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Abstract The paper is connected with the existence of solutions and Hyers-
Ulam stability for a class of nonlinear fractional differential equations with
κ-Caputo fractional derivative in boundary value problems. The existence and
uniqueness results are obtained by utilizing the Banach fixed point theorem
and Leray-Schauder nonlinear alternative theorem. In addition, two sufficient
conditions to guarantee the Hyers-Ulam stability and the Hyers-Ulam-Rassias
stability of boundary value problems of fractional differential equations are
also presented. Finally, theoretical results are illustrated by two numerical
examples.
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1. Introduction

In recent years, the theory of fractional differential equations has become an im-
portant reaserch topic, see [10,12,14,17,29]. Boundary value problems of fractional
differential equations have various applications in science such as physics, chemistry,
mechanics and engineering (see, e.g., [6, 9, 13, 15]). Meanwhile, based on different
kinds of analytical techniques, various results about the existence of solutions have
been obtained, which can be found in [8, 20, 25, 27]. In [30], the authors consid-
ered the existence of solutions to boundary value problems for fractional differential
equations −Dαw(t) = p(t)h(t, w(t))− q(t), 0 < t < 1,

w(0) = w′(0) = w(1) = 0,

where Dα is the standard Riemann-Liouville derivative, 2 < α ≤ 3 is a real number,
q : (0, 1) → [0,∞) is Lebesgue integrable and does not vanish identically on any
subinterval of (0, 1). Also, they established the existence results by Krasnoselskii’s
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fixed point theorem in a cone. Cui [5] studied the following boundary value problemsDαw(t) + p(t)h(t, w(t)) + q(t) = 0, 0 < t < 1,

w(0) = w′(0) = 0, w(1) = 0,

where Dα and α satisfy the above conditions, p : (0, 1)→ [0,∞) is continuous and
does not vanish identically on any subinterval of (0, 1), q : (0, 1) → R is contin-
uous and Lebesgue integrable. Under the assumption that h(t, w) is a Lipschitz
continuous function, Cui [5] deduced that the Lipschitz constant is related to the
first eigenvalues corresponding to the relevant operators. Badawi etc [3] studied the
following boundary value problems cDαw(t) + p(t)h(t, w(t)) + q(t) = 0, 0 < t < 1,

w(0) = a, w′(0) = b, w(1) = d,

where cDα is a Caputo fractional derivative with 2 < α ≤ 3, a, b, d ∈ R are con-
stants, p : (0, 1) → [0,∞) is continuous and does not vanish identically on any
subinterval of (0, 1), q : (0, 1)→ R is continuous and Lebesgue integrable. Under the
assumption that the bounded conditions are constants, by means of the Banach con-
traction mapping principle and Larry-Schauder alternative theorem, Badawi etc [3]
investigated the existence and uniqueness of solutions for the boundary value prob-
lems of the nonlinear fractional differential equations with a variable coefficient.

Recently, the Hyers-Ulam stability of differential equations has received much
attention because it is quite significant in numerical analysis, economics, biology and
other practical problems which are not easy to find exact solutions, see [4, 16, 18,
21, 22, 28]. Hyers-Ulam-Rassias stability is an extension of Hyers-Ulam stability, it
relaxes the linear assumption used in Hyers-Ulam stability and allows for nonlinear
perturbations. The study of Hyers-Ulam stability and Hyers-Ulam-Rassias stability
contribute to the development of new mathematical tools and concepts that have
proved useful in solving some otherwise thorny problems in these fields.

In this paper we study the following boundary value problems for fractional
differential equations (BVP in short) cDα;κw(t) + p(t)h(t, w(t)) + q(t) = 0, 0 < t < 1,

w(0) = a, w′(0) = b, w(1) = d,
(1.1)

where cDα;κ is a κ-Caputo fractional derivative with 2 < α ≤ 3 (it is also called
the Caputo-type fractional derivatives with respect to the function κ, see Definition
2.2 below), a, b, d ∈ R are constants, q : (0, 1) → R is continuous and Lebesgue
integrable, p : (0, 1) → [0,∞) is continuous and does not vanish identically on any
subinterval of (0, 1).

