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DYNAMICAL BEHAVIORS OF A DISCRETE
TWO-DIMENSIONAL COMPETITIVE SYSTEM
EXACTLY DRIVEN BY THE LARGE CENTRE∗

Binbin Du1, Changjian Wu2,†, Guang Zhang2,† and Xiao-Liang Zhou3

Abstract In this paper, a new discrete large-sub-center system is obtained by
using the Euler and nonstandard discretization methods for the corresponding
continuous system. It is surprised that all dynamic behaviors of the discrete
system are exactly driven by the large-center equation, for example, the stabil-
ities, the bifurcations, the period-doubling orbits, and the chaotic dynamics,
etc. Additionally, the global asymptotical stability, the existence of exact 2-
periodic solutions, the flip bifurcation theorem, and the invariant set of the
sub-center equation is also given. These results reveal far richer dynamics of
the discrete model compared with the continuous model. Through numerical
simulation, we can observe some complex dynamic behaviors, such as period-
doubling cascade, periodic windows, chaotic dynamics, etc. Especially, our
theoretical results are also showed by those numerical simulations.

Keywords Large-sub-center, discrete system, flip bifurcation, center mani-
fold method, chaos.
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1. Introduction

In recent years, the discrete dynamical models described by the difference equations
have been extensively investigated by a number of authors, for example, many
species of insect have no overlap between successive generations, and thus their
population evolves in discrete-time steps, see [1,5,8,9,16,23,24,27,29,32,48,50] for
the predator-prey system, [7,18,40–42,46] for the competitive system, and [6,11,25,
49] for the cooperative system. At the same time, such system is often used in the
analysis of dynamic economic systems, for example, economic growth, structural
economic change, innovation, economic competition, regional sciences, see Cafagna
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and Coccorese [6], Ding and Shi [11], Nijkamp and Reggiani [37–39], Askar [2], and
Dawid et. al. [10], etc.

The hierarchical structure in the spatial system has been characterized by a
discrete system. Especially, Nijkamp and Reggiani [37–39] considered the discrete
system of the form ut+1 = aut(1− ut),

vt+1 = rvt(1− but − vt),
(1.1)

where u represents the size of the large centre and v the size of the sub-centre,
t ∈ {0, 1, 2, · · ·} , Z+, 0 < a ≤ 4, r > 0 and 0 < b < 1. The dynamical behavior of
system (1.1) has been numerically investigated by Nijkamp and Reggiani [37–39].

System (1.1) can be obtained by using the Euler’s method from the continuous
system 

dx

dt
= ax (m− x) ,

dy

dt
= dy (n− ex− y) ,

(1.2)

where a, m, d, n and e are positive constants. System (1.2) can be rewritten as
du1

dτ
= γu1 (1− u1) ,

du2

dτ
= u2 (1− u2 − ε2u1) ,

(1.3)

by using a simpler transformation, see [13] or [26], also see (1.2) in [19]. When
0 < ε2 < 1, system (1.3) has a unique positive steady state (1, 1− ε2) which is
globally asymptotically stable ( [13] or [26]). In this case, we can say that u1 is the
size of the large centre and that u2 is the size of the sub-centre because the species
u2 has no impact on the evolution of species u1.

However, we find that the central position of the large centre u is not clear for
system (1.1). Specifically, we do not know the contributions of u and v for the
complex behavior of (1.1). Indeed, the species v has no impact on the evolution
of species u in system (1.1). However, we can see that the species v exists some
distinctive dynamical behaviors which can not be driven by the species u. In the
following, we will give some explanations.

It is well known that the first equation of system (1.1)

ut+1 = aut (1− ut) (1.4)

has been extensively discussed by May [35] and subsequently by many other authors,
for instance, Baker and Gollub [3], Baumol and Benhabib [4], Frank and Stengos
[12], Kelsey [22] and Sharkovsky et. al. [45], so we will not discuss here in any detail
the possible evolutionary patterns of u. We will just emphasize that for a > a∗ (for
example, see Zhang, Jiang and Cheng [51]) a cycle of period 3 appears, beyond
which there are cycles in every integer period, as well as an uncountable number of
aperiodic trajectories. In view of Li and Yorke [28], this is a typical example of a
chaotic region. For example, let a = 0.5, 1.5, 3.5 and 4, we can simulate the phase
diagrams of (1.4), see Figure 1.
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(a) (b) (c) (d)

Figure 1. The phase diagrams of (1.4) for a = 0.5, 1.5, 3.5, 4.

We observe that the zero solution of (1.4) is stable for a = 0.5, the positive
fixed point 1

3 of (1.4) is stable for a = 1.5, (1.4) has a stable 4-periodic solution for
a = 3.5, and (1.4) is chaos for a = 4. We also obtain the bifurcation diagrams of
the second equation of (1.1) for b = 0.01 and a = 0.5, 1.5, 3.5 and 4, where r is the
bifurcation parameter, see Figure 2.

