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UNICITY OF MEROMORPHIC FUNCTIONS
CONCERNING DERIVATIVES-DIFFERENCE
AND SMALL FUNCTIONS*

Ge Wang!, Zhiying He! and Mingliang Fang®'

Abstract In this paper, we study unicity of meromorphic functions concern-
ing derivatives-differences and small functions and improve the results due to
Chen and Zhang [Ann. Math. Ser.A 42 (2021)] and Liu and Chen [J. Korean
Soc. Math. Educ. Ser. B: Pure Apple. Math. 30 (2023)]. Meanwhile, we give
negative answer to the problems posed by Chen and Xu [Comput. Methods
Funct. Theory 22 (2022)], Banerjee and Maity[Bull. Korean Math. Soc. 58
(2021)].
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1. Introduction

In this paper, we assume that the reader is familiar with the basic notions of Nevan-
linna’s value distribution theory, see [10,23,24]. In the following, meromorphic
always means meromorphic in the whole complex plane.

By S(r, f), we denote any quantity satisfying S(r, f) = o(T(r, f)) as r — oo
possible outside of an exceptional set E with finite logarithmic measure | pdr/r <
00. A meromorphic function a is said to be a small function of f if it satisfies
T(r,a) = S(r, f).

Let f be a nonconstant meromorphic function. The order p(f) and the hyper-
order pa(f) of f are defined by

+(y oot loet T(r
() = T D8 LUS) ) = i togTlo8 TS

r—o0 log r r—o0 log r

If p(f) < oo, then the function f is called meromorphic function of finite order.
Let 1 be a nonzero complex number. The difference operator is defined as

Apf=flz+n) = f(z) and ALf=A"Y(Af),

where n(> 2) is a positive integer.
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Let f be a transcendental meromorphic function, and let a be a small function
of f. The deficiency of a small function a with respect to f is defined by

_1 1

It is easy to see 0 < 0(a, f) < 1. If §(a, f) > 0, then a is called a deficient function
of f, and if a is a constant, then a is called a deficient value. And we define

b ffa
is called a Borel exceptional small function of f. If a is a constant, then a is called
a Borel exceptional value of f.

Let f and g be two meromorphic functions, and let a either be a small function
of both f and g or be a constant. We say that f and g share a CM(IM) if f —a and
g — a have the same zeros counting multiplicities(ignoring multiplicities). N(r,a) is
a counting function of zeros of both f —a and g — a with the same multiplicity and
the multiplicity is counted. If

If A(f —a) < p(f) for p(f) >0 and N (r #> = O(logr) for p(f) =0, then a

N (n i) 40 (no ) 2N ) < 50.) + (),

then we call that f and g share a CM almost. Set E(a, f) = {z|f — a = 0}, where
a zero with multiplicity m is counted m times in the set.

Let k be a positive integer, we denote by Ny, (r ) the counting function

1
» f—1
for 1-points of f with multiplicity < k, where multiplicity is counted, and by
Nk) (r, ﬁ) the corresponding one for which multiplicity is not counted. Let

N (r, ﬁ) be the counting function for 1-points of f with multiplicity > k, where

multiplicity is counted, and by N(k (r ) the corresponding one for which mul-

1
’ f—1
tiplicity is not counted. Let Ejy(1, f) denotes the set of those 1-points of f with
multiplicity < k, where a 1-point with multiplicity m(< k) is counted m times in
the set.

Recently, many papers studied the uniqueness of transcendental entire function
and their higer order difference operators sharing small function, and obtained many
interesting results, see [14,17,18,20,21].

In 1926, Nevanlinna [24] proved the following famous five-value theorem.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions, and let a;
(i =1,2,3,4,5) be five distinct values in the extended complex plane. If f and g
share a; (i =1,2,3,4,5) IM, then f = g.

In 2000, Li and Qiao [15] improved Theorem 1.1 as follows.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, and let a;
(i1 =1,2,3,4,5) be five distinct small functions of both f and g. If f and g share a;
(1=1,2,3,4,5) IM, then f = g.
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In 2014, Chen and Li [2] proved.

