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A PARAMETERIZED SHIFT-SPLITTING
PRECONDITIONER FOR SADDLE POINT

PROBLEMS

Litao Zhang1,2,3, Xiaojing Zhang3 and Jianfeng Zhao4,†

Abstract Recently, Chen and Ma [Journal of Computational and Applied
Mathematics, 344(2018): 691–700] constructed the generalized shift-splitting
(GSS) preconditioner, and gave the corresponding theoretical analysis and nu-
merical experiments. In this paper, based on the generalized shift-splitting
(GSS) preconditioner, we generalize their algorithms and further study the
parameter shift-splitting (PSS) preconditioner for complex symmetric linear
systems. Moreover, by similar theoretical analysis, we obtain that the param-
eter shift-splitting iterative method is unconditionally convergent. In finally,
one example is provided to confirm the effectiveness.
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1. Introduction
Consider the linear equations of the form

Au = b, (1.1)

where u, b ∈ Cn and A ∈ Cn×n is a complex symmetric matrix, whose form is

A =W + iT, (1.2)

and W,T ∈ Rn×n are real symmetric matrices, with W being positive definite and
T being positive semidefinite. Here and in the sequel we use i =

√
−1 to denote

the imaginary unit. We assume T ̸= 0, which implies that A is non-Hermitian.
Such kind of linear systems arise in many problems in scientific computing and
engineering applications. For more detailed descriptions, we refer to [2, 7, 17, 24]
and the references therein.
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The Hermitian and skew-Hermitian parts of the complex symmetric matrix A ∈
Cn×n are given by

H =
1

2
(A+A∗) =W and S =

1

2
(A−A∗) = iT

respectively, hence, A ∈ Cn×n is non-Hermitian, but positive definite matrix. Here
A∗ is used to denote the conjugate transpose of the matrix A. Based on the Hermi-
tian and skew-Hermitian splitting (HSS)

A = H + S

of the matrix A ∈ Cn×n, Bai et al. [10] gave HSS iteration method, which is as
follows:

The HSS Iteration Method [10]. Let x(0) ∈ Cn be arbitrary initial guess. For
k = 0, 1, 2, ... until the sequence of iterates {x(k)}∞k=0 ⊂ Cn converges, compute the
next iterate x(k+1) according to the following procedure: (αI +W )x(k+

1
2 ) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI −W )x(k+
1
2 ) + b.

(1.3)

where α is a given positive constant and I is the identity matrix.

However, a potential difficulty with the HSS iteration method is the need to solve
the shifted skew-Hermitian sub-system of linear equations at each iteration step,
which is as difficult as that of the original problem; see [1, 3, 5, 9–13, 16, 20, 26–43]
for more detailed descriptions about the HSS iteration method and its variants.
Recently, by making use of the special structure of the coefficient matrix A ∈ Cn×n,
Bai et al. established the following modified HSS iteration (MHSS) method and a
preconditioned MHSS (PMHSS) method for solving the complex symmetric linear
system (1.2) in an analogous fashion to the HSS iteration scheme in [7] and [6],
respectively. Concerning the convergence of the stationary MHSS iteration method
and PMHSS iteration method, Bai et al. [6, 7] analyzed the convergence. In 2013,
Based on the ideas of [6] and [27], Li et al. presented a new approach named as the
lopsided PMHSS (LPMHSS) iteration method to solve the complex symmetric linear
system of linear equation (1.2). In 2015, Wu concerned with several variants of the
HSS iterative method in [30]. In 2015, Cao et al. studied two variants of the PMHSS
iterative method for a class of complex symmetric indefinite linear systems in [24]. In
2018, Chen and Ma constructed the generalized shift-splitting (GSS) preconditioner,
and gave the corresponding theoretical analysis and numerical experiments in [23].

Let u = x+ iy and b = p+ iq where x, y, p, q ∈ Rn. Then from [2, 33] we know
that the complex linear system (1) can be recast as the following two-by-two block
real equivalent formulation

A

x
y

 =

W −T

T W

x
y

 =

p
q

 . (1.4)
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The system of linear equations (1.4) can be seen as a special case of the generalized
saddle point problems [22].

To further generalize the GSS iteration method and accelerate its convergence
rate, based on the generalized shift-splitting (GSS) preconditioner, we generalize
their algorithms and further study the parameter shift-splitting (PSS) precondi-
tioner for complex symmetric linear systems.

The organization of the paper is as follows. In Section 2 we provide the pa-
rameter shift-splitting (PSS) preconditioner for complex symmetric linear system
(1.2). In Section 3, we establish the convergence of the parameter shift-splitting
iteration method. Finally, in section 4, one example is provided to demonstrate the
feasibility and effectiveness of PSS preconditioner.

