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AND SMALL FUNCTIONS∗
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Abstract In this paper, we study unicity of meromorphic functions concern-
ing derivatives-differences and small functions and improve the results due to
Chen and Zhang [Ann. Math. Ser.A 42 (2021)] and Liu and Chen [J. Korean
Soc. Math. Educ. Ser. B: Pure Apple. Math. 30 (2023)]. Meanwhile, we give
negative answer to the problems posed by Chen and Xu [Comput. Methods
Funct. Theory 22 (2022)], Banerjee and Maity[Bull. Korean Math. Soc. 58
(2021)].
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1. Introduction

In this paper, we assume that the reader is familiar with the basic notions of Nevan-
linna’s value distribution theory, see [10, 23, 24]. In the following, meromorphic
always means meromorphic in the whole complex plane.

By S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞
possible outside of an exceptional set E with finite logarithmic measure

∫
E
dr/r <

∞. A meromorphic function a is said to be a small function of f if it satisfies
T (r, a) = S(r, f).

Let f be a nonconstant meromorphic function. The order ρ(f) and the hyper-
order ρ2(f) of f are defined by

ρ(f) = lim
r→∞

log+ T (r, f)

log r
, ρ2(f) = lim

r→∞

log+ log+ T (r, f)

log r
.

If ρ(f) <∞, then the function f is called meromorphic function of finite order.
Let η be a nonzero complex number. The difference operator is defined as

∆ηf = f(z + η)− f(z) and ∆n
ηf = ∆n−1

η (∆ηf),

where n(≥ 2) is a positive integer.
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Let f be a transcendental meromorphic function, and let a be a small function
of f . The deficiency of a small function a with respect to f is defined by

δ(a, f) = lim
r→∞

m
(
r, 1
f−a

)
T (r, f)

= 1− lim
r→∞

N
(
r, 1
f−a

)
T (r, f)

.

It is easy to see 0 ≤ δ(a, f) ≤ 1. If δ(a, f) > 0, then a is called a deficient function
of f , and if a is a constant, then a is called a deficient value. And we define

λ(f − a) = lim
r→∞

log+N
(
r, 1
f−a

)
log r

.

If λ(f − a) < ρ(f) for ρ(f) > 0 and N
(
r, 1
f−a

)
= O(log r) for ρ(f) = 0, then a

is called a Borel exceptional small function of f . If a is a constant, then a is called
a Borel exceptional value of f .

Let f and g be two meromorphic functions, and let a either be a small function
of both f and g or be a constant. We say that f and g share a CM(IM) if f −a and
g− a have the same zeros counting multiplicities(ignoring multiplicities). N(r, a) is
a counting function of zeros of both f − a and g− a with the same multiplicity and
the multiplicity is counted. If

N

(
r,

1

f − a

)
+N

(
r,

1

g − a

)
− 2N(r, a) ≤ S(r, f) + S(r, g),

then we call that f and g share a CM almost. Set E(a, f) = {z|f − a = 0}, where
a zero with multiplicity m is counted m times in the set.

Let k be a positive integer, we denote by Nk)

(
r, 1
f−1

)
the counting function

for 1-points of f with multiplicity ≤ k, where multiplicity is counted, and by

Nk)

(
r, 1
f−1

)
the corresponding one for which multiplicity is not counted. Let

N(k

(
r, 1
f−1

)
be the counting function for 1-points of f with multiplicity ≥ k, where

multiplicity is counted, and by N (k

(
r, 1
f−1

)
the corresponding one for which mul-

tiplicity is not counted. Let Ek)(1, f) denotes the set of those 1-points of f with
multiplicity ≤ k, where a 1-point with multiplicity m(≤ k) is counted m times in
the set.

Recently, many papers studied the uniqueness of transcendental entire function
and their higer order difference operators sharing small function, and obtained many
interesting results, see [14,17,18,20,21].

In 1926, Nevanlinna [24] proved the following famous five-value theorem.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions, and let ai
(i = 1, 2, 3, 4, 5) be five distinct values in the extended complex plane. If f and g
share ai (i = 1, 2, 3, 4, 5) IM, then f ≡ g.

In 2000, Li and Qiao [15] improved Theorem 1.1 as follows.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, and let ai
(i = 1, 2, 3, 4, 5) be five distinct small functions of both f and g. If f and g share ai
(i = 1, 2, 3, 4, 5) IM, then f ≡ g.
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In 2014, Chen and Li [2] proved.

Theorem 1.3. Let f be a nonconstant entire function of finite order, let η be a
positive integer, and let a be a periodic entire small function of f whose period is
η. If f,∆ηf,∆

n
ηf (n ≥ 2) share a CM, then ∆n

ηf ≡ ∆ηf .

In 2021, Chen and Zhang [4] proved.