Theorem 1.3. Let f be a nonconstant entire function of finite order, let n be a
positive integer, and let a be a periodic entire small function of f whose period is
n. If f,Anf, AR f (n > 2) share a CM, then Apf = A, f.

In 2021, Chen and Zhang [4] proved.

Theorem 1.4. Let f be a transcendental entire function of finite order with a
Borel exceptional entire small function a satisfying p(a) < 1, and let n be a nonzero
complex number such that A%f £0. If A%f and Ay f share Aya CM, where Aya
s a small function of A%f, then

J(2) = a(z) + Be™,

where A and B are two nonzero constants and a(z) reduces to a constant.
In 2023, Liu and Chen [16] extended Theorem 1.4 as follows.

Theorem 1.5. Let f be a transcendental entire function of finite order with a Borel
exceptional entire small function a satisfying p(a) < 1, let n be a positive integer,
and let n be a nonzero complex number such that AZ‘Hf Z0. If A;H‘lf and AP f
share Afa CM, where Aja is a small function of AZ;‘Hf, then

F(2) = a(z) + Be™,

where A and B are two nonzero constants and a(z) reduces to a constant.
By Theorems 1.1-1.5, we natural pose the following problem.
Problem 1.1. Whether “p(a) < 17 can be deleted or not in Theorems 1.4 and 1.5%

In this paper, we give a positive answer to Problem 1.1 and prove the following
result.

Theorem 1.6. Let f be a transcendental entire function of finite order with a Borel
exceptional entire small function a, let n be a positive integer, and let n be a nonzero

finite complex number such that AZ*lf Z£0. If Agﬂf and A} f share b CM, where
b is a small function of f, then

F(2) = a(z) + Be™,

where A and B are two nonzero constants and a(z) is a polynomial with dega <
n—1.

Remark 1.1. In Theorem 1.5 and Theorem 1.6, “a(z) reduces to a constant” is
not valid.

Example 1.1. Let f = a(z) + Be??, where a(z) = 2"~ and A, B are nonzero
finite complex numbers satisfying ¢4 = 2, and let b = 0. Obviously, AZ‘H flz) =
B(eAn—1)"t1eA? = B(eAm—1)"e4* = Al f(z). Hence A7 f(z) and A7 f(z) share
b CM, but a(z) is not a constant.

In 2011, Heittokangas et al. [12] started to consider the uniqueness of meromor-
phic function with its shifts and proved.
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Theorem 1.7. Let f be a nonconstant entire function of finite order, and let n
be a nonzero finite complex number. If f(z) and f(z +n) share two distinct finite
values a,b IM, then f(z) = f(z+n).

In 2020, Qi et al. [19] proved.

Theorem 1.8. Let f be a nonconstant meromorphic function of finite order, and
let a, n be two nonzero finite complex numbers. If f'(z) and f(z+n) share a CM,
and E(0, f(z+n)) C E(0,f'(2)), E(c0, f'(2)) C E(c0, f(z+n)), then f'(z) =
fz+mn).

In 2022, Chen and Xu [5] proved.
Theorem 1.9. Let f be a nonconstant meromorphic function with po(f) < 1, let

1
n be a nonzero finite complex number, and let k be a positive integer. If f*) (z) and
f(z+n) share 0,00 CM and 1 IM, then f*)(2) = f(z +n).

Chen and Xu [5] posed the following problem.

Problem 1.2. Let f be a nonconstant meromorphic function with p2(f) <1, and
let n be a nonzero finite complex number. If f*) and f(z +n) share 0,00 CM and

By (1,fW(2)) = By (1, f(z +m)), then f®)(2) = f(2 +n)?

In this paper, we give a negative answer to Problem 1.2.

Example 1.2. Let f(z) =sinz, n = w, k = 4. Obviously p(f) = 1. By a simple
calculation, we know that f(*)(z) = sinz and f(z +7) = —sinz. In this case, we
have () (z) and f(z+n) share 0,00 CM, and Ey)(1, f¥(2)) = Ey(1, f(z+n)) = @,

but f(2) # f(z+n).
In addition, we further studied this problem and have proved.