(a) (b) (c) (d)

Figure 2. The bifurcation diagrams of the second equation of (1.1) for b = 0.01 and a = 0.5, 1.5, 3.5, 4.

From Figure 2, we can observe and find the following facts:
(i) When 0 < r < 1, the zero solution of the second equation of (1.1) is stable

for a = 0.5, 1.5, 3.5 and 4;
(ii) For a = 0.5 or 1.5, the second equation of (1.1) undergoes the stability of

the zero solution, the stability of the positive fixed points, the period-doubling, and
the chaos;

(iii) For a = 3.5, the second equation of (1.1) undergoes the stability of the
zero solution, the stability of the positive fixed points, the quasi-fixed point, the
quasi-binary period-doubling, and the chaos;

(iv) For a = 4, the second equation of (1.1) undergoes the stability of the zero
solution, the stability of the positive fixed points, the quasi-fixed point, the quasi-
binary periods, and the chaos.

From the above observations of (i)-(iv), for any a ∈ (0, 4], the second equation of
(1.1) may show the chaotic behaviors when the parameter r is larger. In particular,
the second equation of (1.1) can also cause chaos when a ∈ (1, 3). But, the positive
fixed point of the second equation of (1.1) is also stable when r ∈ (0, 1), even if the
large centre equation is chaos for a = 4. In this case, the dominance of “the large
centre u” has disappeared in fact.

Clearly, the dynamics of (1.4) can become “chaotic” for certain parameter values
while their “mother-version”

dx

dt
= rx(1− x)

has very simple dynamics. This can be interpreted as “numerical chaos” and such
dynamical characteristics have also been called “numerically unstable” [36]. How-
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ever, there are many situations for which continuous models, i.e., differential equa-
tions are the best fit. Thus, we need to be dynamically consistent for the discrete
versions of the corresponding differential equations ( [31, 36] and [47], and the ref-
erences therein), such as, stability, bifurcation, and chaos. In the present paper,
we will not discuss here in any detail for the dynamical consistency of the dis-
crete versions, and only choose a mixed discretizing method so as to manifest the
predominance of the large centre x.

In view of Liu and Elaydi [31], we can obtain a nonstandard discrete system of
(1.3) as 

xt+1 =
(1 + ϕ1 (h))xt
1 + ϕ1 (h)xt

,

yt+1 =
(1 + ϕ2 (h)) yt

1 + ϕ2 (h) (ε2xt + yt)
,

(1.5)

where t ∈ Z+,

ϕ1 (h) =
eγh − 1

γ
and ϕ2 (h) = eh − 1.

The unique positive equilibrium (1, 1− ε2) of system (1.5) is globally asymptotically
stable, see Theorems 4 in [31]. In this case, the dynamical behaviors of (1.3) and
(1.5) are clearly consistent.

On the other hand, our work is also motivated by Kang and Smith [21] and
Kang [20]. In [21] and [20], Kang and Smith investigated the global dynamics of a
discrete two-dimensional competition model of the form

xt+1 =
r1xt

a+ xt + yt
,

yt+1 = yt exp (r2 − xt − yt) ,
(1.6)

where r1 and r2 are positive and a is nonnegative. System (1.6) is called a discrete
two-species Lottery-Ricker competition model, where the first equation of (1.6) is
the lottery model and the second equation of (1.6) is the Ricker model, see Kang
and Smith [21] or Kang [20].

The dynamical behaviors for the discrete system of the form
xt+1 = axt (1− xt) ,

yt+1 =
(1 + b) yt

1 + b (xt + cyt)
,

(1.7)

will be considered in this paper, where b = eh − 1 > 0 and 1 < a ≤ 4. Note that
ε2, xt, ε2xt ∈ (0, 1), thus, ε2xt is replaced by xt. For more general applications,
we add the coefficient c > 0 before yt. Certainly, c can also be interpreted as the
intraspecific acting coefficient. System (1.7) is also a hybrid discrete system with
the logistic model and the lottery model. We will demonstrate that the dynamical
behaviors of system (1.7) is exactly driven by the large centre x.

We have known that the chaos for difference schemes governing discrete popula-
tion growth is by no means restricted to single-species models, for example, Guck-
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enheomer, Oster and Ipaktchi [15] considered the two-dimensional Leslie model:
xt+1 = (b1xt + b2yt) exp (−a (xt + yt)) ,

yt+1 = sxt,
(1.8)

where b1, b2, a and s are positive constants. System (1.8) possesses for certain
choices of the parameters 3-cycles which appear numerically to be globally stable,
see Guckenheomer, Oster and Ipaktchi [15]. Thus, Marotto [33] gave an extended
version of Li-Yorke’s theorem, that is, “Snap-back repellers imply chaos in Rn”.
Unfortunately, there is a minor technical flaw, see Marotto [34] and the references
therein. In [34], Marotto has corrected the flaw, however, the Marotto’s theorem
is invalid for our system (1.7) because its positive fixed point is not a repeller.
In particular, Liang and Jiang [30] and Huang [17] also investigated the extended
versions of Li-Yorke’s theorem for the planar monotone or competitive maps. The
results in [30] and [17] are also invalid for our system, see Corollary 3 in Huang [17].