Theorem 1.4. Let f be a transcendental entire function of finite order with a
Borel exceptional entire small function a satisfying ρ(a) < 1, and let η be a nonzero
complex number such that ∆2

ηf 6≡ 0. If ∆2
ηf and ∆ηf share ∆ηa CM, where ∆ηa

is a small function of ∆2
ηf , then

f(z) = a(z) +BeAz,

where A and B are two nonzero constants and a(z) reduces to a constant.

In 2023, Liu and Chen [16] extended Theorem 1.4 as follows.

Theorem 1.5. Let f be a transcendental entire function of finite order with a Borel
exceptional entire small function a satisfying ρ(a) < 1, let n be a positive integer,
and let η be a nonzero complex number such that ∆n+1

η f 6≡ 0. If ∆n+1
η f and ∆n

ηf
share ∆n

ηa CM, where ∆n
ηa is a small function of ∆n+1

η f , then

f(z) = a(z) +BeAz,

where A and B are two nonzero constants and a(z) reduces to a constant.

By Theorems 1.1–1.5, we natural pose the following problem.

Problem 1.1. Whether “ρ(a) < 1” can be deleted or not in Theorems 1.4 and 1.5?

In this paper, we give a positive answer to Problem 1.1 and prove the following
result.

Theorem 1.6. Let f be a transcendental entire function of finite order with a Borel
exceptional entire small function a, let n be a positive integer, and let η be a nonzero
finite complex number such that ∆n+1

η f 6≡ 0. If ∆n+1
η f and ∆n

ηf share b CM, where
b is a small function of f , then

f(z) = a(z) +BeAz,

where A and B are two nonzero constants and a(z) is a polynomial with deg a ≤
n− 1.

Remark 1.1. In Theorem 1.5 and Theorem 1.6, “a(z) reduces to a constant” is
not valid.

Example 1.1. Let f = a(z) + BeAz, where a(z) = zn−1 and A,B are nonzero
finite complex numbers satisfying eAη = 2, and let b = 0. Obviously, ∆n+1

η f(z) =

B(eAη−1)n+1eAz = B(eAη−1)neAz = ∆n
ηf(z). Hence ∆n

ηf(z) and ∆n+1
η f(z) share

b CM, but a(z) is not a constant.

In 2011, Heittokangas et al. [12] started to consider the uniqueness of meromor-
phic function with its shifts and proved.
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Theorem 1.7. Let f be a nonconstant entire function of finite order, and let η
be a nonzero finite complex number. If f(z) and f(z + η) share two distinct finite
values a, b IM, then f(z) ≡ f(z + η).

In 2020, Qi et al. [19] proved.

Theorem 1.8. Let f be a nonconstant meromorphic function of finite order, and
let a, η be two nonzero finite complex numbers. If f ′(z) and f(z + η) share a CM,
and E (0, f(z + η)) ⊂ E (0, f ′(z)), E (∞, f ′(z)) ⊂ E (∞, f(z + η)), then f ′(z) ≡
f(z + η).

In 2022, Chen and Xu [5] proved.

Theorem 1.9. Let f be a nonconstant meromorphic function with ρ2(f) < 1, let
η be a nonzero finite complex number, and let k be a positive integer. If f (k)(z) and
f(z + η) share 0,∞ CM and 1 IM, then f (k)(z) ≡ f(z + η).

Chen and Xu [5] posed the following problem.

Problem 1.2. Let f be a nonconstant meromorphic function with ρ2(f) < 1, and
let η be a nonzero finite complex number. If f (k) and f(z + η) share 0,∞ CM and
E1)

(
1, f (k)(z)

)
= E1) (1, f(z + η)), then f (k)(z) ≡ f(z + η)?

In this paper, we give a negative answer to Problem 1.2.

Example 1.2. Let f(z) = sin z, η = π, k = 4. Obviously ρ(f) = 1. By a simple
calculation, we know that f (4)(z) = sin z and f(z + η) = − sin z. In this case, we
have f (4)(z) and f(z+η) share 0,∞ CM, and E1)(1, f

(4)(z)) = E1)(1, f(z+η)) = ∅,

but f (4)(z) 6≡ f(z + η).

In addition, we further studied this problem and have proved.

Theorem 1.10. Let f be a nonconstant meromorphic function with ρ2(f)<1, let η
be a nonzero finite complex number, and let k be a positive integer. If E(0, f(z+η))⊂
E
(
0, f (k)(z)

)
, E
(
∞, f (k)(z)

)
⊂ E (∞, f(z + η)), E2)(1, f

(k)(z)) = E2) (1, f(z + η)),

then f (k)(z) ≡ f(z + η).

In the following,

Lηf(z) =

k∑
j=0

bjf(z + jη), Lbηf(z) =

k∑
j=0

bjf(z + jη),

where bj ∈ C, bk 6= 0 and b =
∑k
j=0 bj .

In 2021, Banerjee and Maity [1] proved the following results.