Theorem 1.10. Let f be a nonconstant meromorphic function with pa(f) <1, letn
be a nonzero finite complex number, and let k be a positive integer. If E(0, f(z+n))C
(

E(0,fM(2)), E (00, f*)(2)) C E (00, f(z + 1)), Eg) (1, f¥(2)) = Eo) (1, f(= + 1)),
then f®)(2) = f(z+n).

In the following,

E
=

Lof(2) =Y bif(z+jm),  Lyf(z) = bif(=+jn).
j=0 j=0
where b; € C, by #0 and b= Z?:o b;.
In 2021, Banerjee and Maity [1] proved the following results.
Theorem 1.11. Let f be a nonconstant meromorphic function with pa(f) < 1,
let n be a nonzero complex number, and let a be a small periodic function of f
whose period is n. If L?If % 0, and E(0, f) C E(O,Lgf), E(a, f) C E(a,L%f),
E(c0, LY f) C E(oco, f), then L) f = f.

Theorem 1.12. Let f be a nonconstant meromorphic function of finite order, and
let n, by, a1, as be nonzero complexr numbers with a; # as. If L?If £ 0, and L%f, f
share a1, az,00 CM, then LOf = f.

Theorem 1.13. Let f be a nonconstant meromorphic function with pa(f) < 1, letn
be a nonzero compler number, and let aq,as be two distinct periodic small functions
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of f whose period are n. If LLf # 0, and E(ay, f) C E(al,L}]f), E(aq, f) C
E(a21L717f)) E(OO,L%f) c E(OO, f)7 then L717f = f

Banerjee and Maity [1] posed the following problem.

Problem 1.3. Are Theorems 1.11-1.13 walid or not for Lgf where b # 0,1 or
L,f?

In this paper, we give a negative answer to Problem 1.3.

Example 1.3. Let f(z) = %ot and let L, f(2) = f(2) + f(z+n) — f(z + 2n) —

f(z4+3n)— f(z+4n) = —zzﬂ, where 1 = mi. Obviously, f(z) # 1, L, f(2) # £1.
Hence, f(z) and L, f(z) share 1,—1,00 CM, but f(z) # L, f(2).

2. Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1. ( [13] ) Let f be a nonconstant entire function of finite order. If a is
a Borel exceptional entire function of f, then §(a, f) = 1.

Lemma 2.2. ( [10] ) Let f be a nonconstant meromorphic function, and let k be a

positive integer. Then
[k
m (r, f) =5(r, f).

Lemma 2.3. ([6,9]) Let f be a nonconstant meromorphic function with p2(f) < 1,
and let n be a nonzero finite complex number. Then

fE+n)\ _ f(z) ) _
n (S = (i) =S
Especially, if p(f) < +oo, then for any € > 0, we have

m (n f(;(;’)”)) =0 (rh-1e).

Lemma 2.4. ([6,9]) Let f be a nonconstant meromorphic function with p2(f) < 1,
and let n be a nonzero finite complex number. Then

N (r, £+ 1) = N(r, £(2)) + 50 ),
— 1 — 1
¥ gmm) = () s

Lemma 2.5. ( [11] ) Let n be a nonzero finite complex number, let n be a positive
integer, and let f be a transcendental meromorphic function of finite order satisfying
§(a, f) = 1,0(o0, f) = 1, where a is a small function of f. If A} f # 0, then

(1) T(r, AR f) =T(r, f) + S(r, [);

(2) 6 (AZa,AZf) =0 (oo,Agf) =1.

