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LONG TIME BEHAVIOUR OF THE
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Abstract In this paper, we consider the nonlinear wave equation

utt −∆u+mu+ f(x, u) = 0, x ∈ Td := (R/2πZ)d,

where m > 0 and f is an analytic function of order at least two in u. The long
time behaviour of its solutions is proved by Birkhoff normal form.
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1. Introduction and result

Consider nonlinear wave equation on d-dimensional torus

utt −∆u+mu+ f(x, u) = 0, x ∈ Td (1.1)

with given initial data u(0) ≡ u(0, x) and u̇(0) ≡ ∂tu(0, x), where m > 0 and
f(x, u) is analytic function of order at least two with respect to u at the origin.
For (1.1) with nonlinearity of the form f(u), i.e., not containing the spatial variable
x explicitly, the long time behaviour of the solutions has been proved by Bernier,
Faou and Grébert in [5]. More precisely, they show that for almost all m > 0 and
all r ≥ 2, s0 > (d+ 1)/2, there exists s∗ depending on r, s0 such that for any s ≥ s∗,
if the initial datum satisfies ‖(u(0), u̇(0))‖Hs×Hs−1 ≤ ε for small enough ε > 0, then

‖u(t)≤Nε
‖
H

s
2
≤ 2ε and ‖u(t)>Nε

‖Hs0 ≤ εr for any t ≤ ε−
r

s0+1 , where Hs is the

Sobolev space on Td, u(t)≤Nε
and u(t)>Nε

denote the low and high modes parts

according to the threshold Nε = ε−
2r

s−2s0 , respectively. In the following theorem,
we study more general nonlinearity f(x, u). For convenience, we keep fidelity with
the notation and terminology from [5].

Theorem 1.1. For almost all m > 0 and any given r ≥ 1, there exists τ, ε∗ > 0
such that for any s > 2s0 > d + 1 with s − 2s0 ≥ 2r(2rτ + d), if the initial data
(u(0), u̇(0)) ∈ Hs ×Hs−1 satisfies ε := ‖(u(0), u̇(0))‖Hs×Hs−1 ≤ ε∗, then

‖u(t)≤Nε
‖
H

s
2
≤ c0ε and ‖u(t)>Nε

‖Hs0 ≤ εr (1.2)
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for any t ≤ ε−
r

2s0 , where Nε = ε−
2r

s−2s0 and the positive constant c0 depends on
m, s.

Birkhoff normal form for long time behavior of solutions of Hamiltonian partial
differential equations has been widely investigated by many authors. For nonlinear
wave equations, see [1–5, 10, 17, 23] for example; for nonlinear Schrödinger equa-
tions, see [4, 9, 12, 14, 19, 20] for example; for equations with unbounded nonlinear
vector field, see [8, 13, 15, 16, 18, 21, 22] for example; for equations without external
parameters, see [6, 7, 11] for example.

For (1.1), the frequencies of linear equation are ωa :=
√
|a|2 +m, a ∈ Zd. If

one wishes to get the usual long time stability, it is necessary to meet the following
non-resonant conditions: any given integer l ≥ 3, there exists γ, τ > 0 such that for
any k = (k1, · · · , kp) ∈ (Zd)p,h = (h1, · · · , hq) ∈ (Zd)q with p+ q ≤ l, one has

|ωk1 + · · ·+ ωkp − ωh1
− · · · − ωhq

| ≥ γ

µ3(k,h)τ
, (1.3)

expect that (|k1|, · · · , |kp|) and (|h1|, · · · , |hq|) are equal up to a permutation, where
µ3(k,h) denotes the third largest number among {|k1|, · · · , |kp|, |h1|, · · · , |hq|}. But
when d ≥ 2, (1.3) is not satisfied due to the combinations with two high frequencies
in opposite signs, i.e., without loss of generality |kp|, |hq| > N ≥ µ3(k,h) for some N
large enough. In [5], the non-resonant conditions of this type are removed, and as a
result, the corresponding monomials zk1 · · ·zkp z̄h1 · · · z̄hq are remained in the normal
form. Of course, these terms essentially affect the long time stability. Novelly
observing that these terms preserve the L2 norm of high modes, the authors derive
the result of long time behavior from the normal form. During the proof of energy
estimate of high modes in higher Sobolev space Hs, the conservation of momentum,
i.e.,