Theorem 1.11. Let f be a nonconstant meromorphic function with ρ2(f) < 1,
let η be a nonzero complex number, and let a be a small periodic function of f
whose period is η. If L0

ηf 6≡ 0, and E(0, f) ⊂ E(0, L0
ηf), E(a, f) ⊂ E(a, L0

ηf),
E(∞, L0

ηf) ⊂ E(∞, f), then L0
ηf ≡ f .

Theorem 1.12. Let f be a nonconstant meromorphic function of finite order, and
let η, b0, a1, a2 be nonzero complex numbers with a1 6= a2. If L0

ηf 6≡ 0, and L0
ηf, f

share a1, a2,∞ CM, then L0
ηf ≡ f .

Theorem 1.13. Let f be a nonconstant meromorphic function with ρ2(f) < 1, let η
be a nonzero complex number, and let a1, a2 be two distinct periodic small functions
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of f whose period are η. If L1
ηf 6≡ 0, and E(a1, f) ⊂ E(a1, L

1
ηf), E(a2, f) ⊂

E(a2, L
1
ηf), E(∞, L1

ηf) ⊂ E(∞, f), then L1
ηf ≡ f .

Banerjee and Maity [1] posed the following problem.

Problem 1.3. Are Theorems 1.11–1.13 valid or not for Lbηf where b 6= 0, 1 or
Lηf?

In this paper, we give a negative answer to Problem 1.3.

Example 1.3. Let f(z) = e2z+1
e2z−1 , and let Lηf(z) = f(z) + f(z + η)− f(z + 2η)−

f(z+3η)−f(z+4η) = − e
2z+1
e2z−1 , where η = πi. Obviously, f(z) 6= ±1, Lηf(z) 6= ±1.

Hence, f(z) and Lηf(z) share 1,−1,∞ CM, but f(z) 6≡ Lηf(z).

2. Some Lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1. ( [13] ) Let f be a nonconstant entire function of finite order. If a is
a Borel exceptional entire function of f , then δ(a, f) = 1.

Lemma 2.2. ( [10] ) Let f be a nonconstant meromorphic function, and let k be a
positive integer. Then

m

(
r,
f (k)

f

)
= S(r, f).

Lemma 2.3. ( [6,9] ) Let f be a nonconstant meromorphic function with ρ2(f) < 1,
and let η be a nonzero finite complex number. Then

m

(
r,
f(z + η)

f(z)

)
= S(r, f), m

(
r,

f(z)

f(z + η)

)
= S(r, f).

Especially, if ρ(f) < +∞, then for any ε > 0, we have

m

(
r,
f(z + η)

f(z)

)
= O

(
rρ(f)−1+ε

)
.

Lemma 2.4. ( [6,9] ) Let f be a nonconstant meromorphic function with ρ2(f) < 1,
and let η be a nonzero finite complex number. Then

N (r, f(z + η)) = N(r, f(z)) + S(r, f),

N

(
r,

1

f(z + η)

)
= N

(
r,

1

f(z)

)
+ S(r, f).

Lemma 2.5. ( [11] ) Let η be a nonzero finite complex number, let n be a positive
integer, and let f be a transcendental meromorphic function of finite order satisfying
δ(a, f) = 1, δ(∞, f) = 1, where a is a small function of f . If ∆n

ηf 6≡ 0, then
(1) T (r,∆n

ηf) = T (r, f) + S(r, f);

(2) δ
(
∆n
ηa,∆

n
ηf
)

= δ
(
∞,∆n

ηf
)

= 1.

Lemma 2.6. ( [10] ) Let f be a nonconstant meromorphic function, and let a, b be
two distinct small functions of f . Then

T (r, f) ≤ N(r, f) +N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+ S(r, f).



2850 G. Wang, Z. He & M. Fang

Lemma 2.7. ( [23] ) Let f be a meromorphic function. If f 6= 0,∞, then there
exists an entire function α such that f(z) = eα(z).

Lemma 2.8. ( [3] ) Let a be a finite complex number, let f be a transcendental
meromorphic function of finite order with two Borel exceptional values a,∞, and
let η be a nonzero finite complex number such that ∆ηf 6≡ 0. If f and ∆ηf share
a,∞ CM, then a = 0, f(z) = eAz+B, where A(6= 0), B are two finite constants.

Lemma 2.9. ( [22, 23] ) Let n ≥ 3 be a positive integer, let fj(j = 1, · · · , n) be
meromorphic functions which are not constants except for fn, and let

∑n
j=1 fj ≡ 1.

If fn 6≡ 0, and

n∑
j=1

N

(
r,

1

fj

)
+ (n− 1)

n∑
j=1

N(r, fj) (λ+ o(1))T (r, fk),

where I is a set of r ∈ (0,∞) with infinite linear measure, r ∈ I, k = 1, 2, · · · , n −
1, λ < 1, then fn ≡ 1.

Lemma 2.10. ( [8, 23] ) Let f and g be two nonconstant meromorphic functions
satisfying

δ(0, f) = δ(∞, f) = 1, δ(0, g) = δ(∞, g) = 1.