Lemma 2.6. ( [10] ) Let f be a nonconstant meromorphic function, and let a,b be
two distinct small functions of f. Then

T(r,f)<N(r,f)+ N (r, fia) +N (7‘, fl—b> + S(r, f).
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Lemma 2.7. ( [23] ) Let f be a meromorphic function. If f # 0,00, then there
exists an entire function o such that f(z) = e®®),

Lemma 2.8. ( [3] ) Let a be a finite complex number, let f be a transcendental
meromorphic function of finite order with two Borel exceptional values a, o0, and
let 7 be a nonzero finite complex number such that A, f # 0. If f and A, f share
a,00 CM, then a =0, f(2) = e**TB where A(#£0), B are two finite constants.

Lemma 2.9. ( [22,23] ) Let n > 3 be a positive integer, let f;(j = 1,---,n) be
meromorphic functions which are not constants except for f,, and let Z?Zl fi=1

If fn #0, and

SN () (1= D) A+ o)) T )

Jj=1

where I is a set of r € (0,00) with infinite linear measure, r € I,k =1,2,--- ,n —
1L,A <1, then f, = 1.

Lemma 2.10. ( [8,23] ) Let f and g be two nonconstant meromorphic functions
satisfying

6(0, f) =6(c0, f) =1, 6(0,9) =d(c0,9) = 1.
If f and g share 1 CM almost, then either f =g or fg=1.

Lemma 2.11. ( [11] ) Let f be a meromorphic function of finite order, and let
n,¢,d be three nonzero finite complex numbers. If f(z +n) = cf(2), then either
T(r, f) > dr for sufficiently large v or f is a constant.

Lemma 2.12. ( [7] ) Let f be a meromorphic function with p(f) < 1, and let n be
a nonzero finite complex number. Then for each given € > 0, and a positive integer
n, there exists a set E C (1,00) that depends on f, and it has finite logarithmic
measure, such that for all z satisfying |z| = r & EJ[0,1], we have

’A?,f (2)
f(2)
Lemma 2.13. Let « be an entire function with p(a) < 1, let n be a positive inte-

ger, and let n,d be two nonzero finite complex numbers. If Aja =0, then either
T(r,a) > dr for sufficiently large r or « is a polynomial with dega < n — 1.

< Jz[Me(H)=D+e,

Proof. We prove the lemma by mathematical induction. In the following, d denote
a positive number, not necessarily the same at each occurrence. For n = 1 we have

a(z+n) = a(z). (2.1)

Then by Lemma 2.11 and (2.1) we know that Lemma 2.13 is valid for n = 1.
Suppose that for n = k£ — 1 the lemma is valid. Next we consider the case n = k.
From Af]a = 0 and above discussion we deduce that either T’ (T, A’n‘_la) > dr for
sufficiently large r or Afg_la is a constant.
If T (r, Afy_loz) > dr for sufficiently large r, then by p(a) < 1, Lemma 2.3
1

(setting € = 3) and for sufficiently large r, we obtain

T (r, Af]_la) =m (r, Af]_la)
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< T(r,«a) + Mr3

1
<T(r,a)+ idr, (2.2)

where M is a positive number. Since T (7", Affloz) > dr, then by (2.2) we have

T(r,a) > dor, where dg = %.

If Affla = C, where C is a constant, then p(z) = ﬁz
of A’;fla = C. Let B(z) be any solution of Aﬁfla = 0. Then we know that
either T'(r, 8) > dr for sufficiently large r or 8 is a polynomial with degf < k — 2.
From above argument we have either T'(r, 8 + p) > T'(r, 8) — T(r,p) > %r or B+p
is a polynomial with deg(8 + p) < k — 1. It follows that either T'(r,) > dr for
sufficiently large r or « is a polynomial with dega < k — 1.

Thus Lemma 2.13 is proved. O

k=1 ig a solution

Lemma 2.14. ( [7] ) Let f be a meromorphic function of finite order, and let n be
a nonzero finite complex number. Then for each positive integer k, p (Af, ) < p(f).

Lemma 2.15. ( [24] ) Let f be a meromorphic function. Then p(f) = p(f').