k1 + · · ·+ kp − h1 − · · · − hq = 0, (1.4)

is crucially used to bound |kp|2s − |hq|2s.
However, in the present paper, the nonlinearity f(x, u) contains the spatial vari-

able x explicitly so that (1.4) is not true. Then we solve this problem by eliminating
more terms than [5]. Precisely, we eliminate the monomials zk1 · · ·zkp z̄h1 · · · z̄hq with
|kp|, |hq| > N ≥ µ3(k,h) and

∣∣|kp| − |hq|∣∣ ≥ C0N for some positive constants C0.
See Theorem 2.1 for the normal form and see (3.19) for the energy estimate of high
modes in higher Sobolev space.

This paper is organized as follows: in Section 2, we give a normal form theorem,
seeing Theorem 2.1, which is a modified version of Theorem 5 in [5]. In section 3,
we apply Theorem 2.1 to the nonlinear wave equation (1.1) and thus prove Theorem
1.1. The main step is to control the high modes, and the key is to estimate the
higher Sobolev norm with the help of L2 norm, seeing (3.19). Besides, instead of
Lemma 3 in [5], we estimate the high modes directly from the vector field in the
same way as the low modes, seeing (3.21).

2. Normal form theorem

Define the Hilbert space l2s(Zd,C) of the complex sequences ξ = {ξa}a∈Zd such that

‖ξ‖2s :=
∑
a∈Zd

〈a〉2s|ξa|2 <∞ (2.1)
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with 〈a〉2 := 1 + |a|2 = 1 + a21 + · · ·+ a2d. Notice that for complex function u(x) =∑
a∈Zd ξae

ia·x on Td with a · x = a1x1 + · · · + adxd, the Sobolev norm ‖u‖Hs is
equivalent to the norm ‖ξ‖s. The scale of phase spaces

l2s ⊕ l2s 3 (ξ, ξ̄) = ({ξa}a∈Zd , {ξ̄a}a∈Zd)

is endowed by the standard symplectic structure −i
∑
a∈Zd dξa ∧ dξ̄a. For a Hamil-

tonian function H(ξ, ξ̄), define its vector field

XH(ξ, ξ̄) = −i
(∂H
∂ξ̄

,−∂H
∂ξ

)
, (2.2)

and for two Hamiltonian functions H(ξ, ξ̄) and F (ξ, ξ̄), define their Poisson bracket

{H,F} = −i
∑
a∈Zd

(∂H
∂ξa

∂F

∂ξ̄a
− ∂H

∂ξ̄a

∂F

∂ξa

)
. (2.3)

In a brief statement, we identify CZd × CZd ' CU2×Zd

with U2 = {±1} and use
the convenient notation z = (zj)j=(δ,a)∈U2×Zd , where

zj =

{
ξa, when δ = 1,

ξ̄a, when δ = −1.

Set 〈j〉 = 〈a〉 and define

‖z‖2s :=
∑

j∈U2×Zd

〈j〉2s|zj |2 = ‖ξ‖2s + ‖ξ̄‖2s. (2.4)

In particular, for any j ∈ U2 × Zd, decompose z = z≤N + z>N with

(z≤N )j =

{
zj , for 〈j〉 ≤ N
0, for 〈j〉 > N

and (z>N )j =

{
0, for 〈j〉 ≤ N
zj , for 〈j〉 > N

. (2.5)

For j = (j1, · · · , jr) = (δk, ak)rk=1 ∈ (U2 × Zd)r, denote the monomial zj =
zj1 · · · zjr . For a homogeneous polynomial P (z) of order r, namely