If f and g share 1 CM almost, then either f ≡ g or fg ≡ 1.

Lemma 2.11. ( [11] ) Let f be a meromorphic function of finite order, and let
η, c, d be three nonzero finite complex numbers. If f(z + η) = cf(z), then either
T (r, f) ≥ dr for sufficiently large r or f is a constant.

Lemma 2.12. ( [7] ) Let f be a meromorphic function with ρ(f) < 1, and let η be
a nonzero finite complex number. Then for each given ε > 0, and a positive integer
n, there exists a set E ⊂ (1,∞) that depends on f , and it has finite logarithmic
measure, such that for all z satisfying |z| = r 6∈ E

⋃
[0, 1], we have∣∣∣∣∆n

ηf(z)

f(z)

∣∣∣∣ ≤ |z|n(ρ(f)−1)+ε.

Lemma 2.13. Let α be an entire function with ρ(α) ≤ 1, let n be a positive inte-
ger, and let η, d be two nonzero finite complex numbers. If ∆n

ηα ≡ 0, then either
T (r, α) ≥ dr for sufficiently large r or α is a polynomial with degα ≤ n− 1.

Proof. We prove the lemma by mathematical induction. In the following, d denote
a positive number, not necessarily the same at each occurrence. For n = 1 we have

α(z + η) = α(z). (2.1)

Then by Lemma 2.11 and (2.1) we know that Lemma 2.13 is valid for n = 1.
Suppose that for n = k−1 the lemma is valid. Next we consider the case n = k.

From ∆k
ηα ≡ 0 and above discussion we deduce that either T

(
r,∆k−1

η α
)
≥ dr for

sufficiently large r or ∆k−1
η α is a constant.

If T
(
r,∆k−1

η α
)
≥ dr for sufficiently large r, then by ρ(α) ≤ 1, Lemma 2.3

(setting ε = 1
2 ) and for sufficiently large r, we obtain

T
(
r,∆k−1

η α
)

= m
(
r,∆k−1

η α
)
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≤ m(r, α) +m

(
r,

∆k−1
η α

α

)
+O(1)

≤ T (r, α) +Mr
1
2

≤ T (r, α) +
1

2
dr, (2.2)

where M is a positive number. Since T
(
r,∆k−1

η α
)
≥ dr, then by (2.2) we have

T (r, α) ≥ d0r, where d0 = d
2 .

If ∆k−1
η α ≡ C, where C is a constant, then p(z) = C

(k−1)!η z
k−1 is a solution

of ∆k−1
η α ≡ C. Let β(z) be any solution of ∆k−1

η α ≡ 0. Then we know that
either T (r, β) ≥ dr for sufficiently large r or β is a polynomial with deg β ≤ k − 2.
From above argument we have either T (r, β + p) ≥ T (r, β)− T (r, p) ≥ d

2r or β + p
is a polynomial with deg(β + p) ≤ k − 1. It follows that either T (r, α) ≥ dr for
sufficiently large r or α is a polynomial with degα ≤ k − 1.

Thus Lemma 2.13 is proved.

Lemma 2.14. ( [7] ) Let f be a meromorphic function of finite order, and let η be
a nonzero finite complex number. Then for each positive integer k, ρ

(
∆k
ηf
)
≤ ρ(f).

Lemma 2.15. ( [24] ) Let f be a meromorphic function. Then ρ(f) = ρ(f ′).

3. Proof of Theorem 1.6

First, we claim ρ(f) > 0. Suppose on the contrary that ρ(f) = 0. Set F (z) =
f(z)− a(z). Since a is a Borel exceptional entire small function of f , we obtain

N

(
r,

1

F

)
= N

(
r,

1

f − a

)
= O(log r).

Hence F has finitely many zeros. We assume that a1, a2, · · · , an are all zeros of F ,
where n is a positive integer.

From ρ(f) = 0, we deduce F
(z−a1)(z−a2)···(z−an) = eh, where h is a constant.

Then we have F (z) = c(z − a1)(z − a2) · · · (z − an), where c = eh. It follows that

T (r, F ) = n log r +O(1). (3.1)

By (3.1) we deduce that f is a nonzero polynomial. Since b is a small function of f ,
then we know that b is a constant, which contradicts with ∆n+1

η f and ∆n
ηf share b

CM. Hence ρ(f) > 0.
Since a is a Borel exceptional entire small function of f , then by Lemma 2.1, we

obtain δ(a, f) = 1. Obviously, δ(∞, f) = 1. It follows from Lemma 2.5 that

δ(∆n
ηa,∆

n
ηf) = 1, δ(∆n+1

η a,∆n+1
η f) = 1, (3.2)

δ(∞,∆n
ηf) = 1, δ(∞,∆n+1

η f) = 1. (3.3)

Now, we consider three cases

Case 1. b ≡ ∆n+1
η a.

Case 1.1. ∆n+1
η a 6≡ ∆n

ηa.



