
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 5, October 2024, 2808–2821 DOI:10.11948/20230436

THEORETICAL STUDY OF A CLASS OF
ζ-CAPUTO FRACTIONAL DIFFERENTIAL

EQUATIONS IN A BANACH SPACE

Oualid Zentar1,4, Mohamed Ziane2,4,

Mohammed Al Horani3,† and Ismail Zitouni1,4

Abstract A study of an important class of nonlinear fractional differential
equations driven by ζ-Caputo type derivative in a Banach space framework
is presented. The classical Banach contraction principle associated with the
Bielecki-type norm and a fixed-point theorem with respect to convex-power
condensing operators are used to achieve some existence results. Two illustra-
tive examples are provided to justify the theoretical results.
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1. Introduction

The present paper is devoted to analyzing the following problem with a constant
coefficient ρ > 0 of the form:

(
cDϑ;ζa+ + ρcDϑ−1;ζa+

)
y(t) = g(t, y(t)), t ∈ J := [a, b],

y(a) = y′(a) = 0,
(1.1)

where 1 < ϑ < 2, cDθ;ζa+ is the Caputo fractional derivative with respect to ζ of order
θ ∈ {ϑ, ϑ − 1}, g : J × F → F is a given function verifying some assumptions that
will be precised later and (F, ‖ · ‖) is a real Banach space.

The theory of differential equations involving non-integer order derivatives have
become an indispensable tool as they arise in the modeling of various phenomena in
numerous scientific and engineering disciplines. Numerous authors have investigated
different aspects of the theory, see [1, 11,15].
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Nowadays, differential equations of non-integer order with respect to another
function, recently introduced in [4], occur in various concrete models. For instance,
they appear in several anomalous diffusions, including ultra-slow processes [18],
Heston model [6], random walks [13], financial crisis [19] and Verhulst model [7].
Therefore, a considerable attention has been given to the quantitative and qual-
itative proprieties of solutions of some kind of differential problems governed by
ϕ-Caputo type [5, 8, 12].

Problem (1.1) has been considered in a finite-dimensional Banach space by
Mahrouz et al. [22], they obtained some existence results under Lipschizianity and
growth conditions (among other extra assumptions). By imposing reasonable condi-
tions, we extend the previous results in general setting, namely, when the nonlinear
function g acts on an infinite dimensional Banach space. The proof of our main
results consists, firstly, to combine the classical Banach contraction principle with
the Bielecki type norm which allows us to obtain a global existence and uniqueness
result and dropping the extra assumption appearing in [22, Theorem 7]. Secondly,
based on measure of noncompactness (MNC) technique and convex-power condens-
ing (CPC) operator fixed point theorem, a new existence theorem is proved which
improve considerably the result proved in [22, Theorem 6].

The current paper is divided into four sections: In Section 2, we collect a basic
background needed in the sequel. In Section 3, Banach’s fixed point theorem and
fixed point theorem with respect to CPC operator is used to obtain a new existence
criterion. Finally, two illustrative examples are presented in Section 4.

2. Preliminaries

We endow the space C(J ,F) of continuous functions z : J → F by the norm

‖z‖∞ = sup
t∈J
‖z(t)‖, ∀z ∈ C(J ,F).

L1(J ,F) denotes the space of Bochner integrable functions z : J → F normed by

‖z‖L1(J ,F) =

∫ b

a

‖z(t)‖dt, ∀z ∈ L1(J ,F).

We also define

T1
+(J ,R) = {ζ : ζ ∈ C1(J ,R) and ζ ′(t) > 0 for all t ∈ J }.

For ζ ∈ T1
+(J ,R) and t, s ∈ J , (t > s), we pose

ζ(t, s) = ζ(t)− ζ(s) and ζ(t, s)ϑ = (ζ(t)− ζ(s))
ϑ
.

Definition 2.1. [4,17] Let ζ ∈ T1
+(J ,R) and ϑ > 0. The ζ-fractional integral (FI)

of a function f of order ϑ is defined as

Iϑ,ζa+ f(t) =
1

Γ(ϑ)

∫ t

a

ζ(t, s)ϑ−1ζ ′(s)f(s)ds, t > a,

with Γ(·) denotes the gamma function.
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Lemma 2.1. [4, 17] Let ϑ, γ > 0. Then

Iϑ;ζa+ ζ(t, a)γ−1 =
Γ(γ)

Γ(ϑ+ γ)
ζ(t, a)ϑ+γ−1.