Remark 1.1. We notice that (1.6) and (1.8) are coupled systems.

The paper is organized as follows. In Section 2, we will give the local dynamical
behaviors of system (1.7) for its four fixed points

E0 = (0, 0) , E1 =

(
a− 1

a
, 0

)
, E2 =

(
0,

1

c

)
and E3 =

(
a− 1

a
,

1

ac

)
.

By the local analysis of those fixed points, we conjecture that the fixed point E3

should be globally attractive. Indeed, we prove that any solution {(xt, yt)} with the
initial values x0 ∈ (0, 1) and y0 > 0 of system (1.7) satisfies

lim
t→∞

xt =
a− 1

a
and lim

t→∞
yt =

1

ac
,

when 1 < a < 3. We observe that such result only require the conditions b > 0
and c > 0. That is, there is no additional limitation for the time stepsize and
the competitive intensity of the sub-centre. In Section 3, we will investigate the
bifurcation and the center manifold for a = 3. Furthermore, the exact 2-periodic
positive solutions of (1.7) will be considered in Section 4. Some numerical simula-
tions will be given in Section 5. For the convenience of simulation, the invariant set
of the sub-center equation is also given in this section. In the final section, some
conclusions and discussions will be given.

2. The dynamics about fixed points of (1.7)

In this section, we will discuss the local dynamical behaviors of system (1.7) for its
four fixed points

E0 = (0, 0) , E1 =

(
a− 1

a
, 0

)
, E2 =

(
0,

1

c

)
and E3 =

(
a− 1

a
,

1

ac

)
,

where b, c > 0, and 1 < a ≤ 4. Specially, the global attractivity of the fixed point
E3 wil also be investigated.
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The Jacobian matrix of system (1.7) at (x, y) is given by

J (x, y) =

 a− 2ax 0

−b (1 + b) y

[1 + b (x+ cy)]
2

(1 + b) (1 + bx)

[1 + b (x+ cy)]
2

 . (2.1)

The characteristic equation of Jacobian matrix can be written as

λ2 + p (x, y)λ+ q (x, y) = 0, (2.2)

where

p (x, y) = a (2x− 1)− (1 + b) (1 + bx)

[1 + b (x+ cy)]
2

and

q (x, y) =
2 (1 + b) (1 + bx) (1− 2x)

[1 + b (x+ cy)]
2 .

Let λ1, λ2 be two roots of (2.2), we recall some definitions of topological types for a
fixed point (x, y). A fixed point (x, y) of a two-dimension discrete system is called
a sink if |λ1| < 1 and |λ2| < 1, a sink is locally asymptotic stable. The fixed point
(x, y) is called a source when |λ1| > 1 and |λ2| > 1, a source is locally unstable.
(x, y) is called a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1). And
(x, y) is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

In the following, we will discuss the local dynamics for the fixed points Ei for
i = 0, 1, 2, 3. For the fixed point E0, we have

J (E0) =

a 0

0 1 + b


which has the eigenvalues λ1 (E0) = a > 1 and λ2 (E0) = 1 + b > 1, thus, E0 is
unstable and a source or a repelling node.

For E1, the Jacobian matrix of system (1.7) is

J (E1) =

 2− a 0

0 1 +
b

a (1 + b)− b


which has the eigenvalues λ1 (E1) = 2− a and |λ1 (E1)| = |2− a| < 1 if and only if
1 < a < 3, and

λ2 (E1) = 1 +
b

a (1 + b)− b
> 1.

Thus, the fixed point E1 is a saddle.
Note that

y =
(1 + b) y

1 + b (x+ cy)

or

1 =
1 + b

1 + b (x+ cy)
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if y 6= 0. In this case, we have

J (x, y) =

a− 2ax 0

− by

1 + b

1 + bx

1 + b

 .

Thus, the Jacobian matrix of E2 is

J (E2) =

 a 0

−b
c (1 + b)

1

1 + b

 ,

which has the eigenvalues λ1 (E2) = a > 1 and λ2 (E2) = 1/ (1 + b) < 1. In this
case, the fixed point E2 is also a saddle.

For the fixed point E3, similarly, we have

J (E3) =

 2− a 0

−b
ac (1 + b)

1− b

a (1 + b)


which has two eigenvalues

λ1 = 2− a and λ2 = 1− b

a (1 + b)
.

We find that

0 < 1− b

a (1 + b)
< 1

for any a > 1 and b > 0, and that |λ1 (E3)| = |2− a| < 1 if and only if 1 < a < 3.