3. Proof of Theorem 1.6

First, we claim p(f) > 0. Suppose on the contrary that p(f) = 0. Set F(z) =
f(2) —a(z). Since a is a Borel exceptional entire small function of f, we obtain

¥ () = (1) = Ot

Hence F' has finitely many zeros. We assume that a1, ao, - - ,a, are all zeros of F',
where n is a positive integer.
From p(f) = 0, we deduce 0

— — — = ¢, where h is a constant.
z—a1)(z—az) - (z2—an)

Then we have F(z) = c(z —a1)(z — az) - - - (2 — a,,), where ¢ = e”. Tt follows that
T(r,F)=nlogr+ O(1). (3.1)

By (3.1) we deduce that f is a nonzero polynomial. Since b is a small function of f,
then we know that b is a constant, which contradicts with AZ“ [ and A7 f share b
CM. Hence p(f) > 0.

Since a is a Borel exceptional entire small function of f, then by Lemma 2.1, we
obtain d(a, f) = 1. Obviously, §(co, f) = 1. It follows from Lemma 2.5 that
— +1 +1 _
§(ALa, Apf) =1, (A} a, AN f) =1,
§(o0, AV S) =1, 5(00,AZ+1f) =1.
Now, we consider three cases

Case 1. b= A:]“rla.

Case 1.1. Aptla # Aja.
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Since A} f and Agﬂf share b CM, then by (3.2), (3.3), Lemma 2.5 and Lemma
2.6 we have

T(r, f) =T(r, A7)+ S(r, f)

<N(’I’,AZf)+N<T,Mf1_Ana) +N(T, m) +S(T7f)
n n n

— 1
W (el st
APtrf—b
<S(r, f)s
a contradiction.
Case 1.2. A;“rla = Ava.
Set
G= AZf — Aga. (3.4)

Then we have
A,G =AM f— Al

Since A} f and AZ‘H]‘ share b(= Aja) CM, we obtain that G and A,G share
0,00 CM.
It follows from (3.2) and (3.3) that

500,G) =1, 6(0,A,G) =1, (3.5)
5(00,G) =1, (00, A,G) = 1. (3.6)

By d(a, f) =1, d(oc0, f) =1 and Lemma 2.5, we obtain
T(r,G) =T(r, f)+S(r, f)- (3.7)

Since a is a Borel exceptional function of f, then by p(f) > 0 we have

log+N (r, fia)
lm ————~
r—o00 logr

< plf). (3.8)

By Lemma 2.3 and Nevanlinna’s first fundamental theorem we have

m <T’ fl_G) <m (r, AQ(;—@) +m (r,AZf(f__aa)) +5(r, f),

T(r,f —a)— N <r, ) <T(r,A}(f—a))—N (r, A:,’(;—a)) + S(r, f).

Hence, by Lemma 2.5 we have

N <7", Awl_a)> <N (r, fl—a> + S0 f). (3.9)

By Lemma 2.3 (setting ¢ = %), we obtain

S(r, f) < Mr#tH)z, (3.10)
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where M is a positive number.
It follows from (3.8) that

1 p)trG—a
N (7", f) < PP (3.11)

—a

By (3.10) and (3.11) we have
N (r, f1a> +S(r ) < (14 MM, (3.12)

where M; = max {p(f) -3,

Lo,
It follows from (3.8), (3.9) and (3.12) that

+ 1
log™ N (T’ A;;(f—a)) < log(1 4+ M)rM:

1+ M)
logr - logr '

lo
< M+ g(logr

Then we have

+ 1 log™ N( S )
i e N ng) g 2 T\ muEa)
r—o0 logr r—00 logr -

(f)- (3.13)

By (3.7) and (3.13) we deduce that 0 is a Borel exceptional value of G. It follows
from Lemma 2.8 that G = e41**B1 where A;(# 0), B; are two constants.
From (3.4) we get

Ap (f(2) —a(z)) = ez +BL (3.14)

By Hadamard’s factorization theorem, we obtain
f(2) = alz) = B(z)e"?, (3.15)

where 3(z) is an entire function such that p(8) = A(B) < p(f), and p(z) is a
nonconstant polynomial with degp = p(f). Hence we have

T(r,B) = S(r,e?). (3.16)

It follows from (3.14) and (3.15) that A (8(2)eP(*)) = e*12+ 51 That is

n

> (=1)ICLB (2 + (n — i)y) ePEH=OM = Ar=tB, (3.17)
=0

Next, we consider two subcases.