The rest of the present paper is organized as follows. In section 2, we recall some
useful fixed point theorems and give the solution to boundary value problems by
virtue of Green’s function. In section 3, we use Leray-Schauder alterative theorem
and Banach fixed point theorem to explore the existence and uniqueness of the so-
lution. In section 4, we study the Hyers-Ulam stability and the Hyers-Ulam-Rassias
stability of nonlinear fractional differential equations. Our theoretical results are
illustrated by two numerical examples in section 5.
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2. Preliminaries

We recall some concepts concerning to the fractional integrals (FI) and fractional
derivatives (FD) of a function w with respect to another function κ. Let [a, T ] ⊂ R
such that 0 ≤ a < T . Denote by C([a, T ],R) the space of continuous functions
w on [a, T ] with the norm defined by ‖w‖ = supt∈[a,T ] |w(t)|. For convenience,
throughout the paper, we choose the notation Kκ to express the set of the functions
κ : [a, T ]→ R+ satisfying the properties as follows: κ is an increasing, positive, and
differentiable function such that κ′(t) 6= 0, for all t ∈ (a, T ).

Definition 2.1. [1] Let α > 0 and n ∈ N = [α] + 1. The Riemann-Liouville FD
with respect to κ (or the κ-Riemann-Liouville FD) with the order α of w is defined
by

RLDα;κ
a+ w(t) :=

(
1

κ′(t)

d

dt

)n
Jn−α;κ
a+ w(t), (2.1)

where Jα;κ
a+ w(t) denotes the fractional integral of w with respect to κ with the order

α on [a, T ] defined as follows

Jα;κ
a+ w(t) :=

1

Γ(α)

∫ t

a

κ′(s)(κ(t)− κ(s))α−1w(s)ds,

where

n =

{
[α] + 1, if α /∈ N,
α, if α ∈ N.

(2.2)

In this paper, the fractional derivative that relates to our work is a Caputo-type
operator defined as the below.

Definition 2.2. [2] Let α > 0 and n ∈ N. The Caputo-type FD with respect to κ
(or the κ-Caputo FD) with the order α of w is defined by

cDα;κ
a+ w(t) := RLDα;κ

[
w(t)−

n−1∑
i=0

w
[i]
κ (a)

i!
(κ(t)− κ(a))i

]
, (2.3)

where w ∈ Cn−1([a, T ],R), RLDα;κ
a+ w(t) exists and

w[i]
κ (t) :=

(
1

κ′(t)

d

dt

)i
w(t).

It follows from Theorem 3 in Almeida [2] that for any w ∈ Cn([a, T ],R), the
κ-Caputo FD of w is given by

cDα;κ
a+ w(t) = Jn−α;κ

a+

(
1

κ′(t)

d

dt

)n
w(t)

=
1

Γ(n− α)

∫ t

a

κ′(s)(κ(t)− κ(s))α−1w[n]
κ (s)ds.

Some properties of the FI and the κ-Caputo FD are provided below.
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Theorem 2.1. [23] Let α > 0. The following assertions hold: (i) If the function
w : [a, T ]→ R is continuous, then

cDα;κ
a+ J

α;κ
a+ w(t) = w(t).

(ii) If w ∈ Cn−1([a, T ],R) and RLDα;κ
a+ w(t) exists, then

Jα;κ
a+ Dα;κ

a+ w(t) = w(t)−
n−1∑
i=0

w
[i]
k (a)

i!
(κ(t)− κ(a))i.

(iii) If µ(t) = (κ(t)− κ(a))β and v(t) = Eα,1 (λ(κ(t)− κ(a))α), then

Jα;κ
a+ µ(t) =

Γ(1 + β)

Γ(β + α+ 1)
(κ(t)− κ(a))β+α,

Jα;κ
a+ v(t) =

1

λ
[Eα,1 (λ(κ(t)− κ(a))α)− 1] ,

cDα;κ
a+ µ(t) =

Γ(1 + β)

Γ(β − α+ 1)
(κ(t)− κ(a))β−α,

cDα;κ
a+ v(t) = λEα,1 (λ(κ(t)− κ(a))α) .

Next we introduce Leray-Schauder nonlinear alternative theorem to prove the
existence of the solution of (1.1).