Proposition 2.1. For any b, c > 0 and 1 < a ≤ 4, E0 is a source and E1 is a
saddle. Additionally, E2 is also saddle when a > 1, and E3 is local attractive if
1 < a < 3.

In view of Proposition 2.1, we can give a simple phase diagram, see Figure 3.
From Figure 3, we can naturally obtain a conjecture that the fixed point E3

should be globally asymptotically stable for 1 < a < 3. Thus, we have the following
theorem.

Theorem 2.1. Assume that b, c > 0, and 1 < a < 3. For any x0 ∈ (0, 1) and
y0 > 0, the solution {(xt, yt)} of system (1.7) satisfies

lim
t→∞

xt =
a− 1

a
and lim

t→∞
yt =

1

ac
.

Proof. For any x0 ∈ (0, 1) and y0 > 0, clearly, we have xt ∈ (0, 1) and yt > 0 for
t = 1, 2, ..., and

lim
t→∞

xt =
a− 1

a
.

Since yt > 0, so

1

yt+1
=

1 + b (xt + cyt)

(1 + b) yt
=

1

1 + b

(
1

yt
+
bxt
yt

+ bc

)
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Figure 3. The local phase diagrams of (1.7) for 1 < a < 3.

=
1

1 + b

[(
b

(
xt −

a− 1

a

)
+ 1 +

b (a− 1)

a

)
1

yt
+ bc

]
,

and

1

yt+1
− ac =

1

1 + b

[(
b

(
xt −

a− 1

a

)
+ 1 +

b (a− 1)

a

)
1

yt
+ bc

]
− ac

=
1

1 + b

(
b

(
xt −

a− 1

a

)
+ 1 +

b (a− 1)

a

)(
1

yt
− ac

)
+
abc

1 + b

(
xt −

a− 1

a

)
.

Let

Xt = xt −
a− 1

a
, Yt =

1

yt
− ac,

then we have

Yt+1 =
1

1 + b

(
bXt + 1 +

b (a− 1)

a

)
Yt +

abc

1 + b
Xt

=

(
b

1 + b
Xt + 1− b

a(1 + b)

)
Yt +

abc

1 + b
Xt.

Let

q = 1− b

2a(1 + b)
.
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Clearly, 0 < q < 1. Note that limt→∞Xt = 0, thus, for any ε > 0, there exists
N1 > 0 such that

|Xt| < min

(
ε,

1

2a

)
,

and ∣∣∣∣ b

1 + b
Xt

∣∣∣∣ < b

2a (1 + b)
for all t > N1.

Hence

0 <

∣∣∣∣ b

1 + b
Xt

∣∣∣∣+ 1− b

a(1 + b)
< q < 1 for all t > N1. (2.3)

In view of (2.3), for t > N1, we get that

|Yt+1| =
∣∣∣∣( b

1 + b
Xt + 1− b

a(1 + b)

)
Yt +

abcXt

1 + b

∣∣∣∣
≤
∣∣∣∣ b

1 + b
Xt + 1− b

a(1 + b)

∣∣∣∣ |Yt|+ abc

1 + b
|Xt|

≤
[
1− b

2a(1 + b)

]
|Yt|+

abc

1 + b
ε

= q |Yt|+
abc

1 + b
ε,

and

|YN1+1+t| ≤ qt |YN1+1|+
abc

1 + b

(
1 + q + · · ·+ qt−1

)
ε

≤ qt |YN1+1|+
abc

(1 + b) (1− q)
ε.

Note that 0 < q < 1, for any ε > 0, there exists N2 > 0 such that qt < ε for t > N2.
In particular, for t > N1 +N2 + 1, we have

|Yt| ≤
[
|YN1+1|+

abc

(1 + b) (1− q)

]
ε,

which implies that limt→∞ Yt = 0, that is

lim
t→∞

yt =
1

ac
.

The proof is complete.

Remark 2.1. We note that the fixed point E0 is a repeller, however, it is not
a snap-back fixed point in view of Theorem 2.1. Thus, the Marotto’s theorem is
invalid.

3. Center manifolds and flip bifurcation theorem

Based on the analysis in Section 2, we will discuss the flip bifurcation of the fixed
points by using center manifold theorem and bifurcation theory in [14]. To this
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end, we firstly consider the case a = 3, at this time, the fixed points E1 and E3 are
reduced to

E1 =

(
2

3
, 0

)
, E3 =

(
2

3
,

1

3c

)
,

respectively. For the fixed E1, we have

J (E1) =

−1 0

0 1 +
b

3 + 2b

 ,

which has two eigenvalues

λ1 (E1) = −1 and λ2 (E1) = 1 +
b

3 + 2b
> 1.