Case 1.2.1. degp > 2.
By (3.17) we have

n

Sy LB et = . (315)
=0

If n =1, then by (3.18) we have

B(z+m) pit B(z)  pey —
m T - e =1 (3.19)
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Obviously, T (r,e41#TB1) = S(r,eP). Then by (3.16), (3.19) and Nevanlinna’s
second fundamental theorem we have

T(r,e?) <T (r ﬂ(z)ep) + S(r, eP)

? eAlzJFBl

_ — 1 — 1
=N ( AB1£+)31 > Nim e | PV e
€ SAzT BT ep CATZTBT el +1

+
+S< &) Alz+Bl )

<S(r,e"),

a contradiction.
If n > 2, then by (3.18) and Lemma 2.9 we get a contradiction.

Case 1.2.2. degp = 1.
Set p(z) = kz + t, where k(# 0),t are two finite complex numbers. Next we
consider two subcases.

Case 1.2.2.1. A; # k.
Then by (3.17) we have

D (-1)'CidiB (2 + (n—i)y) eFm A2 =1, (3.20)
=0
where d; = e(n—Dkn+t=B1
By (3.20) and Ay # k we have Y.© (—1)'Cid;B(z + (n —i)n) # 0,00. From
Lemma 2.7 and p(8) < p(f) =1 we know that there exists a polynomial v(z) such
that >0 o (=1)'Cid;B(z + (n —i)n) = e’*). Since p(B) < p(f) = 1, we know that
7(z) is a constant. Combining with (3.20) we deduce that e(*~41)% is a constant, a
contradiction.

Case 1.2.2.2. A; = k.
Thus by (3.17) we have

n

Z(—l)inlﬁ (z + (n —i)n) =i = Bt (3.21)

=0

If B/ = 0, we know that § is a constant. It follows from (3.15) that f(z) =
a(z) + Be?* where A, B are two nonzero constants.
Since b = Aja, then by A:’,‘Ha = Ajja we have

Ayb=b.

It follows that b(z + n) = 2b(z). By Lemma 2.11 we know that either T'(r,b) > dr
for sufficiently large r or b is a constant, then by b is a small function of f, we know
that b is a constant. Obviously Afa(z) =b=10

From a is a Borel exceptional entire small function of f, we have p(a) < 1. It
follows from Lemma 2.13 that a is a polynomial with dega < n — 1. Therefore,
f(2) = a(z) + Be?, where A, B are two nonzero constants and a(z) is a polynomial
with dega < n — 1.
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If B’ # 0, then by (3.21) we have

i(_l)icjz B/ (z ";/((Z)_ Z)ﬁ) ekn(n—i) =0. (3-22)
=0

We now rewrite equation (3.22) in the form

nAnBI(Z) An_lﬁ/(z) A BI 2
(eFm) 72,@) + anli”ﬁ,(z) +--+ Dy g,(z() )~ b, (3.23)
where D,,_1,---, D1, Dy are constants.

By Lemma 2.15 we know that p(8) = p(8) < p(f) = 1. Now we choose ¢
such that 0 < e < 1 — p(f8'). Then by Lemma 2.12 we know that there exists
a set £ C (1,00) with finite logarithmic measure, such that for all z satisfying
|z| =r ¢ E|J[0,1], and for 1 < j < n, we have

AJB'(2)
p'(2)

Let |z] = r ¢ EU[0,1] and |z| — co. By (3.23) and (3.24) we have Dy = 0.
Thus we have

= o(1). (3.24)

(eF7)" ATB/(2) + Dy 1 ATTVB/(2) 4+ Dy1AB(2) = 0. (3.25)

Case a. A, =0.