2. The parameter shift-splitting preconditione
In 2018, based on the iterative methods studied in [21, 24, 32], Chen and Ma [23]
constructed the generalized shift-splitting of the matrix A, which is as follows:

A =
1

2

αI +W −T

T βI +W

− 1

2

αI −W T

−T βI −W

 , (2.1)

where α > 0 and β > 0 are two real constants and I is the identity matrix (with
appropriate dimension). By this special splitting, the following generalized shift-
splitting iterative method can be defined for solving the generalized saddle point
problems (1.4):
Algorithm 1: The generalized shift-splitting iterative method [23]. Given
an initial guess u0, for k = 0, 1, 2, ..., until {uk} converges, compute

1

2

αI +W −T

T βI +W

uk+1 =
1

2

αI −W T

−T βI −W

uk +

p
q

 , (2.2)

where α > 0 and β > 0 are two given positive constants.
In this paper, to further generalize the GSS iteration method and accelerate its

convergence rate, we propose the parameter shift-splitting iterative method, which
is as follows:
Algorithm 2: The parameter shift-splitting iterative (PSS) method. Given
an initial guess u0, for k = 0, 1, 2, ..., until {uk} converges,

1

2ξ

αI + ξW −ξT

ξT βI + ξW

uk+1 =
1

2ξ

αI − ξW ξT

−ξT βI − ξW

uk +

p
q

 , (2.3)

where α > 0, β > 0 and ξ > 0 are three given constants.
Remark 2.1. We may remove the previous factor 1

2ξ because of making no differ-
ence on the preconditioned system. For large, sparse or structure matrices, iterative
methods are an attractive option. In particular, Krylov subspace methods apply
preconditioner PPS techniques that involve orthogonal projections onto subspaces
of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.
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Remark 2.2. Obviously, when ξ = 1, the parameter shift-splitting iterative (PSS)
method reduces to the generalized shift-splitting iterative (GSS) method. So, PSS
method is the extension of GSS method. When choosing appropriate parameter ξ,
PSS method will have fast convergence speed.

By simple calculation, the iteration format of the two-sweep shift-splitting iter-
ation is

uk+1 = T uk + 2ξ

αI + ξW −ξT

ξT βI + ξW

−1 p
q

 (2.4)

where

T =

αI + ξW −ξT

ξT βI + ξW

−1 αI − ξW ξT

−ξT βI − ξW

 . (2.5)

Since the parameter ξ do not affect the splitting preconditioner, the corresponds
to the two-sweep shift-splitting iteration (2.5) is given by

PPSS =

αI + ξW −ξT

ξT βI + ξW


which is called the two-sweep shift-splitting preconditioner for the generalized saddle
point matrix A.
Algorithm 3: For a given vector r = [rT1 , r

T
2 ]

T , the vector z = [zT1 , z
T
2 ]

T can be
computed similar to the analysis in [21] by the following steps:

Step 1: Solve (βI + ξW )ω = r2 for ω;
Step 2: Compute ω1 = r1 + Tω;
Step 3: Solve (αI + ξW + T (βI + ξW )−1)z1 = ω1 for z1;
Step 4: Solve (βI + ξW )ν = Tz1 for ν;
Step 5: z2 = ω − ν.

Remark 2.3. Through similar analysis about Algorithm 1 in [23], the authors can
find we need to solve a linear system with the coefficient matrix αI + ξW +T (βI +
ξW )−1T and two linear systems with the coefficient matrix βI + ξW . Moreover,
these linear systems are symmetric positive definite for α > 0, β > 0 and ξ > 0. So,
we use CG method, Cholesky or LU factorization to solve the sub-systems through
selecting appropriate parameters.

3. Convergence of PSS method
In this section, we will study the convergence of the parameter shift-splitting iter-
ation method, which is motivated by the corresponding results in [32]. Let ρ(T )
denote the spectral radius of the matrix T . Then the two-sweep shift-splitting iter-
ation converges if and only if ρ(T ) < 1. Let λ be an eigenvalue of T and [ϕ∗, ψ∗]T

be the corresponding eigenvector. Then we have (αI − ξW )ϕ+ ξTψ = λ(αI + ξW )ϕ− λξTψ,

−ξTϕ+ (βI − ξW )ψ = λξTϕ+ λ(βI + ξW )ψ.
(3.1)
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To study the convergence of the two-sweep shift-splitting iteration method, two
lemmas are given.
Lemma 3.1. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n

be a symmetric positive semidefinite matrix. Let T be defined as in (2.5) with
α > 0, β > 0 and ξ > 0. If λ is an eigenvalue of the iteration matrix T , then
λ ̸= ±1.

Proof. If λ = 1, then from Eq. (3.1), we can obtain

ξWϕ− ξTψ = 0, (3.2)

and
ξTϕ+ ξWψ = 0. (3.3)

By similar proving process to Lemma 2.1 in [23], we can get λ ̸= 1. Through similar
proving, we can also get λ ̸= −1.