2852 G. Wang, Z. He & M. Fang

Since ∆n
ηf and ∆n+1

η f share b CM, then by (3.2), (3.3), Lemma 2.5 and Lemma
2.6 we have

T (r, f) = T (r,∆n
ηf) + S(r, f)

≤ N(r,∆n
ηf) +N

(
r,

1

∆n
ηf −∆n

ηa

)
+N

(
r,

1

∆n
ηf − b

)
+ S(r, f)

≤ N
(
r,

1

∆n+1
η f − b

)
+ S(r, f)

≤ S(r, f),

a contradiction.

Case 1.2. ∆n+1
η a ≡ ∆n

ηa.
Set

G = ∆n
ηf −∆n

ηa. (3.4)

Then we have

∆ηG = ∆n+1
η f −∆n

ηa.

Since ∆n
ηf and ∆n+1

η f share b(≡ ∆n
ηa) CM, we obtain that G and ∆ηG share

0,∞ CM.
It follows from (3.2) and (3.3) that

δ(0, G) = 1, δ(0,∆ηG) = 1, (3.5)

δ(∞, G) = 1, δ(∞,∆ηG) = 1. (3.6)

By δ(a, f) = 1, δ(∞, f) = 1 and Lemma 2.5, we obtain

T (r,G) = T (r, f) + S(r, f). (3.7)

Since a is a Borel exceptional function of f , then by ρ(f) > 0 we have

lim
r→∞

log+N
(
r, 1
f−a

)
log r

< ρ(f). (3.8)

By Lemma 2.3 and Nevanlinna’s first fundamental theorem we have

m

(
r,

1

f − a

)
≤ m

(
r,

1

∆n
η (f − a)

)
+m

(
r,

∆n
η (f − a)

f − a

)
+ S(r, f),

T (r, f − a)−N
(
r,

1

f − a

)
≤ T

(
r,∆n

η (f − a)
)
−N

(
r,

1

∆n
η (f − a)

)
+ S(r, f).

Hence, by Lemma 2.5 we have

N

(
r,

1

∆n
η (f − a)

)
≤ N

(
r,

1

f − a

)
+ S(r, f). (3.9)

By Lemma 2.3 (setting ε = 1
2 ), we obtain

S(r, f) ≤Mrρ(f)− 1
2 , (3.10)
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where M is a positive number.
It follows from (3.8) that

N

(
r,

1

f − a

)
≤ r

ρ(f)+λ(f−a)
2 . (3.11)

By (3.10) and (3.11) we have

N

(
r,

1

f − a

)
+ S(r, f) ≤ (1 +M)rM1 , (3.12)

where M1 = max
{
ρ(f)− 1

2 ,
ρ(f)+λ(f−a)

2

}
.

It follows from (3.8), (3.9) and (3.12) that

log+N
(
r, 1

∆n
η (f−a)

)
log r

≤ log(1 +M)rM1

log r
≤M1 +

log(1 +M)

log r
.

Then we have

lim
r→∞

log+N
(
r, 1
G

)
log r

= lim
r→∞

log+N
(
r, 1

∆n
η (f−a)

)
log r

≤M1 < ρ(f). (3.13)

By (3.7) and (3.13) we deduce that 0 is a Borel exceptional value of G. It follows
from Lemma 2.8 that G = eA1z+B1 , where A1(6= 0), B1 are two constants.

From (3.4) we get

∆n
η (f(z)− a(z)) = eA1z+B1 . (3.14)

By Hadamard’s factorization theorem, we obtain

f(z)− a(z) = β(z)ep(z), (3.15)

where β(z) is an entire function such that ρ(β) = λ(β) < ρ(f), and p(z) is a
nonconstant polynomial with deg p = ρ(f). Hence we have

T (r, β) = S(r, ep). (3.16)

It follows from (3.14) and (3.15) that ∆n
η

(
β(z)ep(z)

)
= eA1z+B1 . That is

n∑
i=0

(−1)iCinβ (z + (n− i)η) ep(z+(n−i)η) = eA1z+B1 . (3.17)

Next, we consider two subcases.

Case 1.2.1. deg p ≥ 2.
By (3.17) we have

n∑
i=0

(−1)iCin
β (z + (n− i)η)

eA1z+B1
ep(z+(n−i)η) ≡ 1. (3.18)

If n = 1, then by (3.18) we have

β (z + η)

eA1z+B1
ep(z+η) − β(z)

eA1z+B1
ep(z) ≡ 1. (3.19)
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Obviously, T
(
r, eA1z+B1

)
= S(r, ep). Then by (3.16), (3.19) and Nevanlinna’s

second fundamental theorem we have

T (r, ep) ≤T
(
r,

β(z)

eA1z+B1
ep
)

+ S(r, ep)

≤N
(
r,

β(z)

eA1z+B1
ep
)

+N

(
r,

1
β(z)

eA1z+B1
ep

)
+N

(
r,

1
β(z)

eA1z+B1
ep + 1

)

+ S

(
r,

β(z)

eA1z+B1
ep
)

≤S(r, ep),

a contradiction.
If n ≥ 2, then by (3.18) and Lemma 2.9 we get a contradiction.

