

s

≥ϱ

∫ e−a

a

1

ν − 1
(ln t)ν−1J(s)ℏ(s, x(s)− ϱϖ(s))

ds

s

≥ϱ

∫ e−a

a

1

ν − 1
(ln t)ν−1J(s)

(
2σ

∫ e

1

θ(s)
ds

s

(
(ln a)ν−1

∫ e−a

a

J(s)
ds

s

)−1
)

ds

s

=
R3(ln t)

ν−1

(ln a)ν−1

≥R3.
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Therefore, we conclude

∥Tx∥ ≥ ∥x∥,∀x ∈ K ∩ ∂Ω3. (3.8)

Furthermore, we consider the positive number

ε =

(
2ϱ

∫ e

1

J(s)ω(s)
ds

s

)−1

,

then from (H4), we obtain that there exists Υ3 > 0 such that ϑ(t, u) ≤ εu for all
t ∈ [1, e], u ≥ Υ3. Hence, we have ϑ(t, u) ≤ Υ4 + εu, for all t ∈ [1, e], u ≥ 0, where
Υ4 = maxt∈[1,e],u∈[0,Υ3] ϑ(t, u).

Let’s define

R4 > max

{
R3, 2ϱmax{Υ4, 1}

∫ e

1

J(s)(ν(s) + θ(s))
ds

s

}
,

and let Ω4 = {x ∈ K : ∥x∥ < R4}. Then for any x ∈ K ∩ ∂Ω4, we have

x(t)− ϱϖ(t) ≥ 1

ν − 1
(ln t)ν−1∥x∥ − ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

=(ln t)ν−1

(
R4

ν − 1
− ϱσ

∫ e

1

θ(s)
ds

s

)
≥(ln t)ν−1

(
R3

ν − 1
− ϱ⋆σ

∫ e

1

θ(s)
ds

s

)
=2(ln t)ν−1ϱσ

∫ e

1

θ(s)
ds

s

≥2(ln t)ν−1ϱ⋆σ

∫ e

1

θ(s)
ds

s

=2
Υ2(ln t)

ν−1

(ln a)ν−1

≥0,∀t ∈ [1, e].

(3.9)

Then for any x ∈ K ∩ ∂Ω4, we have

Tx(t) ≤ϱ

∫ e

1

J(s) ((ν(s)ϑ(s, [x(s)− ϱϖ(s)]⋆)) + θ(s))
ds

s

≤ϱ⋆
∫ e

1

J(s)[(ν(s)(Υ4 + ε(x(s)− ϱϖ(s))) + θ(s)]
ds

s

≤ϱmax{Υ4, 1}
∫ e

1

J(s)(ν(s) + θ(s))
ds

s
+ ϱεR4

∫ e

1

J(s)ν(s)
ds

s

≤R4

2
+

R4

2
=R4

=∥x∥R1

=∥x∥,∀t ∈ [1, e].

Hence,
∥Tx∥ ≤ ∥x∥,∀x ∈ K ∩ ∂Ω4. (3.10)
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By (3.8), (3.10) and Theorem 3.1, we conclude that T has a fixed point x1 ∈
K ∩ (Ω4 Ω3), so R3 ≤ ∥x1∥ ≤ R4. In addition, we deduce that for all t ∈ [1, e],

x1(t)− ϱϖ(t) ≥x1(t)− ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

≥ 1

ν − 1
(ln t)ν−1∥x1∥ − ϱσ

1

ν − 1
(ln t)ν−1

∫ e

1

θ(s)
ds

s

≥ 1

ν − 1
R3 − ϱσ

1

Γ(ν − 1)
(ln t)ν−1

∫ e

1

θ(s)
ds

s

=2ϱσ(ln t)ν−1

∫ e

1

θ(s)
ds

s

≥2ϱ⋆σ(ln t)
ν−1

∫ e

1

θ(s)
ds

s

=
2Υ2(ln t)

ν−1

(ln a)ν−1

≥0,∀t ∈ [1, e].

(3.11)

Let u1(t) = x1(t) − ϱϖ(t), for all t ∈ [1, e]. Then u1(t) ≥ Λ1
1

ν−1 (ln t)
ν−1, for all

t ∈ [1, e], where Λ1 = Υ2/(ln a)
ν−1. Hence, we conclude that u1 is a positive

solution of problem (1.1-1.2), which completes the proof of Theorem 3.2.
Theorem 3.3. Assume that (H1), (H2) and

(H̃4) There exists a ∈ (1, e−1
2 ) such that ℏ̃∞ = limu→∞ mint∈[a,1−c] ℏ(t, u) = ∞

and ϑ∞ = limu→∞ maxt∈[1,e]
ϑ(t,u)

u = 0 hold. Then there exists ϱ⋆ > 0 such that, for
any ϱ ≥ ϱ̃⋆, the boundary value problem (1.1, 1.2) has at least one positive solution.