P (z) =
∑

j∈(U2×Zd)r

Pjzj ,

define the µ-modulus

|P |µ =
∑
a∈Zd

eµ|a| sup
δ1a1+···+δrar=a

|Pj |. (2.6)

Similarly to the proof of Lemma 5.1 and Lemma 5.2 in [1], one has the following
estimate of vector field

‖XP (z)‖s ≤ C|P |µ‖z‖r−1s (2.7)

with constant C depending on r, s, µ. For two homogeneous polynomials P,Q of
order r1, r2 respectively with finite µ-modulus, similarly to Lemma 5.9 of [1], one
has the following estimate of Poisson bracket

|{P,Q}|µ ≤ r1r2|P |µ|Q|µ. (2.8)
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Theorem 2.1. Fix a positive integer r. Consider the Hamiltonian function

H = H0 + P =
∑
a∈Zd

ωa|ξa|2 + P, (2.9)

where the frequencies ω := {ωa}a∈Zd and the higher order perturbation P satisfy the
following two assumptions respectively:

(1) for any positive integer l, there exists γ, τ, C0 > 0 such that for any N ≥ 1 and
j = (δk, ak)lk=1 ∈ (U2 × Zd)l, b1, b2 ∈ Zd with 〈ak〉 ≤ N , 〈b1〉, 〈b2〉 > N , we
have

|δ1ωa1 + · · ·+ δlωal | ≥
γ

Nτ
, when j /∈ Al, (2.10)

|δ1ωa1 + · · ·+ δlωal + ωb1 | ≥
γ

Nτ
, (2.11)

|δ1ωa1 + · · ·+ δlωal + ωb1 + ωb2 | ≥
γ

Nτ
, (2.12)

|δ1ωa1 + · · ·+ δlωal + ωb1 − ωb2 | ≥
γ

Nτ
, when

∣∣|b1| − |b2|∣∣ ≥ C0N, (2.13)

where Al :=
{
j = (δk, ak)lk=1 | ∃ permutation σ, s.t. ∀k, δk = −δσk

, |ak| =
|aσk
|} is the set of resonant multi-indices;

(2) P =
∑
l≥1 Pl with Pl homogenous of order l+ 2, and there exists µ,C1, R0 > 0

such that
|Pl|µ ≤ C1R

−(l+2)
0 . (2.14)

Then there exists a polynomial Hamiltonian χ =
∑r
l=1 χl of order at most r + 2

satisfying
|χl|µ ≤ C2N

rτ (2.15)

with constant C2 > 0 depending on r, C1 and R0 such that for any given s > d/2, the
transformation of time one map Φ1

χ generated by χ, whose existence is guaranteed
in a neighbourhood of the origin of l2s ⊕ l2s, puts H in normal form:

H ◦ Φ1
χ = (H0 + P ) ◦ Φ1

χ = H0 + Z (0) + R(ii) + R(iii) + Rr+3, (2.16)

where

(i) the transformation fulfills the estimate

‖z − Φ1
χ(z)‖s ≤ C3N

rτ‖z‖2s (2.17)

in a neighbourhood of the origin of l2s⊕ l2s with constant C3 > 0 depending on s
and C2. Exactly, the same estimate is fulfilled by the inverse transformation;

(ii) Z (0) is a polynomial of order at most r+ 2 and contains only resonant mono-
mials, that is to say, for any a ∈ Zd,

{Ja,Z (0)} = 0, (2.18)

where Ja :=
∑
〈b〉=〈a〉 |zb|2 is the super action;

(iii) R(ii) =
∑r
l=1 R

(ii)
l is a polynomial of order at most r + 2 with two high

modes in opposite signs and having small norm difference: they are (δ, b1) and
(−δ, b2) with