Definition 2.2. [4] Let n− 1 < ϑ ≤ n with n ∈ N, ζ ∈ T1
+(J ,R). The ζ-Caputo

FD of a function f of order ϑ is defined as(
CDϑ;ζa+ f

)
(t) = In−ϑ;ζa+

(
1

ζ ′(t)

d

dt

)n
f(t).

Definition 2.3. [10] Let G ⊂ F be a bounded set. The Hausdorff MNC of G is
given by

Λ(G) = inf{ε > 0 : G has a finite ε− net in F}.

Recall that a set S ⊂ F is called an ε−net of G if G ⊂ S+εB ≡ {s+εb, s ∈ S, b ∈ B},
where B is the closed unit ball in F.

Lemma 2.2. [10] Let G,V ⊂ F be bounded. Then Λ(·) satisfies.

1. Λ(G) = 0⇐⇒ G is relatively compact,

2. G ⊂ V =⇒ Λ(G) ≤ Λ(V),

3. Λ(G ∪ V) = max{Λ(G),Λ(V)},
4. Λ(G) = Λ(G) = Λ(co(G)), where coG and G represent the convex hull and

the closure of G, respectively,

5. Λ(G + V) ≤ Λ(G) + Λ(V),

6. Λ(λG) ≤ |λ|Λ(G), for any λ ∈ R.

Lemma 2.3. [2] Let G be a bounded set of F. Then, fix ε > 0, there is a sequence
{xn}∞n=1 ⊆ G, such that

Λ(G) ≤ 2Λ ({xn}∞n=1) + ε.

The set G ⊂ L1(J ,F) is called uniformly integrable if, for all x ∈ G, we have

‖x(t)‖ ≤ δ(t), for a.e. t ∈ J ,

with δ ∈ L1
(
J,R+

)
.

Lemma 2.4. [16] Assume that {xn}∞n=1 ⊂ L1(J ,F) is uniformly integrable, the
map t 7−→ Λ ({xn(t)}∞n=1) is measurable, and

Λ

({∫ t

a

xn(s)ds

}∞
n=1

)
≤ 2

∫ t

a

Λ ({xn(s)}∞n=1) ds.

Now, for ς > 0, we endow the space C(J ,F) by the Bielecky norm

‖z‖B = sup
t∈J

e−ςζ(t,a)‖z(t)‖. (2.1)

Lemma 2.5. [20,24] The norms ‖ · ‖B defined by (2.1) and ‖ · ‖∞ are equivalent,
i.e; there exists ` ∈ (0,∞) such that

‖ · ‖B ≤ ‖ · ‖∞ ≤ `‖ · ‖B .
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Lemma 2.6. [9] Let ϑ > 1 and ς > 0. Then for all t ∈ J , one has

Iϑ−1;ζa+ eςζ(t,a) ≤ 1

ςϑ−1
eςζ(t,a).

Definition 2.4. Let K be a real Banach space, J ⊂ K is a closed and convex set.
The operator N : J → J is called convex-power condensing (CPC) operator about
v0 and m0 if N is bounded and continuous, and there exist v0 ∈ J and m0 ∈ N∗
such that for any bounded and not relatively compact V ⊂ J, with

Λ
(
N (m0,v0)(V)

)
< Λ(V),

where

N (1,v0)(V) ≡ N (V), N (m,v0)(V) = N
(
co
{
N (m−1,v0)(V)

})
, m = 2, 3, · · · .

Theorem 2.1. [21] Let K be a real Banach space, and let V ⊂ K be a bounded,
closed and convex set. If N : V → V is a CPC operator, then N has at least one
fixed point in V.

3. Main results

We present our first result dealing with the existence and uniqueness of solutions
for (1.1) by using Banach’s fixed point theorem.

Theorem 3.1. Assume that

(C1) The function g : J × F→ F is continuous.

(C2) There exists G ∈ L∞(J ,R+) such that

‖g(t, v)− g(t, u)‖ ≤ G(t)‖v − u‖, for all v, u ∈ F and for a.e. t ∈ J .