Case 1.2.2. deg p = 1.
Set p(z) = kz + t, where k(6= 0), t are two finite complex numbers. Next we

consider two subcases.

Case 1.2.2.1. A1 6= k.
Then by (3.17) we have

n∑
i=0

(−1)iCindiβ (z + (n− i)η) e(k−A1)z ≡ 1, (3.20)

where di = e(n−i)kη+t−B1 .
By (3.20) and A1 6= k we have

∑n
i=0(−1)iCindiβ(z + (n − i)η) 6= 0,∞. From

Lemma 2.7 and ρ(β) < ρ(f) = 1 we know that there exists a polynomial γ(z) such
that

∑n
i=0(−1)iCindiβ(z + (n− i)η) = eγ(z). Since ρ(β) < ρ(f) = 1, we know that

γ(z) is a constant. Combining with (3.20) we deduce that e(k−A1)z is a constant, a
contradiction.

Case 1.2.2.2. A1 = k.
Thus by (3.17) we have

n∑
i=0

(−1)iCinβ (z + (n− i)η) ekη(n−i) ≡ eB1−t. (3.21)

If β′ ≡ 0, we know that β is a constant. It follows from (3.15) that f(z) =
a(z) +BeAz where A,B are two nonzero constants.

Since b = ∆n
ηa, then by ∆n+1

η a = ∆n
ηa we have

∆ηb = b.

It follows that b(z + η) = 2b(z). By Lemma 2.11 we know that either T (r, b) > dr
for sufficiently large r or b is a constant, then by b is a small function of f , we know
that b is a constant. Obviously ∆n

ηa(z) = b = 0.
From a is a Borel exceptional entire small function of f , we have ρ(a) ≤ 1. It

follows from Lemma 2.13 that a is a polynomial with deg a ≤ n − 1. Therefore,
f(z) = a(z)+BeAz, where A,B are two nonzero constants and a(z) is a polynomial
with deg a ≤ n− 1.
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If β′ 6≡ 0, then by (3.21) we have

n∑
i=0

(−1)iCin
β′ (z + (n− i)η)

β′(z)
ekη(n−i) ≡ 0. (3.22)

We now rewrite equation (3.22) in the form

(ekη)n
∆n
ηβ
′(z)

β′(z)
+Dn−1

∆n−1
η β′(z)

β′(z)
+ · · ·+D1

∆ηβ
′(z)

β′(z)
= D0, (3.23)

where Dn−1, · · · , D1, D0 are constants.
By Lemma 2.15 we know that ρ(β′) = ρ(β) < ρ(f) = 1. Now we choose ε

such that 0 < ε < 1 − ρ(β′). Then by Lemma 2.12 we know that there exists
a set E ⊂ (1,∞) with finite logarithmic measure, such that for all z satisfying
|z| = r 6∈ E

⋃
[0, 1], and for 1 ≤ j ≤ n, we have

∆j
ηβ
′(z)

β′(z)
= o(1). (3.24)

Let |z| = r 6∈ E
⋃

[0, 1] and |z| → ∞. By (3.23) and (3.24) we have D0 = 0.
Thus we have(

ekη
)n

∆n
ηβ
′(z) +Dn−1∆n−1

η β′(z) + · · ·+D1∆ηβ
′(z) = 0. (3.25)

Case a. ∆ηβ
′ ≡ 0.

By Lemma 2.13 we deduce that either T (r, β′) > dr for sufficiently large r or β′

is a constant, then by β 6≡ 0 and ρ(β′) = ρ(β) < 1 we know that β′ is a nonzero
constant.

By (3.22) we have

n∑
i=0

(−1)iCine
kη(n−i) = 0.

Hence
(
ekη − 1

)n
= 0, which yields ekη = 1.

Set β(z) = c0z + c1 where c0(6= 0), c1 are two constants. By (3.15) and A1 = k
we have f(z) = a(z) + (c0z + c1) ekz+B1 . Thus,

∆n
ηf(z) = ∆n

ηa(z) + ∆n
η

(
(c0z + c1)ekz+B1

)
. (3.26)

If n = 1, then by (3.26), ekη = 1 and b = ∆n+1
η a = ∆n

ηa we have

∆ηf(z) = ∆ηa(z) + (c0z + c0η + c1)ek(z+η)+B1 − (c0z + c1)ekz+B1

= ∆ηa(z) + c0ηe
kz+B1

= b+ c0ηe
kz+B1 ,

and

∆2
ηf(z) = ∆η

(
∆ηa(z) + c0ηe

kz+B1
)

= ∆2
ηa(z) + c0ηe

k(z+η)+B1 − c0ηekz+B1
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= ∆2
ηa(z)

= b. (3.27)

Hence by ∆ηf(z) and ∆2
ηf(z) share b CM, we get a contradiction.