Lemma 3.2. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈ Rn×n

be a symmetric positive semidefinite matrix. Let λ be an eigenvalue of the iteration
matrix T (with α > 0, β > 0, ξ > 0) and [ϕ∗, ψ∗]T be the corresponding eigenvector
with ϕ, ψ ∈ Cn×n. Then if ψ = 0, we have |λ| < 1.

Proof. If ψ = 0, then from (3.1) we get

(αI + ξW )−1(αI − ξW )ϕ = λϕ. (3.4)

Since W is symmetric positive definite, then by [9] we can obtain

|λ| ≤∥ (αI + ξW )−1(αI − ξW ) ∥2< 1. (3.5)

Theorem 3.3. Let W ∈ Rn×n be a symmetric positive definite matrix, and T ∈
Rn×n be a symmetric positive semidefinite matrix. Let ρ(T ) denote the spectral
radius of the parameter shift-splitting iteration matrix T . Then it holds that

ρ(T ) < 1,∀α > 0, β > 0, ξ > 0 (3.6)

i.e., the parameter shift-splitting iterative method converges to the unique solution
of the generalized saddle point problems (1.4).
Proof. Let λ be an eigenvalue of the iteration matrix T (with α > 0, β > 0, ξ > 0)
and [ϕ∗, ψ∗]T be the corresponding eigenvector with ϕ, ψ ∈ Cn×n.

If ψ = 0, then from Lemma 3.2 we can obtain |λ| < 1.
If ψ ̸= 0, without loss of generality let ||ψ||2 = 1. Multiplying both sides of the

second equation in Eq. (3.1) by ψ∗ yields

− ξ(Tψ)∗ϕ+ β − ξψ∗Wψ = ξλ(Tψ)∗ϕ+ λ(β + ξψ∗Wψ). (3.7)

If Tψ = 0, then Eq. (3.7) implies

|λ| =
∣∣∣∣β − ξψ∗Wψ

β + ξψ∗Wψ

∣∣∣∣ < 1. (3.8)

If Tψ ̸= 0, by Lemma 3.1 we have λ ̸= −1. Then we can get from the first equation
in Eq. (3.1) that ϕ ̸= 0 and

Tψ =
α(λ− 1)

ξ(1 + λ)
ϕ+Wϕ. (3.9)
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Substituting (3.9) into (3.7), we can obtain

(1− λ)β − (1 + λ)ξψ∗Wψ = ξ(λ+ 1)(α
λ̄− 1

(1 + λ̄)ξ
ϕ∗ϕ+ ϕ∗Wϕ). (3.10)

Here, λ̄ denotes the conjugate of λ. Let ς = ψ∗Wψ,φ = ϕ∗ϕ, χ = ϕ∗Wϕ, we can
obtain from Eq. (3.10)

ωβ + αω̄φ = ξ(ς + χ), (3.11)
where ω = 1−λ

λ+1 . Since α, β, ς, φ, χ, ξ > 0, from Eq. (3.11) we have

Re(ω) =
ξ(ς + χ)

β + αφ
> 0, (3.12)

where Re(ω) denotes real part of ω. So, we can obtain

|λ| = 1− ω

1 + ω
=

√
[1−Re(ω)]2 + [Im(ω)]2

[1 +Re(ω)]2 + [Im(ω)]2
< 1, (3.13)

where Re(ω) and Im(ω) denote real part and imaginary part of ω, respectively.
Remark 3.1. [20, 21, 28] From Theorem 3.3, we know that the parameter shift-
splitting iterative method is convergent unconditionally. However, the convergence
of the stationary iteration is typically too slow for the method to be competitive.
For this reason, we propose using the Krylov subspace method to accelerate the con-
vergence of the iteration. In particular, Krylov subspace methods apply techniques
that involve orthogonal projections onto subspaces of the form

K(A, b) ≡ span{b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and
generalized minimal residual method (GMRES) are all common iterative Krylov
subspace methods. The CG method is used for symmetric, positive definite ma-
trices, MINRES for symmetric and possibly indefinite matrices and GMRES for
unsymmetric matrices.

4. Numerical examples
In this section, we present one example [3] to illustrate the effectiveness of the
parameter shift-splitting preconditioner for GMRES(m) method and MINRES to
solve the linear systems (1.3) in the sense of iteration step (denoted as ItGMRES),
elapsed CPU time in seconds (denoted as CPU), and relative residual error (denoted
as ResGMRES). All numerical examples are carried out in Matlab 7.0. In our
experiments, all runs with respect to both GSS method and PSS method are started
from initial vector ((x(0))T , (y(0))T )T = 0, and terminated if the current iteration
satisfy RES := ∥b−Au(k)∥2

∥b∥2
< 10−6.