Then, problem (1.1) admits a unique solution defined on J .

Proof. According to [22, Theorem 1], let us introduce U : C(J ,F) → C(J ,F)
given by:

Uy(t) = (ϑ− 1)

∫ t

a

ζ ′(s)e−ρζ(t,s)
(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
g(τ, y(τ))dτ

)
ds, t ∈ J .

(3.1)
Evidently, the solution of problem (1.1) can be regarded as the fixed point of U .

We need to show that the operator U is a contraction mapping on C(J ,F) via
the Bielecki’s norm. For each y, x ∈ C(J ,F) and all t ∈ J , using (C2), we can get

‖(Uy)(t)− (Ux)(t)‖

≤ (ϑ− 1)

∫ t

a

e−ρζ(t,s)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))− g(τ, x(τ))‖dτζ ′(s)ds

≤ (ϑ− 1)

∫ t

a

e−ρζ(t,s)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
G(τ)‖y(τ)− x(τ)‖dτζ ′(s)ds,
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which, by (2.1), can be written as

‖(Uy)(t)− (Ux)(t)‖

≤ (ϑ− 1)

∫ t

a

e−ρζ(t,s)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)

G(τ)‖y(τ)− x(τ)‖
eςζ(τ,a)e−ςζ(τ,a)

dτζ ′(s)ds

≤ (ϑ− 1)‖G‖L∞‖y − x‖B
∫ t

a

e−ρζ(t,s)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
eςζ(τ,a)dτζ ′(s)ds.

By Lemma 2.6, one obtains

‖(Uy)(t)− (Ux)(t)‖

≤ (ϑ− 1)‖G‖L∞‖y − x‖B
∫ t

a

e−ρζ(t,s)eςζ(s,a)

ςϑ−1
ζ ′(s)ds

≤ (ϑ− 1)‖G‖L∞‖y − x‖B
e−ρζ(t)−ςζ(a)

(ρ+ ς)ςϑ−1

∫ t

a

(ρ+ ς)e(ρ+ς)ζ(s)ζ ′(s)ds

≤ (ϑ− 1)e−ρζ(t)−ςζ(a)

(ρ+ ς)ςϑ−1

(
e(ρ+ς)ζ(t) − e(ρ+ς)ζ(a)

)
‖G‖L∞‖y − x‖B .

By e−ρζ(t)−ςζ(a) ≤ e−(ρ+ς)ζ(a) and e(ρ+ς)ζ(t) − e(ρ+ς)ζ(a) ≤ e(ρ+ς)ζ(t), we get

‖(Uy)(t)− (Ux)(t)‖ ≤ (ϑ− 1)e−(ρ+ς)ζ(a)

(ρ+ ς)ςϑ−1
e(ρ+ς)ζ(t)‖G‖L∞‖y − x‖B

≤ (ϑ− 1)e(ρ+ς)ζ(b,a)

(ρ+ ς)ςϑ−1
‖G‖L∞‖y − x‖B .

Therefore,

‖Uy − Ux‖B ≤
(ϑ− 1)eρζ(b,a)

(ρ+ ς)ςϑ−1
‖G‖L∞‖y − x‖B

≤Mς‖y − x‖B ,

where Mς =
(ϑ− 1)eρζ(b,a)

(ρ+ ς)ςϑ−1
‖G‖L∞ .

Choosing ς > 0 large enough, the quantity Mς is less than 1. This produces
that

‖Uy − Ux‖B ≤Mς‖y − x‖B .

Therefore, by applying Banach’s contraction principle (see [14]), problem (1.1)
admits a unique solution in C(J ,F).

Next, we present our second result, where Theorem 2.1 is applied.

Theorem 3.2. Assume that

(H1) g : J × F→ F is Carathéodory type function i.e.

1. for all x ∈ F, g(·, x) is measurable,

2. for a.e. t ∈ J , g(t, ·) is continuous.
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(H2) There exists φ ∈ L∞(J ,R+) and a continuous nondecreasing function κ :
[0,∞)→ [0,∞) such that

‖g(t, v)‖ ≤ φ(t)κ(‖v‖), for a.e. t ∈ J and v ∈ F.