If n ≥ 2, then by a is a polynomial with deg a ≤ n − 1 and (3.27) we have
∆n+1
η f(z) = ∆n+1

η a(z) ≡ 0, a contradiction.

Case b. ∆ηβ
′(z) 6≡ 0.

It follows from Lemmas 2.14, 2.15 that ρ (∆ηβ
′) ≤ ρ (β′) = ρ(β) < 1. Therefore

by (3.25) and Lemma 2.12 we have D1 = 0. Now we suppose that Dl 6= 0, where
2 ≤ l ≤ n, and Dl−1 = · · · = D1 = 0. Then by (3.25) we have(

ekη
)n

∆n
ηβ
′(z) +Dn−1∆n−1

η β′(z) + · · ·+Dl∆
l
ηβ
′(z) = 0.

We claim ∆l
ηβ
′(z) ≡ 0. Otherwise, we have

(
ekη
)n ∆n

ηβ
′(z)

∆l
ηβ
′(z)

+Dn−1

∆n−1
η β′(z)

∆l
ηβ
′(z)

+ · · ·+Dl+1

∆l+1
η β′(z)

∆l
ηβ
′(z)

= −Dl. (3.28)

By (3.28) and Lemma 2.12 we have Dl = 0, a contradiction. Hence ∆l
ηβ
′(z) ≡ 0.

It follows from Lemma 2.13 that either T (r, β′) > dr for sufficiently large r or
β′ is a polynomial with deg β′ ≤ l− 1, then by ρ(β′) = ρ(β) < 1 we know that β′ is
a polynomial with deg β′ ≤ l − 1. From (3.22) we have

∑n
i=0(−1)iCine

kη(n−i) = 0,
which yields ekη = 1.

By (3.21) we deduce that
∑n
i=0(−1)iCinβ (z + (n− i)η) ≡ eB1−t. That is ∆n

ηβ ≡
C1, where C1 = eB1−t. By (3.15) we have f(z) = a(z) + β(z)ekz+B1 . Thus, by
ekη = 1 and b = ∆n+1

η a = ∆n
ηa we have

∆n
ηf(z) = ∆n

ηa(z) + ∆n
η

(
β(z)ekz+B1

)
= ∆n

ηa(z) +

n∑
i=0

(−1)iCinβ(z + (n− i)η)ek(z+(n−i)η)+B1

= ∆n
ηa(z) +

n∑
i=0

(−1)iCinβ(z + (n− i)η)ekz+B1

= ∆n
ηa(z) + ∆n

ηβ(z)ekz+B1

= ∆n
ηa(z) + C1e

kz+B1

= b+ C1e
kz+B1 ,

and

∆n+1
η f(z) = ∆η

(
∆n
ηa(z) + C1e

kz+B1
)

= ∆n+1
η a(z) + C1e

k(z+η)+B1 − C1e
kz+B1

= ∆n+1
η a(z)

= b.

Hence by ∆n
ηf(z) and ∆n+1

η f(z) share b CM, we get a contradiction.

Case 2. b ≡ ∆n
ηa.

Case 2.1. ∆n+1
η a 6≡ ∆n

ηa.
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Since ∆n
ηf and ∆n+1

η f share b CM, then by (3.2), (3.3), Lemma 2.5 and Lemma
2.6 we have

T (r, f) = T (r,∆n+1
η f) + S(r, f)

≤ N(r,∆n+1
η f) +N

(
r,

1

∆n+1
η f −∆n+1

η a

)
+N

(
r,

1

∆n+1
η f − b

)
+ S(r, f)

≤ N
(
r,

1

∆n
ηf − b

)
+ S(r, f)

≤ S(r, f),

a contradiction.

Case 2.2. ∆n+1
η a ≡ ∆n

ηa.

Using the same argument as used in Case 1.2, we get f(z) = a(z)+BeAz, where
A,B are two nonzero constants and a(z) is a polynomial with deg a ≤ n− 1.

Case 3. b 6≡ ∆n
ηa and b 6≡ ∆n+1

η a.
Set

F1 =
∆n
ηf −∆n

ηa

b−∆n
ηa

, F2 =
∆n+1
η f −∆n+1

η a

b−∆n+1
η a

. (3.29)

It follows from (3.2), (3.3) and (3.29) that

δ(0, F1) = δ(∞, F1) = 1, (3.30)

δ(0, F2) = δ(∞, F2) = 1. (3.31)

From ∆n
ηf and ∆n+1

η f share b CM, we know that F1 and F2 share 1 CM almost.
It follows from (3.30), (3.31) and Lemma 2.10 that either F1F2 ≡ 1 or F1 ≡ F2.