Thus, the fixed point E1 is non-hyperbolic and unstable .
For the fixed E3, we have

J (E3) =

 −1 0

−b
3c (1 + b)

1− b

3 (1 + b)


and

λ1 (E3) = −1 and λ2 (E3) = 1− b

3 (1 + b)
< 1.

Let

ut = xt −
2

3
or xt = ut +

2

3
.

From the first equation of (1.7), we directly get that the center manifold of the form

ut+1 = −ut − 3u2
t . (3.1)

The zero solution of (3.1) is locally asymptotically stable. In view of the center
manifold theorem (see Theorem 3.2.2 in Guckenheimer and Holmes [14]), the fixed
point

E3 =

(
2

3
,

1

3c

)
of (1.7) is also locally asymptotically stable.

The generic one-parameter family has a two-dimensional center manifold (in-
cluding the parameter direction) on which it is topologically equivalent to the
saddle-node family defined by the first equation of (1.7), see Guckenheimer and
Holmes [14]. Now, we assume that a is a parameter and rewrite (1.7) as


x

y

η

→


ax (1− x)

(1 + b) y

1 + b (x+ cy)

η

 .
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Let η = a− 3, u = x− 2
3 and v = y − 1

3c . We have

u′ = (η + 3)

(
u+

2

3

)(
1− u− 2

3

)
− 2

3
(3.2)

= −u+
2

9
η − 3u2 − 1

3
uη − u2η

, −u+
2

9
η + fη (u, v) .

Similarly, we can obtain that
u

v

η

→


−1 0
2

9
−b

3c (1 + b)

3 + 2b

3 + 3b
0

0 0 1



u

v

η

+


fη (u, v)

gη (u, v)

0

 .

The coefficient matrix 
−1 0

2

9
−b

3c (1 + b)

3 + 2b

3 + 3b
0

0 0 1


has the eigenvalues

−1,
2b+ 3

3b+ 3
and 1

and the corresponding eigenvectors

col

(
1

b
(6c+ 5bc) , 1, 0

)
, col (0, 1, 0) , and col

(
1

9
,− 1

9c
, 1

)
.

Let

T =


1

b
(6c+ 5bc) 0

1

9

1 1 − 1

9c

0 0 1

 ,

which implies that

T−1 =


b

6c+ 5bc
0 − b

54c+ 45bc

− b

6c+ 5bc
1

2b+ 2

18c+ 15bc

0 0 1

 .

We assume that 
u

v

η

 = T


w

z

δ

 ,
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or 
w

z

δ

 = T−1


u

v

η

 .

Thus, we have

T


w

z

δ

→


−1 0
2

9
−b

3c (1 + b)

3 + 2b

3 + 3b
0

0 0 1

T


w

z

δ

+


F (w, z, δ)

G (w, z, δ)

0

 ,


w

z

δ

→ T−1


−1 0

2

9
−b

3c (1 + b)

3 + 2b

3 + 3b
0

0 0 1

T


w

z

δ

+ T−1


F (w, z, δ)

G (w, z, δ)

0

 ,

or 
w

z

δ

→

−1 0 0

0
2b+ 1

3b+ 3
0

0 0 1



w

z

δ

+ T−1


F (w, z, δ)

G (w, z, δ)

0

 ,

where

F (w, z, δ) = − (3 + δ)

(
c (6 + 5b)

b
w +

1

9
δ

)2

− 1

3

(
c (6 + 5b)

b
w +

1

9
δ

)
δ

= −c2
(

75 +
180

b
+

108

b2

)
w2 − 2

27
δ2 − c

(
5− 6

b

)
wδ

−c
(

10

9
+

4

3b

)
wδ2 − c2

(
25 +

60

b
+

36

b2

)
w2δ − 1

81
δ3.

In the following, we give the flip bifurcation theorem which can be seen in [14].

Lemma 3.1. Let fµ : R→ R be a one-parameter family of mappings such that fµ0

has a fixed point x0 with eigenvalue −1. Assume

∂f

∂µ

∂2f

∂x2
+ 2

∂2f

∂x∂µ
=
∂f

∂µ

∂2f

∂x2
−
(
∂f

∂x
− 1

)
∂2f

∂x∂µ
6= 0 (3.3)

and
1

2

(
∂2f

∂x2

)2

+
1

3

(
∂3f

∂x3

)
6= 0 (3.4)

at (x0, µ0). Then there is a smooth curve of fixed points of fµ, passing through
(x0, µ0), the stability of which changes at (x0, µ0). There is also a smooth curve
γ passing through (x0, µ0) so that γ − {(x0, µ0)} is a union of hyperbolic period 2
orbits. The curve γ has quadratic tangency with the line R× {µ0} at (x0, µ0).
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Theorem 3.1. For a = 3, system (1.7) undergoes a flip bifurcation and the bifur-
cated 2-periodic points are stable.

Proof. Note that

f (w, δ) = −w +
b

6c+ 5bc
F (w, z, δ) .