Lemma 2.1. ( [19] Leray-Schauder nonlinear alternative). Let F be a Banach
space and C be a closed, convex subset of F . Ω is an open subset of C and 0 ∈ Ω.
Suppose T : Ω̄ → C is a continuous, compact map (that is, T (Ω) is a relatively
compact subset of C). Then, either
(i) T has a fixed point in Ω, or
(ii) there is a function w ∈ ∂Ω and λ ∈ (0, 1) such that w = λT (w).

Now, we give the expresssion for the solution of the corresponding linear frac-
tional differential equations of (1.1) by means of Green’s function.

Lemma 2.2. Let a, b, d ∈ R, y ∈ C[0, 1] and 2 < α ≤ 3. The unique solution of
the boundary value problems cDα;κw(t) + y(t) = 0, 0 < t < 1,

w(0) = a, w′(0) = b, w(1) = d,
(2.4)

is given by

w(t) = A(t) +

∫ 1

0

G(t, s)y(s)ds, (2.5)

where A(t) = a + κ(t)−κ(0)
κ′(0) b + (κ(t)−κ(0))2

(κ(1)−κ(0))2

[
d− a− κ(1)−κ(0)

κ′(0) b
]
, G(t, s) is a Green’s

function given by

G(t, s)=
1

Γ(α)

m(t)κ′(s)(κ(1)− κ(s))α−1 − κ′(s) (κ(t)− κ(s))
α−1

, 0 ≤ s ≤ t ≤ 1,

m(t)κ′(s)(κ(1)− κ(s))α−1, 0 ≤ t ≤ s ≤ 1,

where m(t) = (κ(t)−κ(0))2

(κ(1)−κ(0))2
.
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Proof. Applying Theorem 2.1, the equation (2.4) is equivalent to the integral
equation

w(t) = w(0) +
w′(0)

κ′(0)
(κ(t)− κ(0)) + C1(κ(t)− κ(0))2 − Jα;κy(t). (2.6)

Substituting w(0) = a,w′(0) = b and w(1) = d into equation (2.6), we obtain

d = a+
b

κ′(0)
(κ(1)− κ(0)) + C1(κ(1)− κ(0))2 − Jα;κy(1),

and then

C1 =
d− a− b

κ′(0) (κ(1)− κ(0)) + Jα;κy(1)

(κ(1)− κ(0))2
.

Substituting C1 into equation (2.6), denote m(t) = (κ(t)−κ(0))2

(κ(1)−κ(0))2
, we obtain

w(t) = a+
κ(t)− κ(0)

κ′(0)
b+m(t)

[
d− a− κ(1)− κ(0)

κ′(0)
b+ Jα;κy(1)

]
− Jα;κy(t)

= a+
κ(t)− κ(0)

κ′(0)
b+m(t)

[
d− a− κ(1)− κ(0)

κ′(0)
b

]
+m(t)Jα;κy(1)− Jα;κy(t). (2.7)

Thus, we have

w(t) = A(t) +

∫ 1

0

G(t, s)y(s)ds.

The proof is completed.
We recall the definitions of the Hyers-Ulam stability (HU-stability) and the

Hyers-Ulam-Rassias stability (HUR-stability) of BVP (1.1).

Definition 2.3. [24] BVP (1.1) is called HU-stable if there exists a constant Ch > 0
such that for each ε > 0 and for each solution ŵ ∈ C1([a, T ],R) of the following
inequality

|cDα;κŵ(t) + p(t)h(t, ŵ(t)) + q(t)| ≤ ε, ∀t ∈ [a, T ],

there exists a solution w ∈ C1([a, T ],R) of BVP (1.1) satisfying

|w(t)− ŵ(t)| ≤ Chε, ∀t ∈ [a, T ].

Definition 2.4. [26] BVP (1.1) is called HUR-stable with respect to ϕ ∈ C([a, T ],
R) if there exists a constant Ch,ϕ > 0 such that for each ε > 0 and each solution
ŵ ∈ C1([a, T ],R) of the inequality

|cDα;κŵ(t) + p(t)h(t, ŵ(t)) + q(t)| ≤ εϕ(t), ∀t ∈ [a, T ], (2.8)

there exits a solution w ∈ C1([a, T ],R) of BVP (1.1) satisfying the estimate

|w(t)− ŵ(t)| ≤ Ch,ϕεϕ(t), ∀t ∈ [a, T ].