(H3) There exists constant ξ > 0, such that for each t ∈ J ,

Λ(g(t,U)) ≤ ξΛ(U),

where U is a bounded and countable set in F.

(H4) There exists a constant K > 0 such that

(ϑ− 1)‖φ‖L∞κ(K)
ζ(b, a)ϑ

Γ(ϑ+ 1)
≤ K. (3.2)

Then, problem (1.1) admits a solution on J .

Proof. Introduce again the operator U represented by (3.1) and define a closed
bounded convex set

BK = {y ∈ C(J ,F) : ‖y‖∞ ≤ K}.

To verify the conditions of Theorem 2.1, we split the proof into four steps:

Step 1. U maps the set BK into itself.
For each y ∈ BK and t ∈ J , by the hypothesis (H2) and the fact that 0 <

e−ρζ(t,s) < 1 for a < s < t < b, we have

‖Uy(t)‖ ≤ (ϑ− 1)

∫ t

a

ζ ′(s)

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))‖dτ

)
ds

≤ (ϑ− 1)

∫ t

a

ζ ′(s)

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
φ(τ)κ(‖y(τ)‖)dτ

)
ds

≤ (ϑ− 1)‖φ‖L∞κ(K)

∫ t

a

ζ ′(s)

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
dτ

)
ds.

Using Lemma 2.1 with γ = 1, we get∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
dτ

)
ζ ′(s)ds =

1

Γ(ϑ)

∫ t

a

ζ ′(s)ζ(s, a)ϑ−1ds

=
1

Γ(ϑ+ 1)
ζ(t, a)ϑ.

Using the above estimates and hypothesis (H4), we obtain

‖Uy‖ ≤ (ϑ− 1)‖φ‖L∞κ(K)
ζ(t, a)ϑ

Γ(ϑ+ 1)

≤ (ϑ− 1)‖φ‖L∞κ(K)
ζ(b, a)ϑ

Γ(ϑ+ 1)

≤ K.
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This proves that U maps BK into itself.

Step 2. The continuity of U .
Assume that {yn} is a sequence such that yn → y in BK as n→∞. From (H1)

we can see that g (s, yn(s))→ g(s, y(s)), as n→ +∞.
Recalling (H2), we deduce that

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))− g(τ, yn(τ))‖ ≤ 2φ(τ)κ(K)

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
.

From Lebesgue’s dominated convergence theorem and the fact that the function

τ → 2φ(τ)κ(K)
ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)

is Lebesgue integrable on J , one gets

‖(Uyn)(t)− (Uy)(t)‖

≤ (ϑ− 1)e−ρζ(t,a)
∫ t

a

ζ ′(s)eρζ(s,a)

×
(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, yn(τ))− g(τ, y(τ))‖dτ

)
ds

≤ (ϑ− 1)

∫ t

a

ζ ′(s)eρζ(s,a)
(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, yn(τ))− g(τ, y(τ))‖dτ

)
ds

≤ (ϑ− 1)eρζ(b,a)
∫ t

a

ζ ′(s)

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, yn(τ))− g(τ, y(τ))‖dτ

)
ds,

where we have made use of the fact that 0 < e−ρζ(t,a) < 1, for each t ∈ J . Therefore

‖(Uyn)(t)− (Uy)(t)‖ → 0 as n→∞, ∀t ∈ J .

Hence,
‖Uyn − Uy‖∞ → 0 when n→∞. (3.3)

This implies that U is continuous.

Step 3. U(BK) is equicontinuous.
Let a < t1 < t2 < b and y ∈ BK , we have

‖(Uy)(t2)− (Uy)(t1)‖ ≤M1 +M2

where

M1 = (ϑ− 1)e−ρζ(t2,t1)
∫ t2

t1

ζ ′(s)eρζ(s,t1)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))‖dτds,

and

M2 = (ϑ− 1)

∫ t1

a

ζ ′(s)
∣∣∣e−ρζ(t2,s) − e−ρζ(t1,s)∣∣∣∥∥∥(Iϑ−1;ζa+ g(τ, y(τ))

)
(s)
∥∥∥ds.
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From (H2) and the fact that e−ρζ(t2,t1) < 1, we get