By Lemma 2.13 we deduce that either T'(r, 8’) > dr for sufficiently large r or 8’
is a constant, then by 8 # 0 and p(3’) = p(8) < 1 we know that 8’ is a nonzero
constant.

By (3.22) we have

n

D (1)t = o,

i=0

Hence (e’”’ — 1)" = 0, which yields €7 = 1.
Set B(z) = coz + ¢1 where ¢o(# 0), ¢1 are two constants. By (3.15) and Ay =k
we have f(2) = a(z) + (coz + c1) e**+B1. Thus,

AT f(z) = Ala(z) + A7 ((coz + c1)eF ). (3.26)
If n =1, then by (3.26), e¥7 = 1 and b = A7"'a = A'a we have

Ay, f(z) = Apa(z) + (coz + con + )ePETMIBL _ ez 4 )b B
= Aya(z) + cone=T B

=b+ coneszrBl,
and

A%f(z) = Ay (Aga(z) + 60776’“2“31)

= Aja(z) + coneFFTMFBL _ copek=tB



2856 G. Wang, Z. He & M. Fang

= A%a(z)
= b, (3.27)
Hence by A, f(z) and A%f(z) share b CM, we get a contradiction.

If n > 2, then by a is a polynomial with dega < n — 1 and (3.27) we have
At f(z) = Al la(z) = 0, a contradiction.

Case b. A, ('(z) #0.

It follows from Lemmas 2.14, 2.15 that p (A,B") < p(8') = p(B) < 1. Therefore
by (3.25) and Lemma 2.12 we have D; = 0. Now we suppose that D; # 0, where
2<l<n,and D;_; =--- = D; =0. Then by (3.25) we have

(ekn)" AZB/(Z) + Dn_lA,’n]_lﬁ/(z) 4.+ DlA%BI(Z) —0.

We claim Al §'(z) = 0. Otherwise, we have

ey A0 (2) ApH(2) ALFE(2)
(€™) W +D7HW T +Dz+1m =-Di.  (3.28)

By (3.28) and Lemma 2.12 we have D; = 0, a contradiction. Hence Al 3'(z) = 0.

It follows from Lemma 2.13 that either T'(r, 8’) > dr for sufficiently large r or
B is a polynomial with deg 3’ <1 —1, then by p(8’) = p(8) < 1 we know that 3’ is
a polynomial with deg 8’ < 1 — 1. From (3.22) we have > (—1)iCief1(»=9) =,
which yields e = 1.

By (3.21) we deduce that Y7 ((—=1)'C},3 (2 + (n —i)n) = eP*~*. Thatis A7f =
C1, where C; = eP1~t. By (3.15) we have f(z) = a(z) + B(2)e***tB1. Thus, by
e =1 and b= A?"'a = Al’a we have

AT f(z) = Ala(z) + AT (B(z)e" 1)

= Aza(z) + Z(_l)ic’flﬁ(z +(n—- i)n)ek(3+(”*i)n)+B1
i=0

= ALa(z) + Y _(~1)'CiB(z + (n — i)n)e"+ 5
1=0

n n kz+B1
= Ava(z) + Al B(z)e "
= AZCL(Z) + Cyel* B

= b + Clekz+Bl,
and

APt f(2) = Ay (ATa(z) 4+ CretFPr)
= A:]H’la(z) + O eFEtM+BL _ ) gkt B
= AZJrla(z)
=b.
Hence by A7 f(z) and Apt! f(z) share b CM, we get a contradiction.
Case 2. b= Afa.
Case 2.1. Aptla # Aja.
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Since A} f and Agﬂf share b CM, then by (3.2), (3.3), Lemma 2.5 and Lemma
2.6 we have

T(r,f) =T(r,A) ) +S(r, f)

— n — 1 — 1
SN(T>A7,+1f)+N(T7M) +N(T’AZ+1f—b> +S(r, f)

— 1
() s
Anf —b
< S(r, f),
a contradiction.

Case 2.2. A7tla = Ala.
Using the same argument as used in Case 1.2, we get f(2) = a(z) + Be??, where
A, B are two nonzero constants and a(z) is a polynomial with dega < mn — 1.