Here, we observe that HUR-stable in Definition 2.4 implies HU-stable in Defi-
nition 2.3 if ϕ(t) = 1. Similar to Remark 4.6 in [7], Remark 2.11 and Remark 2.9
in [26], we also receive some remarks.

Remark 2.1. A function w ∈ C1([a, T ],R) is a solution of BVP (1.1) if and only
if there exists a function w̄ ∈ C1([a, T ],R) such that:
(i) |w̄(t)| ≤ ε (or |w̃(t)| ≤ εϕ(t));
(ii) cDα;κw(t) + p(t)h(t, w(t)) + q(t) = w̄(t),∀t ∈ [a, T ].
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3. Existence results

In this section, we study the existence of solutions to BVP (1.1). Let us denote by
C([a, T ],R) the Banach space of all continuous functions w : [0, 1] → R endowed
with supremum norm ‖w‖ = maxt∈[0,1] |w(t)|. According to equation (2.5), we can
easily give the definition of the solution of BVP (1.1).

Definition 3.1. A function w : [0, 1]→ R is said to be a solution to BVP (1.1), if
w satisfies

w(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds (3.1)

for t ∈ [0, 1].

Define an operator T : C([0, 1],R)→ C([0, 1],R) by

Tw(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds

for w ∈ C([0, 1],R) and t ∈ [0, 1]. Then, we transform the existence of solutions to
the fixed point problem. We first list the following hypotheses.
(H1) h : [0, 1]× R→ R is continuous.
(H2) There exists a nonnegative function g ∈ L1([0, 1],R+) such that

|h(t, w)− h(t, v)| ≤ g(t)|w − v|

for all w, v ∈ R and t ∈ [0, 1].
(H3) There exists a nonnegative function φ ∈ Lp([0, 1],R+) where p > 1, and a
continuous nondecreasing function ψ : [0,∞)→ (0,∞) such that

|h(t, w)| ≤ φ(t)ψ(|w|)

for all (t, w) ∈ [0, 1]× R.

Theorem 3.1. Suppose that the conditions (H1) and (H2) are satisfied. If

N = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)g(s)ds

∣∣∣∣ < 1, (3.2)

then the BVP (1.1) has a unique solution in C([0, 1],R).

Proof. Consider the operator T : C([0, 1],R)→ C([0, 1],R) defined by (3). Then,
w ∈ C([0, 1],R) is a solution to the BVP (1.1) if and only if w is a fixed point of T .
For w, v ∈ C([0, 1],R), applying condition (H2), we obtain

|Tw(t)− Tv(t)| ≤
∫ 1

0

G(t, s)|p(s)[h(s, w(s))− h(s, v(s))]|ds

≤ max
0≤t≤1

|w(t)− v(t)|
∫ 1

0

G(t, s)|p(s)g(s)|ds

≤ ‖w − v‖
∫ 1

0

G(t, s)|p(s)g(s)|ds.

Hence, ‖Tw−Tv‖ ≤ N‖w−v‖. The assumption (3.2) shows that T is a contraction.
By Banach fixed point theorem, T has a unique fixed point in C([0, 1],R), which is
the solution to the BVP (1.1). The proof is completed.
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Next, we prove an existence result by using Larry-Schouder nonlinear alternative
theorem. For simplicity, let

k = max
0≤t≤1

|A(t)|

=

∣∣∣∣a+
κ(1)− κ(0)

κ′(0)
b+

(κ(1)− κ(0))2

(κ(1)− κ(0))2

(
d− a− κ(1)− κ(0)

κ′(0)
b

)∣∣∣∣
=

∣∣∣∣a+
κ(1)− κ(0)

κ′(0)
b+ d− a− κ(1)− κ(0)

κ′(0)
b

∣∣∣∣
= |d|,

M1 = max0≤t≤1

∣∣∣∫ 1

0
G(t, s)p(s)φ(s)ds

∣∣∣, M2 = max0≤t≤1

∣∣∣∫ 1

0
G(t, s)q(s)ds

∣∣∣ + k, and

M = max{M1,M2}, where φ is the function appearing in condition (H3).
We first verify a lemma for the sake of the proof of our theorem.