Consider the linear system of equations (1.1) with

T = I ⊗ V + V ⊗ I and W = 10(I⊗VC +VC ⊗ I) + 9(e1e
T
l + ele

T
1 )⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rl×l,VC = V − e1e
T
l − ele

T
1 ∈ Rl×l and e1 and el

are the first and last unit vectors in Rl, respectively. Here T and K correspond
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Figure 1. The eigenvalue distribution for the generalized shift-splitting preconditioned matrix T −1
GSSA

when α = β = 0.001(the first), the parameter shift-splitting preconditioned matrix T −1
PSSA when α =

β = 0.001, ξ = 0.8(the second),α = β = 0.001, ξ = 0.7(the third) and α = β = 0.001, ξ = 0.5(the
fourth), respectively. Here, l = 16.
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Figure 2. The eigenvalue distribution for the parameter shift-splitting preconditioned matrix T −1
PSSA

when α = β = 0.001, ξ = 0.5(the first),α = β = 0.001, ξ = 0.3(the second), α = β = 0.001, ξ = 0.1(the
third) and α = β = 0.001, ξ = 1.3(the fourth), respectively. Here, l = 16.
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Figure 3. The eigenvalue distribution for the generalized shift-splitting preconditioned matrix T −1
GSSA

when α = β = 0.001(the first), the parameter shift-splitting preconditioned matrix T −1
PSSA when α =

β = 0.001, ξ = 0.8(the second),α = β = 0.001, ξ = 0.7(the third) and α = β = 0.001, ξ = 0.5(the
fourth), respectively. Here, l = 24.
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Figure 4. The eigenvalue distribution for the parameter shift-splitting preconditioned matrix T −1
PSSA

when α = β = 0.001, ξ = 0.5(the first),α = β = 0.001, ξ = 0.3(the second), α = β = 0.001, ξ = 0.1(the
third) and α = β = 0.001, ξ = 1.3(the fourth), respectively. Here, l = 24.
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to the five-point centered difference matrices approximating the negative Laplacian
operator with homogeneous Dirichlet boundary conditions and periodic boundary
conditions, respectively, on a uniform mesh in the unit square [0, 1]× [0, 1] with the
mesh-size h = 1

l+1 .
In Figs 1 ∼ 4, we report the eigenvalue distribution for the generalized shift-

splitting preconditioned matrix T −1
GSSA and the parameter shift-splitting precondi-

tioned matrix for different parameter, respectively. In Tables 1 ∼ 2, we report iter-
ation counts, relative residual and cpu time about preconditioned matrices T −1

GSSA
and T −1

PSSA with l = 16 and l = 24 when choosing different parameters. Figs 1 ∼ 4
and Tables 1 ∼ 2 show that the GSS preconditioner and PSS preconditioner have
more clustered eigenvalue distribution when choosing different parameters.

Table 1. Iteration counts, relative residual and CPU time about preconditioned matrices T −1
GSSA and

T −1
PSSA when choosing different parameters. Here, l = 16.

α β ξ ItGMRES ResGMRES CPU(s)
0.001 0.001 1 1(1) 4.0867× 10−9 0.105
0.001 0.001 0.8 1(1) 5.0454× 10−9 0.110
0.001 0.001 0.7 1(1) 8.3407× 10−9 0.104
0.001 0.001 0.5 1(1) 1.6350× 10−8 0.109
0.001 0.001 0.3 1(1) 4.5426× 10−8 0.103
0.001 0.001 0.1 1(1) 4.0932× 10−7 0.107
0.001 0.001 1.1 1(1) 3.3773× 10−9 0.103
0.001 0.001 1.3 1(1) 2.4180× 10−9 0.133

Table 2. Iteration counts, relative residual and CPU time about preconditioned matrices T −1
GSSA and

T −1
PSSA when choosing different parameters. Here, l = 24.

α β ξ ItGMRES ResGMRES CPU(s)
0.001 0.001 1 2(1) 1.4192× 10−8 0.302
0.001 0.001 0.8 2(1) 1.774× 10−8 0.299
0.001 0.001 0.7 2(1) 2.0275× 10−8 0.306
0.001 0.001 0.5 2(1) 2.8385× 10−8 0.302
0.001 0.001 0.3 2(1) 4.7309× 10−8 0.306
0.001 0.001 0.1 2(1) 1.4195× 10−7 0.299
0.001 0.001 1.1 2(1) 1.2902× 10−8 0.301
0.001 0.001 1.3 2(1) 1.0917× 10−8 0.303

5. Conclusions
In this paper, based on the generalized shift-splitting (GSS) preconditioner [23],
the author generalizes the corresponding algorithms and further studies the pa-
rameter shift-splitting (PSS) preconditioner for complex symmetric linear systems.
Moreover, theoretical analysis shows the parameter shift-splitting iterative method
is unconditionally convergent. In finally, one example is provided to confirm the
effectiveness.
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