4. Example
In this paper, we consider the following Hadamard fractional differential equation

HD
5
2

1+u(t) + ϱℏ(t, u(t)) = 0, 1 < t < e, (4.1)

with nonlocal Hadamard integral boundary conditions
u(1) = u′(1) = 0,

HD
4
3

1+u(e) =

∫ e

1

s
3
4 (1− s)2D

1
2

1+u(s)dA1(s) +
1

2

∫ 2
3

1

s
7
8 (1 + s2)2D

1
2

1+u(s)dA2(s),

(4.2)

℘1(t, s) =
1

Γ( 52 )


(ln t)

3
2 (ln

e

s
)

1
6 − (ln

t

s
)

3
2 , 1 ≤ s ≤ t ≤ e,

(ln t)
3
2 (ln

e

s
)

1
6 , 1 ≤ t ≤ s ≤ e,

(2.3)

℘2(t, s) =
1

Γ(2)


(ln t)(ln

e

s
)

1
6 − (ln

t

s
), 1 ≤ s ≤ t ≤ e,

(ln t)(ln
e

s
)

1
6 , 1 ≤ t ≤ s ≤ e,
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and
℘(t, s) =℘1(t, s) +

(ln t)
3
2

∆

(∫ e

1

s
3
4 (1− s)2℘21(τ, s)dA1(τ)

+
1

2

∫ 2

1

s
7
8 (1 + s2)℘22(τ, s)dA2(τ)

)
,

where

∆ =
Γ(ν)

Γ(νp0)
eν−p0−1 −

m∑
i=1

αiΓ(ν)

Γ(ν − pi)

∫ ηi

1

ρi(s)(ln s)
ν−pi−1dAi(s)

=
Γ( 52 )

Γ( 76 )
e

1
6 −

Γ( 52 )

Γ(2)

∫ e

1

s
3
4 (1− s)2(ln s)dA1(s)−

1

2

∫ 2

1

s
7
8 (1 + s2)(ln s)dA2(s)

≈1.4563,

J(s) =
1

Γ( 32 )
(ln s)(ln

e

s
)

1
6

+
1

∆

((∫ e

1

s
3
4 (1− s)2℘21(τ, s)dA1(τ) )

+
1

2

∫ 2

1

s
7
8 (1 + s2)℘22(τ, s)dA2(τ)

))
.

Example 4.1. Considering the function

ℏ(t, u) =
u3 + 2u+ 1

t 3
√
ln t(1− ln t)2

+ ln t, t ∈ (1, e), u ≥ 0,

then, θ(t) = − ln t, ν(t) = 1

t 3
√

ln t(1−ln t)2
for all t ∈ (1, e), ϑ(t, u) = u3 + 2u + 1 for

all t ∈ [1, e] and u ≥ 0,
∫ e

1
θ(t)dtt = 1,∫ e

1

ν(t)
dt

t
=

∫ e

1

1

t 2
√
ln t(1− ln t)

dt =

∫ e

1

(ln t)−
1
2 (1− ln t)−

1
2
dt

t
= B(

1

2
,
1

2
) = π.

Hence, assumption (H2) is satisfied. Obviously, for fixed c ∈ (0, 1
2 ), the condition

(H3) is also satisfied(f∞ = ∞).
Moreover, with a few simple calculations, we have∫ e

1

J(s)(ν(s) + θ(s))
ds

s

=
1

Γ( 32 )
(ln s)(ln

e

s
)

1
6 +

1

∆

((∫ e

1

s
3
4 (1− s)2℘1(τ, s)dA1(τ)

+
1

2

∫ 2

1

(ln s)
7
8 (1 + (ln s)2)℘2(τ, s)dA2(τ)

))
× (

1

s 3
√
ln s(1− ln s)2

− ln s)

≈2.9130.

Choosing R1 = 2(R1 > σ
∫ e

1
θ(s)dss ), and then we obtain M1 = 5 and ϱ⋆ ≈

0.3752, then we have that problem (4.1-4.2) has at least one positive solution for
any ϱ ∈ (0, ϱ⋆] by Theorem 3.2.
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Example 4.2. Considering the function

ℏ(t, u) =
√
u+ 1

t 4
√
(ln t)3(1− (ln t))

− 2√
ln t

, t ∈ (1, e), u ≥ 0,

then, θ(t) = 2√
ln t

and z(t) = 1

t 4
√

(ln t)3(1−(ln t))
for all t ∈ (1, e), g(t, u) =

√
u+ 1 for

all t ∈ [1, e] and u ≥ 0,
∫ e

1
θ(t)dtt = 1,

∫ e

1
z(t)dtt =

∫ e

1
1

t 4
√

(ln t)3(1−(ln t))

dt
t = B(− 1

3 ,
3
4 ).

Hence, for c ∈ (1, e−1
2 ) fixed, the conditon (H2,H4)) are satisfied.

According to some simple computations, we have∫ e

1

J(s)(z(s) + θ(s))
ds

s

=
1

Γ( 32 )
(ln s)(ln

e

s
)

1
6 +

1

∆

((∫ e

1

s
3
4 (1− s)2℘21(τ, s)dA1(τ)

+
1

2

∫ 2

1

s
7
8 (1 + s2)℘22(τ, s)dA2(τ)

))
× (

1

t 4
√
(ln t)3(1− (ln t))

− 2√
t
)

≈5.6870.

For c = 1
4 , we have

∫ e− 1
4

5
4

J(s)dss ≈ 0.6830 and Υ0 ≈ 80.5420. Through by the proof
process of theorem 3.2, we have that Υ2 ≈ 8478.3 and ϱ⋆ ≈ 560367. Then we have
that the problem (4.1-4.2) has at least one positive solution for any ϱ ∈ (0, ϱ⋆] by
Theorem 3.2.
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