Thus, we have

∂f

∂δ

∣∣
(0,0) = 0,

∂f

∂w

∣∣
(0,0) = −1,

∂2f

∂δ∂w

∣∣
(0,0) = −c (5b− 6)

b

b

6c+ 5bc
= −5b− 6

5b+ 6
,

∂2f

∂w2

∣∣
(0,0) =

−2c2b

6c+ 5bc
and

∂3f

∂w3

∣∣
(0,0) = 0,

∂f

∂µ

∂2f

∂x2
+ 2

∂2f

∂x∂µ
= −2

5b− 6

5b+ 6
,

∂f

∂µ

∂2f

∂x2
−
(
∂f

∂x
− 1

)
∂2f

∂x∂µ
= −2

5b− 6

5b+ 6

and
1

2

(
∂2f

∂x2

)2

+
1

3

(
∂3f

∂x3

)
=

1

2
×
(
−2c2b

6c+ 5bc

)2

=
2c4b2

(6c+ 5bc)
2 .

In view of Lemma 3.1, we finish the proof of theorem.

Remark 3.1. In view of Theorems 2.1 and 3.1, we can see that the Marotto’s the-
orem is invalid, see Marotto [33] and [34]. On the other hand, when the parameter
condition a = 3 hold, a flip bifurcation occurs at fixed point E3. This reflects in
the market competition that there will be a stable 2-period cycle between two firms
when a > 3 and a−3 is enough small. As a approaches 3 from above, the period-two
cycle “shrinks” and disappears. A flip corresponds to a pitchfork bifurcation of the
second iterate. Please see Figure 4a and Figure 4c in Section 5.

4. Two periodic positive solutions

In view of Theorem 2.1, we have known that system (1.7) has a stable 2-periodic
solution when a > 3 is near 3. In the present section, we will consider its exact
2-periodic solutions. A real sequence {xt} is 2-periodic if and only if

xt = a0 + a1 (−1)
t
, (4.1)

where a0, a1 ∈ R and a1 6= 0, see Zhang, Jiang and Cheng [51]. To find our desired
solutions, we substitute (4.1) into the first equation of (1.7) and obtain

a0 − a1 (−1)
t − a

(
a0 + a1 (−1)

t
)

+ a
(
a0 + a1 (−1)

t
)2

= a0 − aa0 + aa2
0 + aa2

1 + (−a1 − aa1 + 2aa0a1) (−1)
t

= 0
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which implies that  a0 − aa0 + aa2
0 + aa2

1 = 0,

−a1 − aa1 + 2aa0a1 = 0.
(4.2)

By solving (4.2), we obtain the non-trivial roots

a0 =
a+ 1

2a
and a

(±)
1 = ± 1

2a

√
a2 − 2a− 3. (4.3)

In order that a1 is a nonzero real number, we need

a2 − 2a− 3 > 0

which implies that a > 3.
Let yt = b0 + b1 (−1)

t
. Similarly, we also have

0 =
(
b0 − b1 (−1)

t
)(

1 + b
(
a0 + a1 (−1)

t
+ c

(
b0 + b1 (−1)

t
)))

− (b+ 1)
(
b0 + b1 (−1)

t
)

= ba0b0 − bb0 + bcb20 + ba1b1 + bcb21

+ (−bb1 + ba0b1 + ba1b0 + 2bcb0b1) (−1)
t
.

Let  ba0b0 − bb0 + bcb20 + ba1b1 + bcb21 = 0,

−bb1 + ba0b1 + ba1b0 + 2bcb0b1 = 0.
(4.4)

By solving (4.4), we obtain the non-trivial roots

b0 = − 1

2c
(1− a0 + a1) and b1 = − 1

2c
(1− a0 + a1) ,

b0 =
1

2c
(1− a0 + a1) and b1 = − 1

2c
(1− a0 + a1) ,

or

b0 =
1− a0

c
, b1 = −a1

c
.

We easily prove that

b0 = − 1

2c
(1− a0 + a1) and b1 = − 1

2c
(1− a0 + a1)

and

b0 =
1

2c
(1− a0 + a1) and b1 = − 1

2c
(1− a0 + a1)

are invalid and they will be omitted.
In the following, we will discuss

b0 =
1− a0

c
and b1 = −a1

c
.

To this end, we assume that xt = a0 + a1 (−1)
t
,

yt = b0 + b1 (−1)
t
,
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is a 2-periodic positive solution of (1.7), where

a0 =
a+ 1

2a
, a

(±)
1 = ± 1

2a

√
a2 − 2a− 3,

b0 =
1− a0

c
and b1 = −a1

c
.

In fact, we have

1− a0 = 1− a+ 1

2a
=
a− 1

2a
,

a− 1

2ac
− 1

2ac

√
a2 − 2a− 3 =

1

2ac

(
a− 1−

√
a2 − 2a− 3

)
,

a− 1−
√
a2 − 2a− 3 =

(a− 1)
2 −

(
a2 − 2a− 3

)
a− 1 +

√
a2 − 2a− 3

=
4

a− 1 +
√
a2 − 2a− 3

> 0.