M1 ≤ (ϑ− 1)

∫ t2

t1

ζ ′(s)eρζ(s,t1)
∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))‖dτds

≤ (ϑ− 1)eρζ(b,t1)
∫ t2

t1

ζ ′(s)

∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
‖g(τ, y(τ))‖dτds

≤ (ϑ− 1)eρζ(b,t1)‖φ‖L∞κ(K)

∫ t2

t1

ζ ′(s)

∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
dτds

≤ (ϑ− 1)eρζ(b,t1)‖φ‖L∞κ(K)

∫ t2

t1

ζ ′(s)
ζ(s, a)ϑ−1

Γ(ϑ)
ds

≤ (ϑ− 1)eρζ(b,t1)‖φ‖L∞κ(K)

Γ(ϑ+ 1)

(
ζ(t2, a)ϑ − ζ(t1, a)ϑ

)
.

This produces that,

M1 −→ 0 as t2 −→ t1. (3.4)

On the other side,

M2 = (ϑ− 1)
(
e−ρζ(t1) − e−ρζ(t2)

)∫ t1

a

eρζ(s)
∥∥∥(Iϑ−1;ζa+ g(τ, y(τ))

)
(s)
∥∥∥ζ ′(s)ds.

Thus,

M2 −→ 0 when t2 −→ t1. (3.5)

From (3.4) and (3.5), the equicontinuity of U(BK) is deduced immediately.

Step 4. U : O→ O is a CPC operator, where O = coU (BK).
Let y0 ∈ O. In the following, we need to show that U satisfies Definition 2.4.
To do this, for every bounded subset A ⊂ C(J ,F) we define the MNC as

ΛC

(
U (n,y0)(A)

)
= sup
t∈J

Λ
(
U (n,y0)(A)(t)

)
, n ∈ N∗. (3.6)

Next, fix ε > 0. Lemma 2.3 yields the existence of {yk}∞k=1 ⊂ A such that

Λ
(
U (1,y0)(A)(t)

)
= Λ (U(A)(t))

≤ 2Λ

{
(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
g(τ, {yk(τ)}∞k=1)dτ

)
ζ ′(s)ds

}
+ ε.

Lemma 2.4 and the hypothesis (H3) imply that

Λ
(
U (1,y0)(A)(t)

)
≤8(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ(g(τ, {yk(τ)}∞k=1))dτ

)
ζ ′(s)ds+ ε
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≤8(ϑ− 1)ξ

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ({yk(τ)}∞k=1)dτ

)
ζ ′(s)ds+ ε

≤8(ϑ− 1)ξΛ(A)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
dτ

)
ζ ′(s)ds+ ε.

Using Lemma 2.1, we get

Λ
(
U (1,y0)(A)(t)

)
≤ 8(ϑ− 1)ξΛ(A)

∫ t

a

ζ(s, a)ϑ−1

Γ(ϑ)
ζ ′(s)ds+ ε

≤ 8(ϑ− 1)ξΛ(A)
ζ(t, a)ϑ

Γ(ϑ+ 1)
+ ε.

Since ε > 0 is arbitrary, we obtain

Λ
(
U (1,y0)(A)(t)

)
≤ 8ξ(ϑ− 1)

ζ(t, a)ϑ

Γ(ϑ+ 1)
Λ(A). (3.7)

Now, using Lemma 2.3 again, fix ε > 0, there is a sequence {xk}∞k=1 ⊂
co
{
U (1,y0)(A), y0

}
such that

Λ
(
U (2,y0)(A)(t)

)
=Λ

(
U
(

co
{
U (1,y0)(A), y0

})
(t)
)

≤2Λ

{
(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
g(τ, {xk(τ)}∞k=1)dτ

)
ζ ′(s)ds

}
+ ε.

Another recalling of Lemma 2.4 and (H3), it yields

Λ
(
U (2,y0)(A)(t)

)
≤ 8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ({xk(τ)}∞k=1)dτ

)
ζ ′(s)ds+ ε

≤ 8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ
(

co
{
U (1,y0)(A), y0

}
(τ)
)
dτ

)
ζ ′(s)ds+ ε

≤ 8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ
(
U (1,y0)(A)(τ)

)
dτ

)
ζ ′(s)ds+ ε

≤ (8ξ(ϑ− 1))2

Γ(ϑ+ 1)
Λ(A)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
ζ(τ, a)ϑdτ

)
ζ ′(s)ds+ ε.