∣∣|b1| − |b2|∣∣ < C0N . Moreover, the following estimate holds:

|R(ii)
l |µ ≤ C2N

(r−1)τ ; (2.19)
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(iv) R(iii) =
∑r
l=1 R

(iii)
l is a polynomial of order at most r + 2 with at least three

high modes and

|R(iii)
l |µ ≤ C2N

(r−1)τ ; (2.20)

(v) Rr+3 is a polynomial of order at least r + 3 and

‖XRr+3
(z)‖s ≤ C3N

rτ‖z‖r+2
s . (2.21)

Proof. The proof is parallel to [5] except an essential difference: some terms with
two high modes of opposite signs will be eliminated, while in [5], these terms are
kept in R(ii). For convenience, we introduce some notations.

For any l = 1, · · · , r, decompose homogeneous polynomials Pl of order l + 2 as
follows:

Pl = P
(0)
l + P

(i)
l + P

(ii)
l + P

(iii)
l ,

where P
(0)
l depends only on low modes, namely

P
(0)
l (z) =

∑
j∈(U2×Zd)l+2

µ1(j)≤N

P
(0)
lj
zj ,

P
(i)
l contains only one high mode, namely

P
(i)
l (z) =

∑
j∈(U2×Zd)l+2

µ2(j)≤N<µ1(j)

P
(i)
lj
zj ,

P
(ii)
l contains two high modes, namely

P
(ii)
l (z) =

∑
j∈(U2×Zd)l+2

µ3(j)≤N<µ2(j)

P
(ii)
lj

zj ,

and P
(iii)
l contains at least three high modes, namely

P
(iii)
l (z) =

∑
j∈(U2×Zd)l+2

µ3(j)>N

P
(iii)
lj

zj

with µm(j) being the m-th largest number amongst the collection {〈jk〉}l+2
k=1.

We will not only eliminate the non-resonant terms of P
(0)
l , all terms of P

(i)
l , and

the terms of P
(ii)
l with two high modes in same sign as in [5], but also eliminate

the terms of P
(ii)
l with two high modes in opposite signs and having large norm

difference, i.e., (δ, b1) and (−δ, b2) with ||b1|−|b2|
∣∣ ≥ C0N . For the latter, the corre-

sponding homological equations are solved with the help of non-resonant condition
(2.13).

Comparing with [5], although there is no condition of zero momentum, we still
have the estimates of vector field and Poisson bracket, seeing (2.7) and (2.8). Be-
sides, the remaining proof is a standard procedure of non-resonant Birkhoff normal
form and thus we omit it.
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3. Proof the main theorem

Write the operator Λ := (−∆ +m)1/2 and let

z =
1√
2

(Λ
1
2u+ iΛ−

1
2 u̇), (3.1)

and then (1.1) is equivalent to

ż = −iΛz − i√
2

Λ−
1
2 f
(
x,Λ−

1
2 (
z + z̄√

2
)
)
. (3.2)

Using the Fourier expansion z(t, x) =
∑
a∈Zd ξa(t) eia·x, for any x ∈ Td, rewrite

(3.2) as

ξ̇a = −i
∂H

∂ξ̄a
(3.3)

with the Hamiltonian function

H = H0 + P

=
∑
a∈Zd

ωa|ξa|2 +
1

(2π)d

∫
Td

F
(
x,
∑
a∈Zd

(
ξae

ia·x + ξ̄ae
−ia·x

√
2ωa

)
)
dx, (3.4)

where

ωa =
√
|a|2 +m (3.5)

and F is the primitive function of f with respect to the variable u, i.e., f = ∂uF .
In the following, we identify the function z with its sequence of Fourier coef-

ficients {ξa}a∈Zd(or {zj}j∈U2×Zd). In view of (3.1), there exists a constant c ≥ 1
depending on m and s such that

1

c
‖(u, u̇)‖Hs×Hs−1 ≤ ‖z‖s− 1

2
≤ c‖(u, u̇)‖Hs×Hs−1 . (3.6)

In the following, we will check that the Hamiltonian H in (3.4) meets two assump-
tions (1) and (2) in Theorem 2.1.