To sum up, we obtain the following result.

Theorem 4.1. For any b, c > 0 and 3 < a ≤ 4, system (1.7) has a positive 2-
periodic solution of the form xt = a0 + a1 (−1)

t
,

yt = b0 + b1 (−1)
t
,

where

a0 =
a+ 1

2a
, a

(±)
1 = ± 1

2a

√
a2 − 2a− 3,

b0 =
1− a0

c
and b1 = −a1

c
.

Remark 4.1. For 3 < a ≤ 4, we have

a2 − 2a+ 1

a2 − 2a− 3
= 1 +

4

(a− 1)
2 − 4

≥ 9

5
,

and

lim
a→3+

a2 − 2a+ 1

a2 − 2a− 3
= +∞.

Thus, the parameters b and c can be chosen for any positive numbers.

5. Numerical simulation

In this section, we will present some numerical simulations to support and extend
the theoretical results obtained in the former sections. For 1 < a ≤ 4, we see that
the interval (0, 1) is a invariant set of xt+1 = axt (1− xt). For the convenience of
simulation, we will seek a invariant set of y. Note that

1

yt+1
=

1 + b (xt + cyt)

(1 + b) yt
≥ bc

1 + b
,
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or

yt+1 ≤
1 + b

bc
.

We therefore obtain the following result.

Proposition 5.1. The set

(0, 1)×
(

0,
1 + b

bc

]
is a invariant set of system (1.7) when b, c > 0 and 1 < a ≤ 4.

In view of Proposition 5.1, for fixed a, b and c, the initial value (x0, y0) can be
immediately chosen by

(x0, y0) ∈ (0, 1)×
(

0,
1 + b

bc

]
.

In the following, we will present the bifurcation diagrams and the maximum Lya-
punov exponents for system (1.7) to confirm the above theoretical analysis and
show some new interesting complex dynamical behaviors by using numerical simu-
lations. Here, the parameters b and c are fixed at b = c = 0.5, and a ∈ (1, 4) is the
bifurcation parameter, see Figure 4.

(a) (b)

(c) (d)

Figure 4. b = c = 0.5, and a ∈ (1, 4) is the bifurcation parameter.

Figure 4a is the bifurcation diagram about x for system (1.7), Figure 4b is the
corresponding Lyapunov exponent diagram, and Figure 4c and Figure 4d are similar
for the variable y. The bifurcation diagrams and the Lyapunov exponent diagrams
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may describe the dynamical behaviors of x and y in different ways, for example, the
stabilities, the bifurcations, the period-doubling orbits, the chaos, and the periodic
windows.

From Figure 4, we observe the following:

(i) 1 < a < 3: The unique positive fixed E3 is stable, therefore, Theorem 2.1 is
ture.

(ii) 3 < a < 3.57: A cascade of sudden changes provokes the oscillation of the
population in cycles of stable period 2n, where n increases from 1. When a is close
to 3, system (1.7) exists a stable 2-periodic solution, Theorems 3.1 and 4.1 are
showed by the numerical simulations. In the following, the period-doubling cascade
is appeared. On the other hand, denote f (x) = ax (1− x), we can obtain the
Schwarzian of f (x) as

Sf =
f ′′′

f ′
− 3

2

[
f ′′

f ′

]2

< 0

when 3 < a < 3.57 and x ∈ [0, 1] with x 6= 1/2. If an is the bifurcation value
of the parameter corresponding to the appearance of a cycle B of period 2n, then
the cycle B is attracting for an < a < an+1, see Sharkovsky, Kolyada, Sivak and
Fedorenko [45].

(iii) 3.57 < a < 3.828: When the parameter moves, the system alternates be-
tween periodic behaviors with high periods on parameter interval windows and
chaotic regimes for parameter values not located in intervals. The population can
not be predictable although the system is deterministic.

(iv) 3.828 < a < 3.85: The orbit of period 3 appears for a = 3.828 after
a regime where unpredictable bursts, named intermittences, have become rarer
until their disappearance in the three-periodic time signal. It is well known that
“Period three implies chaos”, see Li and Yorke [28], also see Sharkovskii [43] or [44].
In [51], Zhang, Jiang and Cheng obtained a necessary and sufficient condition of
existence of 3-periodic solution for the first equation of system (1.7), see Theorem 2
(a > 1 + 2

√
2 ≈ 3.828) in Zhang, Jiang and Cheng [51]. Hence, any periodic cycles

which include period 2n are instable.

(v) 3.85 < a ≤ 4: Chaotic behavior with periodic windows is observed in this
interval. At this time, their maximum Lyapunov exponents are positive.