Using Lemma 2.1, we have∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
ζ(τ, a)ϑdτ

)
ζ ′(s)ds =

Γ(ϑ+ 1)

Γ(2ϑ)

∫ t

a

ζ ′(s)ζ(s, a)2ϑ−1ds

=
Γ(ϑ+ 1)

Γ(2ϑ+ 1)
ζ(t, a)2ϑ.

By the above arguments, we get

Λ
(
U (2,y0)(A)(t)

)
≤ (8ξ(ϑ− 1))2

Γ(2ϑ+ 1)
ζ(t, a)2ϑΛ(A) + ε.



Theoretical study of a class of ζ-Caputo ... 2817

Since ε > 0 is arbitrary, we obtain

Λ
(
U (2,y0)(A)(t)

)
≤ (8ξ(ϑ− 1))2

Γ(2ϑ+ 1)
ζ(t, a)2ϑΛ(A).

Repeating the process for n = 3, 4, · · · , for each t ∈ J , we can show by mathe-
matical induction, that

Λ
(
U (n,y0)(A)(t)

)
≤ (8ξ(ϑ− 1))n

Γ(nϑ+ 1)
ζ(t, a)nϑΛ(A). (3.8)

For this, we assume that (3.8) holds for some n and check that it is true for n+ 1.

Fix ε > 0. Lemma 2.3 yields the existence of {zk}∞k=1 ⊂ co
{
U (n,y0)(A), y0

}
such that

Λ
(
U (n+1,y0)(A)(t)

)
= Λ

(
U
(

co
{
U (n,y0)(A), y0

})
(t)
)

≤ 2Λ

{
(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
g(τ, {zk(τ)}∞k=1)dτ

)
ζ ′(s)ds

}
+ ε.

From (H3) and Lemma 2.4, one has

Λ
(
U (n+1,y0)(A)(t)

)
≤8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ({zk(τ)}∞k=1)dτ

)
ζ ′(s)ds+ ε

≤8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ
(

co
{
U (n,y0)(A), y0

}
(τ)
)
dτ

)
ζ ′(s)ds+ ε

≤8ξ(ϑ− 1)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
Λ
(
U (n,y0)(A)(τ)

)
dτ

)
ζ ′(s)ds+ ε

≤ (8ξ(ϑ− 1))n+1

Γ(nϑ+ 1)
Λ(A)

∫ t

a

(∫ s

a

ζ ′(τ)ζ(s, τ)ϑ−2

Γ(ϑ− 1)
ζ(τ, a)nϑdτ

)
ζ ′(s)ds+ ε

≤ (8ξ(ϑ− 1))n+1

Γ((n+ 1)ϑ+ 1)
ζ(t, a)(n+1)ϑΛ(A) + ε.

Hence

Λ
(
U (n+1,y0)(A)(t)

)
≤ (8ξ(ϑ− 1))n+1

Γ((n+ 1)ϑ+ 1)
ζ(t, a)(n+1)ϑΛ(A).

From (3.6) and (3.8), we get that

ΛC

(
U (n,y0)(A)

)
≤ (8ξ(ϑ− 1))n

Γ(nϑ+ 1)
ζ(t, a)nϑΛ(A). (3.9)

Now, we prove that the series

∞∑
n=0

(8ξ(ϑ− 1))nζ(t, a)nϑ

Γ(nϑ+ 1)
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is convergent. Applying the ratio test, we get

lim
n→∞

(8ξ(ϑ− 1))(n+1)ζ(t, a)(n+1)ϑ

Γ((n+ 1)ϑ+ 1)

Γ(nϑ+ 1)

(8ξ(ϑ− 1))nζ(t, a)nϑ

= lim
n→∞

8ξ(ϑ− 1)ζ(t, a)ϑ
Γ(nϑ+ 1)

Γ(nϑ+ 1 + ϑ)

=0.