On the one hand, we show that for almost all m > 0, the family of frequencies
{ωa}a∈Zd given in (3.5) is non-resonant, namely satisfies conditions (2.10)–(2.13).
It is shown in [17] that for almost all m > 0 and any positive integer r, there exists
γ, τ > 0 such that (2.10)–(2.12) hold. Then we only need to check the condition
(2.13). For any N ≥ 1 and j = (δk, ak)lk=1 ∈ (U2 × Zd)l with l ≤ r and 〈ak〉 ≤ N ,
one has

ωak =
√
|ak|2 +m ≤

√
N2 − 1 +m ≤

√
1 +mN

and thus

|δ1ωa1 + · · ·+ δlωal | ≤
√

1 +mrN.

For any 〈b2〉 > 〈b1〉 > N with |b2| − |b1| ≥ 2(1 +m)rN , one has

ωb2 − ωb1 =
√
|b2|2 +m−

√
|b1|2 +m

=
|b2|2 − |b1|2√

|b2|2 +m+
√
|b1|2 +m
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≥ |b2|2 − |b1|2√
1 +m(|b2|+ |b1|)

=
|b2| − |b1|√

1 +m

≥2
√

1 +mrN.

Hence, one has

|δ1ωa1 + · · ·+ δlωal + ωb1 − ωb2 | ≥ ωb2 − ωb1 − |δ1ωa1 + · · ·+ δlωal |
≥
√

1 +mrN.

Taking C0 = 2(1 +m)r, (2.13) holds when
∣∣|b1| − |b2|∣∣ ≥ C0N .

On the other hand, since F is analytic with a zero of order at least two, then
the assumption (2) in Theorem 2.1 holds.

Applying Theorem 2.1, there exists a normalizing transformation Φ1
χ such that

Φ−1χ (z) = z′. Let N = Nε and then N2r(2τr+d) ≤ Ns−2s0 = ε−2r. By (2.17) and
(3.6), for any small enough ε, one has

‖z′(0)‖s− 1
2
≤ ‖z(0)‖s− 1

2
+ ‖z(0)− Φ−1χ (z(0))‖s− 1

2
≤ 2cε. (3.7)

Then recall the notation (2.5), we have

‖z′(0)≤N‖ s
2
≤ ‖z′(0)‖s− 1

2
≤ 2cε, (3.8)

‖z′(0)>N‖s0− 1
2
≤ Ns0−s‖z′(0)>N‖s− 1

2
< 2cε2r+1. (3.9)

Define
t̃ = inf

{
t ≥ 0 | ‖z′(t)≤N‖ s

2
= 3cε or ‖z′(t)>N‖s0− 1

2
= εr+1

}
.

and we will prove that t̃ ≥ ε−
r

2s0 in two parts.
(1) Control of the low modes z′(t)≤N .
Define F≤N (z) = ‖z≤N‖2s

2
and then

|F≤N (z′(t))− F≤N (z′(0))| =
∣∣∣∣∫ t

0

{H ◦ Φ1
χ, F≤N}(z′(t))dt

∣∣∣∣
≤
∫ t

0

∣∣∣{R(ii) + R(iii) + Rr+3, F≤N}(z′(t))
∣∣∣ dt

≤ |t|‖XR(ii)+R(iii)+Rr+3
(z′(t))≤N‖ s

2
‖z′(t)≤N‖ s

2
. (3.10)

By (2.7), (2.19)–(2.21), there exists constant C > 0 such that

‖XR(ii)+R(iii)(z′(t))≤N‖ s
2
≤ N

s−2s0+1
2 ‖XR(ii)+R(iii)(z′(t))≤N‖s0− 1

2

≤ CN
s−2s0+1

2 N (r−1)τ‖z′(t)>N‖2s0− 1
2

≤ Cεr+ 3
2 , (3.11)