In the following, we will give some phase diagrams of (1.7). Here, the parameters
b and c are still fixed at b = c = 0.5, and a ∈ (1, 4) is chose the different values, see
Figures 5 and 6.

In Figure 5, we can observe the fixed point and the period-doubling orbits of
2, 4 and 8 for a = 2.80, 3.20, 3.50 and 3.56, respectively. Furthermore, we also
observe another periodic orbits of 5, 3, 6 and 12 for a = 3.74, 3.83, 3.845 and 3.85,
respectively. To emerge the change process of (1.7) from a fixed point to chaos, in
the final of this section, we again add Figure 6 for a varying from 3.58 to 3.9.

When a is varying from 3.58 to 3.62, we observe that two point clouds are
gradually formed. When a = 3.63, two point clouds disappear and a period-6 orbit
appears. When a = 3.64, two point clouds reappear and have a larger scope. When
a is varying from 3.68 to 3.73, there is one point cloud. When a = 3.74, the point
cloud disappear and a period-5 orbit appears (see Figure 5). When a is varying
from 3.75 to 3.82, we observe one point cloud. When a = 3.83, 3.845 and 3.85, we
observe periodic orbits of 3, 6 and 12 (see Figure 5). Period three implies chaos,
when a = 3.86, we observe that a larger range of point cloud reappears and a clear
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(a) a = 2.80 (b) a = 3.20 (c) a = 3.50 (d) a = 3.56

(e) a = 3.74 (f) a = 3.83 (g) a = 3.845 (h) a = 3.85

Figure 5. Different choices at a ∈ (1, 4).

(a) a = 3.58 (b) a = 3.62 (c) a = 3.63 (d) a = 3.64

(e) a = 3.68 (f) a = 3.75 (g) a = 3.86 (h) a = 3.90

Figure 6. Different choices at a ∈ (1, 4).

outline emerges above the point clouds. When a = 3.9, the range of point clouds is
larger and the boundaries become blurry.

6. Conclusions and discussions

In this final section, we will induce the obtained conclusions in this paper, at the
same time, we also hope to explain the responses of the sub-centre by using the
numerical simulations when the sub-centre attends in the logistic equation.

In this paper, we obtain a new discrete large-sub-center system by using the Eu-
ler and nonstandard discretization method for the corresponding continuous system.
The theoretical analysis and the numerical simulations exhibit that all dynamic be-
haviors of the discrete system are exactly driven by the large-center equation, for
example, the stabilities, the bifurcations, the period-doubling orbits, and the chaotic
dynamics, etc. Thus, such system may better describe the hierarchical structure in
the spatial systems. According to the studies, we draw the following conclusions:
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(i) By using the characteristic roots of Jacobian matrix, the local dynamics of
fixed points for the system are given, see Proposition 2.1.

(ii) When 1 < a < 3, a global stability result is obtained, see Theorem 2.1. At
the same time, the invariant set of system is also sought out when 1 < a ≤ 4, see
Proposition 5.1.

(iii) A flip bifurcation theorem is proved, see Theorem 3.1. It ensures that the
period-doubling orbits and the chaotic dynamics are facts. By observing Figures.
4-6, the flip bifurcation will present orbits with periods of 2, 4 and 8. These periodic
points are stable, see Sharkovsky, Kolyada, Sivak and Fedorenko [45].

(iv) The exact 2-periodic orbits are also solved, see Theorem 4.1.

(v) The chaotic dynamics are observed in Figures 4, 5 and 6. At this time, any
periodic cycles which include period 2n are also instable, see Li and Yorke [28].

(vi) All dynamic behaviors of system (1.7) are exactly driven by its first equation.

Remark 6.1. In this paper, the main purpose is to study the dynamical consistency
of the second equation for system (1.7). The other additional informations of the
first equation for (1.7) can be seen in May [35], Baker and Gollub [3], Baumol and
Benhabib [4], Frank and Stengos [12] and Kelsey [22], and the references therein.

(a) ε = 0.05 (b) ε = 0.1 (c) ε = 0.15

(d) ε = 0.05 (e) ε = 0.1 (f) ε = 0.15

Figure 7. b = c = 0.5, and a ∈ [1, 4.5] is the bifurcation parameter.

We still have a question, can the sub-centre change the dynamical behaviors of
the large centre when the sub-centre attends in the logistic equation? For example,
we consider the system of the form

xt+1 = axt (1− xt − εyt) ,

yt+1 =
(1 + b) yt

1 + b (xt + cyt)
.

(6.1)

For the fixed b = c = 0.5, we give the following bifurcation diagrams of x and y for
ε = 0.05, 0.1 and 0.15, see Figure 7, where a ∈ [1, 4.5] is the bifurcation parameter.
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From Figure 7, we can see that the competition of the sub-centre can indeed
change the dynamical behaviors of the large centre. We will consider this in another
paper.
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