(Notice that (see eq. (1) in [23])

Γ(nϑ+ 1)

Γ(nϑ+ 1 + ϑ)
=

1

((n+ 1)ϑ+ 1)ϑ

(
1− ϑ(ϑ− 1)

2((n+ 1)ϑ+ 1)
+O(((n+ 1)ϑ+ 1)−2)

)
,

where O is the Landau symbol).
Hence, there exists a positive integer n0, such that

(8ξ(ϑ− 1))n0

Γ(n0ϑ+ 1)
ζ(t, a)n0ϑ < 1. (3.10)

Therefore, Definition 2.4 is verified, it follows that U : O→ O is a CPC operator.

Then, Theorem 2.1 entails that U admits a fixed point y ∈ O and it is the
solution of (1.1).

4. Examples

This section provides two examples illustrating our main results.

Example 4.1. Consider the following problem:
(
cDϑ;ζ1+ + ρcDϑ−1;ζ1+

)
y(t) = g(t, y(t)), t ∈ J ,

y(1) = y′(1) = (0, 0, · · · , 0, · · · ).
(4.1)

Take

ϑ =
3

2
, ρ =

1

5
, ζ(t) = ln(t), J = [1, e],

and g : J × R→ R given by,

g(t, y) =
5

et−1 + 14
(13 + arctan(y)) , for t ∈ J , y ∈ R.

The function g is clearly continuous. Next, for all t ∈ J , x, y ∈ R one has

|g(t, y)− g(t, x)| ≤ 5

et−1 + 14
|y − x|.

Hence, hypothesis (C2) holds with G(t) =
5

et−1 + 14
for t ∈ J , ‖G‖L∞ =

1

3
.

Moreover, if we choose ς ≥ 1

2
, the contraction of the corresponding solution operator

yields immediately, i.e.

Mς =
1
2e

1/5

(1/5 + ς)ς1/2
1

3
< 1.

Therefore, by Theorem 3.1, problem (4.1) admits a unique solution on J .
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Example 4.2. Let

F = c0 := {u = (u1, u2, · · · , un, · · · ) : un → 0 as n→∞},

be the Banach space of real sequences converging to zero, equipped by

‖u‖ = sup
n≥1
|un|.

Consider the following problem posed on c0:
(
cDϑ;ζ0+ + ρcDϑ−1;ζ0+

)
y(t) = g(t, y(t)), t ∈ J , 0 < b <

(
91

15

)1/ϑ

,

y(0) = y′(0) = (0, 0, · · · , 0, · · · ).
(4.2)

Take [0, b] := J , ζ(t) = t and g : J × c0 → c0 given by

g(t, y) =

{
5

13t+ 91

(
3

n2
+ sin(|yn|) + ln(1 + |yn|) + arctan(|yn|)

)}
n≥1

, (4.3)

for t ∈ J , y = {yn}n≥1 ∈ c0.

Evidently, g satisfies (H1). Next, for all y ∈ c0 and t ∈ J , one has

‖g(t, y)‖ ≤ 5

13t+ 91
(3 + 3‖y‖)

≤ φ(t)κ(‖y‖).

Thus, condition (H2) holds with

φ(t) =
15

13t+ 91
, t ∈ J and κ(u) = 1 + u, u ∈ [0,∞).

Now, the Hausdorff MNC Λ in (c0, ‖ · ‖c0) is defined as follows (see [10])

Λ(L) = lim
n→∞

sup
y∈L
‖(I − Pn)y‖∞ ,

where Pn is the projection onto the linear span of the first n vectors in the standard
basis.

For a bounded set L ⊂ c0, we obtain

Λ(g(t,L)) ≤ 15

91
Λ(L), a.e. t ∈ J .

Thus (H3) is satisfied.
Next, we will show that (H4) is verified. κ(u) = 1 + u, we have to find K > 0

such that
15(ϑ− 1)

91

(1 +K)bϑ

Γ(ϑ+ 1)
≤ K.

Since Γ(ϑ− 1) > 1 for 1 < ϑ < 2, then we have to choose K > 0 such that

15(1 +K)bϑ

91ϑ
≤ K.

Thus

K ≥ 15bϑ

91ϑ− 15bϑ
.

Accordingly, all conditions of Theorem 3.2 are verified. Hence, the existence of at
least one solution y ∈ C(J , c0) of problem (4.2) follows from Theorem 3.2.
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