‖XRr+3
(z′(t))≤N‖ s

2
≤ CNrτ

(
N

s−2s0+1
2 ‖z′(t)≤N‖r+1

s0− 1
2

‖z′(t)>N‖s0− 1
2

+ ‖z′(t)≤N‖r+2
s
2

)
≤ Cεr+ 3

2 . (3.12)
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When t ≤ ε−
r

2s0 , by (3.8), (3.10)–(3.12), one has

‖z′(t)≤N‖2s
2
≤ ‖z′(0)≤N‖2s

2
+ |F≤N (z′(t))− F≤N (z′(0))|

≤ 4c2ε2 + Cε−
r

2s0 εr+
5
2

≤ 9c2ε2. (3.13)

(2) Control of the high modes z′(t)>N .
By Theorem 2.1, R(ii) can be written as

R(ii) =
∑

b1,b2∈Zd

〈b1〉,〈b2〉>N
||b1|−|b2||<2(1+m)rN

Bb1b2(z′≤N )z′b1 z̄
′
b2 (3.14)

with the estimate
|Bb1b2(z′≤N )| ≤ CN (r−1)τ‖z′≤N‖ s

2
(3.15)

for some positive constants C. As the Hamiltonian is real, we have Bb1b2(z′≤N ) =

Bb2b1(z′≤N ), i.e., the operator
(
Bb1b2(z′≤N )

)
b1,b2

is Hermitian so that

{R(ii)(z′(t)), ‖z′(t)>N‖20} = 0.

Thus one has∣∣∣‖z′(t)>N‖20 − ‖z′(0)>N‖20
∣∣∣ =

∣∣∣∣∫ t

0

{H ◦ Φ1
χ(z′(t)), ‖z′(t)>N‖20}dt

∣∣∣∣
≤
∫ t

0

∣∣{R(iii) + Rr+3(z′(t)), ‖z′(t)>N‖20}
∣∣dt

≤|t|‖XR(iii)+Rr+3
(z′(t))>N‖0‖z′(t)>N‖0. (3.16)

Notice that by (2.7), (2.20) and (2.21), there exists constant C > 0 such that

‖XR(iii)(z′(t))>N‖s0− 1
2
≤ CN (r−1)τ‖z′(t)>N‖2s0− 1

2
≤ Cε2r+ 3

2 , (3.17)

‖XRr+3(z′(t))>N‖s0− 1
2
≤ CNrτ

(
N

2s0−s−1
2 ‖z′(t)≤N‖r+2

s
2

+ ‖z′(t)≤N‖r+1
s0− 1

2

‖z′(t)>N‖s0− 1
2

)
≤ Cε2r+ 3

2 . (3.18)

By (3.9),(3.16)–(3.18) and the fact s0 > 1/2, one has

‖z′(t)>N‖20 ≤‖z′(0)>N‖20 + |t|‖XR(iii)+Rr+3
(z′(t))>N‖s0− 1

2
‖z′(t)>N‖s0− 1

2

≤C(1 + t)ε3r+
5
2 . (3.19)

Define F>N (z) = ‖z>N‖2s0− 1
2

and then

∣∣F>N (z′(t))− F>N (z′(0))
∣∣ =

∣∣∣∣∫ t

0

{H ◦ Φ1
χ, F>N}(z′(t))dt

∣∣∣∣
≤
∫ t

0

∣∣{R(ii) + R(iii) + Rr+3, F>N}(z′(t))
∣∣dt. (3.20)
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Using (3.14) and (3.15), one has∣∣{R(ii), F>N}(z′(t))
∣∣

=
∣∣∣ ∑

〈b1〉,〈b2〉>N
||b1|−|b2||<2(1+m)rN

(〈b1〉2s0−1 − 〈b2〉2s0−1)Bb1b2(z′≤N )z′b1 z̄
′
b2

∣∣∣
≤

∑
〈b1〉,〈b2〉>N

||b1|−|b2||<2(1+m)rN

2s0
∣∣〈b1〉 − 〈b2〉∣∣(〈b1〉2s0−2 + 〈b2〉2s0−2)