Case 3. b # Al'a and b # A a.

Set
A"f — A"q An—i—lf _ A”'Ha
e e/ © N B e R 2
YT ob—Ara T TP b—Apt (329
It follows from (3.2), (3.3) and (3.29) that
6(07 Fl) = 6<OO7F1) =1, (330)
5(0, Fy) = 6(o0, Fy) = 1. (3.31)

From A7 f and Azﬂf share b CM, we know that F; and F5 share 1 CM almost.
It follows from (3.30), (3.31) and Lemma 2.10 that either F} Fy» =1 or F} = Fb.
If F1Fy =1, from (3.29) we obtain
(Axf — AZCL) (Azﬂf - AZHa) =(b- AZa) (b— AZ'Ha) . (3.32)

By (3.32), d(a, f) = 1, Lemma 2.3 and Nevanlinna’s first fundamental theorem
we have

79
1
< (n ) + 50D
<o (r B2 L ( AT - A AZ*I@)
_— b f_a ) f_a

a contradiction. Therefore F; = F5.
It follows that

ARf = Aja _ AFHf - Aftta
b— Ara b—Antta

(3.33)
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By (3.33) we have

AL —b  b— ATt

Anf—b = b—Ara’

(3.34)

Since f is a transcendental entire function of finite order and A} f and A:L;—H f share
b CM, then by Lemma 2.7 we know that there exists a polynomial p(z) satisfying
deg it < p(f) such that

An+1f —b
1L = eH®), 3.35

Arf—b (3:35)
It follows from (3.33)-(3.35) that

n+lp n+1
M — k() (3.36)
Arf—Ara
By G = A} f — Aja and (3.36) we have
A,G = eMHgG.
Using the same argument as used in Case 1.2, we get f(z) = a(z) + Be?*, where A

and B are two nonzero constants and a(z) is a polynomial with dega <n — 1.
Thus Theorem 1.6 is proved.

4. Proof of Theorem 1.10
Set

O (4.1)

PE) =Sy

By Lemma 2.2 and Lemma 2.3 we have
m(r, ) = S(r, f). (4.2)

F0()), E (00, fF)(2)) C E (00, f(z+n)), then
= S(r, f) and p(z) #Z 0. Hence by (4.2) we have

T(r,p) = S(r, f)- (4.3)

Since E (0, f(z+1n)) C E (0,
by (4.1) we deduce that N( ®)

We claim ¢(z) = 1. Otherwise we suppose that ¢(z) # 1.
From E (oo, f*)(2)) C E (00, f(z + 1)), we have

N(r, f®(2)) <N (r, f(z +1n)). (4.4)
It follows that N(r, f(*¥)) = N(r, f) + kN(r, f), Lemma 2.4 and (4.4) that

N(r,f) =S(r,f). (4.5)
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By (4.1), (4.3), By (1, f®)(2)) = E3) (1, f(z + 1)) and Nevanlinna’s first fun-
damnetal theorem we have

_ 1 _ 1 1
N”(“ﬂM—l)N”(“ﬂz+m—1)§N<“w—

By (4.1) we have

1)ssmﬁ. (4.6)

f® —o=0[f(z+n) —1]. (4.7)

It follows from (4.3) and (4.7) that
T (r, ) = T, f) + S(r. f). (4.8)

Thus, we have S(r, f) = S (r7 f(k)),
By (4.3), (4.6), (4.7), Lemma 2.4 and Nevanlinna’s first fundamental theorem
we obtain

_ 1 _ 1 — 1
N(“ﬂm¢>:N(“w)+N(“ﬂz+m—1>

<N (n gi=1) Vo (=) S0
3N (7‘, W) +S(r f)

< %T(r, )+ S8, f). (4.9)

IN

Hence, by (4.5), (4.6), (4.8), (4.9) and Lemma 2.6 we have

It follows that T’ (r, f(k)) <S (r, f(k)), a contradiction.
Thus Theorem 1.10 is proved.
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