If F1F2 ≡ 1, from (3.29) we obtain(
∆n
ηf −∆n

ηa
) (

∆n+1
η f −∆n+1

η a
)

=
(
b−∆n

ηa
) (
b−∆n+1

η a
)
. (3.32)

By (3.32), δ(a, f) = 1, Lemma 2.3 and Nevanlinna’s first fundamental theorem
we have

2T (r, f) ≤ T
(
r,

1

(f − a)2

)
+ S(r, f)

≤ m
(
r,

1

(f − a)2

)
+ S(r, f)

≤ m
(
r,

∆n
ηf −∆n

ηa

f − a

)
+m

(
r,

∆n+1
η f −∆n+1

η a

f − a

)

+m

(
r,

1(
b−∆n

ηa
) (
b−∆n+1

η a
))+ S(r, f)

≤ S(r, f),

a contradiction. Therefore F1 ≡ F2.
It follows that

∆n
ηf −∆n

ηa

b−∆n
ηa

≡
∆n+1
η f −∆n+1

η a

b−∆n+1
η a

. (3.33)
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By (3.33) we have

∆n+1
η f − b

∆n
ηf − b

≡
b−∆n+1

η a

b−∆n
ηa

. (3.34)

Since f is a transcendental entire function of finite order and ∆n
ηf and ∆n+1

η f share
b CM, then by Lemma 2.7 we know that there exists a polynomial µ(z) satisfying
degµ ≤ ρ(f) such that

∆n+1
η f − b

∆n
ηf − b

≡ eµ(z). (3.35)

It follows from (3.33)-(3.35) that

∆n+1
η f −∆n+1

η a

∆n
ηf −∆n

ηa
= eµ(z). (3.36)

By G = ∆n
ηf −∆n

ηa and (3.36) we have

∆ηG = eµ(z)G.

Using the same argument as used in Case 1.2, we get f(z) = a(z) +BeAz, where A
and B are two nonzero constants and a(z) is a polynomial with deg a ≤ n− 1.

Thus Theorem 1.6 is proved.

4. Proof of Theorem 1.10

Set

ϕ(z) =
f (k)(z)

f(z + η)
. (4.1)

By Lemma 2.2 and Lemma 2.3 we have

m(r, ϕ) = S(r, f). (4.2)

Since E (0, f(z + η)) ⊂ E
(
0, f (k)(z)

)
, E

(
∞, f (k)(z)

)
⊂ E (∞, f(z + η)), then

by (4.1) we deduce that N (r, ϕ) = S(r, f) and ϕ(z) 6≡ 0. Hence by (4.2) we have

T (r, ϕ) = S(r, f). (4.3)

We claim ϕ(z) ≡ 1. Otherwise we suppose that ϕ(z) 6≡ 1.
From E

(
∞, f (k)(z)

)
⊂ E (∞, f(z + η)), we have

N(r, f (k)(z)) ≤ N (r, f(z + η)) . (4.4)

It follows that N(r, f (k)) = N(r, f) + kN(r, f), Lemma 2.4 and (4.4) that

N(r, f) = S(r, f). (4.5)
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By (4.1), (4.3), E2)

(
1, f (k)(z)

)
= E2) (1, f(z + η)) and Nevanlinna’s first fun-

damnetal theorem we have

N2)

(
r,

1

f (k) − 1

)
= N2)

(
r,

1

f(z + η)− 1

)
≤ N

(
r,

1

ϕ− 1

)
≤ S(r, f). (4.6)

By (4.1) we have

f (k) − ϕ = ϕ [f(z + η)− 1] . (4.7)

It follows from (4.3) and (4.7) that

T
(
r, f (k)

)
= T (r, f) + S(r, f). (4.8)

Thus, we have S(r, f) = S
(
r, f (k)

)
.

By (4.3), (4.6), (4.7), Lemma 2.4 and Nevanlinna’s first fundamental theorem
we obtain

N

(
r,

1

f (k) − ϕ

)
= N

(
r,

1

ϕ

)
+N

(
r,

1

f(z + η)− 1

)
≤ N2)

(
r,

1

f(z + η)− 1

)
+N (3

(
r,

1

f(z + η)− 1

)
+ S(r, f)

≤ 1

3
N(3

(
r,

1

f(z + η)− 1

)
+ S(r, f)

≤ 1

3
T (r, f) + S(r, f). (4.9)

Hence, by (4.5), (4.6), (4.8), (4.9) and Lemma 2.6 we have

T
(
r, f (k)

)
≤N

(
r, f (k)

)
+N

(
r,

1

f (k) − 1

)
+N

(
r,

1

f (k) − ϕ

)
+ S

(
r, f (k)

)
≤N (r, f) +N2)

(
r,

1

f (k) − 1

)
+N (3

(
r,

1

f (k) − 1

)
+

1

3
T (r, f) + S

(
r, f (k)

)
≤1

3
T
(
r, f (k)

)
+

1

3
T (r, f) + S

(
r, f (k)

)
≤2

3
T
(
r, f (k)

)
+ S

(
r, f (k)

)
.

It follows that T
(
r, f (k)

)
≤ S

(
r, f (k)

)
, a contradiction.

Thus Theorem 1.10 is proved.
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