∣∣Bb1b2(z′≤N )
∣∣ |z′b1 z̄′b2 |

≤CN (r−1)τ+1‖z′≤N‖ s
2

∑
|b1|,|b2|>N

||b1|−|b2||<2(1+m)rN

〈b1〉s0−
3
2 〈b2〉s0−

1
2

∣∣z′b1 z̄′b2 ∣∣
≤CN (r−1)τ+d+1‖z′≤N‖ s

2
‖z′>N‖s0− 3

2
‖z′>N‖s0− 1

2

≤‖z′>N‖
2

2s0−1

0 ‖z′>N‖
2− 2

2s0−1

s0− 1
2

, (3.21)

where the last inequality follows from the estimate CN (r−1)τ+d+1‖z′≤N‖ s
2
≤ 1

and the Hölder inequality ‖z′>N‖s0− 3
2
≤ ‖z′>N‖

2
2s0−1

0 ‖z′>N‖
1− 2

2s0−1

s0− 1
2

. By (3.17) and

((3.18), there exists constant C > 0 such that

|{R(iii) + Rr+3, F>N}(z′(t))| ≤‖XR(iii)+Rr+3
(z′(t))>N‖s0− 1

2
‖z′(t)>N‖s0− 1

2

≤Cε3r+ 5
2 . (3.22)

By (3.19)–(3.22), it is easy for any t ≤ ε−
r

2s0 to get

|F>N (z′(t))− F>N (z′(0))| ≤t(‖z′>N‖
2

2s0−1

0 ‖z′>N‖
2− 2

2s0−1

s0− 1
2

+ Cε3r+
5
2 )

≤t
(
C(1 + t)ε3r+

5
2

) 1
2s0−1 ε(r+1)(2− 2

2s0−1 ) + Ctε3r+
5
2

≤1

2
ε2(r+1). (3.23)

By (3.9) and (3.23), we obtain

‖z′(t)>N‖2s0− 1
2
≤ ‖z′(0)>N‖2s0− 1

2
+ |F>N (z′(t))− F>N (z′(0))| ≤ ε2(r+1). (3.24)

Combining (3.13) and (3.24), we can conclude that t̃ ≥ ε−
r

2s0 .
By (2.7) and (2.15), there exists constant C > 0 such that

‖Xχ(z′(t))≤N‖ s
2
≤ CNrτ (‖z′(t)≤N‖2s

2
+N

s−2s0+1
2 ‖z′(t)≤N‖s0− 1

2
‖z′(t)>N‖s0− 1

2
)

≤ Cε 3
2 , (3.25)

‖Xχ(z′(t))>N‖s0− 1
2
≤ CNrτ (N

2s0−s−1
2 ‖z′(t)≤N‖2s

2
+ ‖z′(t)≤N‖s0− 1

2
‖z′(t)>N‖s0− 1

2
)

≤ Cεr+ 3
2 . (3.26)

So by (3.13) and (3.24)–(3.26), for any t ≤ ε−
r

2s0 , we have

‖z(t)≤N‖ s
2

= ‖Φ1
χ(z′(t))≤N‖ s

2
≤ ‖z′(t)≤N‖ s

2
+ ‖Xχ(z′(t))≤N‖ s

2
< 4cε,
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‖z(t)>N‖s0− 1
2

= ‖Φ1
χ(z′(t))>N‖s0− 1

2
≤ ‖z′(t)>N‖s0− 1

2
+ ‖Xχ(z′(t))>N‖s0− 1

2

≤ 2εr+1.

Going back to the original variables u, take c0 = 4c2 and by (3.6), we can obtain

‖u(t)≤N‖H s
2
≤ c0ε and ‖u(t)>N‖Hs0 ≤ εr.
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