Lemma 3.1. For all t1, t2 ∈ [0, 1], t1 < t2,
∫ 1

0
|G(t1, s)−G(t2, s)|ds→ 0 as t1−t2 →

0.

Proof. For all t1, t2 ∈ [0, 1], t1 < t2, we have∫ 1

0

|G(t1, s)−G(t2, s)|ds

=

∫ t1

0

|G(t1, s)−G(t2, s)|ds+

∫ t2

t1

|G(t1, s)−G(t2, s)|ds

+

∫ 1

t2

|G(t1, s)−G(t2, s)|ds

=
1

Γ(α)

∫ t1

0

∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
(κ(1)− κ(s))α−1 − (κ(t2)− κ(0))2

(κ(1)− κ(0))2
(κ(1)− κ(s))α−1

−(κ(t1)− κ(s))α−1 + (κ(t2)− κ(s))α−1
∣∣ dκ(s)

+
1

Γ(α)

∫ t2

t1

∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
− (κ(t2)− κ(0))2

(κ(1)− κ(0))2

∣∣∣∣ (κ(1)− κ(s))α−1dκ(s)

+
1

Γ(α)

∫ t2

t1

(κ(t2)− κ(s))α−1dκ(s)

+
1

Γ(α)

∫ 1

t2

∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
− (κ(t2)− κ(0))2

(κ(1)− κ(0))2

∣∣∣∣ (κ(1)− κ(s))α−1dκ(s)

=
1

Γ(α)

∫ 1

0

∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
− (κ(t2)− κ(0))2

(κ(1)− κ(0))2

∣∣∣∣ (κ(1)− κ(s))α−1dκ(s)

+
1

Γ(α)

∫ t2

0

(κ(t2)− κ(s))α−1dκ(s)− 1

Γ(α)

∫ t1

0

(κ(t1)− κ(s))α−1dκ(s)

=
1

Γ(α+ 1)

∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
− (κ(t2)− κ(0))2

(κ(1)− κ(0))2

∣∣∣∣ [κ(1)]α

+
1

Γ(α+ 1)
|(κ(t2)− κ(0))α − (κ(t1)− κ(0))α| .
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It is easy to see that∣∣∣∣ (κ(t1)− κ(0))2

(κ(1)− κ(0))2
− (κ(t2)− κ(0))2

(κ(1)− κ(0))2

∣∣∣∣→ 0, |(κ(t2)−κ(0))α− (κ(t1)−κ(0))α| → 0,

as t1 − t2 → 0. Therefore, we have
∫ 1

0
|G(t1, s)−G(t2, s)|ds→ 0.

Theorem 3.2. Suppose that (H1) and (H3) are satisfied. If

lim sup
r→+∞

M
ψ(r)

r
< 1,

then the BVP (1.1) has at least one solution in C([0, 1],R).

Proof. Firstly, let us prove that T is completely continuous. It is obvious that
T is continuous since h and G are continuous. There exists a number r > 0 such
that M(ψ(r) + 1) < r since lim supr→+∞M ψ(r)

r < 1. Let Br = {w ∈ C([0, 1],R) :
‖w‖ ≤ r}. Then Br is a bounded subset in C([0, 1],R). For any w ∈ Br, we have

|Tw(t)| =
∣∣∣∣∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds+A(t)

∣∣∣∣
≤
∫ 1

0

|G(t, s)|[|p(s)|φ(s)ψ(||w||) + |q(s)|]ds+ |A(t)|

≤ ψ(r)

∫ 1

0

|G(t, s)|ds|p(s)|φ(s) +

∫ 1

0

|G(t, s)|ds|q(s)|+ |A(t)|

≤ ψ(r)

∫ 1

0

|G(t, s)|ds|p(s)|φ(s) +

∫ 1

0

|G(t, s)|ds|q(s)|+ k

≤ (ψ(r)M1 +M2)

≤M(ψ(r) + 1).

Hence T (Br) is uniformly bounded. For all w ∈ Br and t1, t2 ∈ [0, 1], t1 < t2, we
have

|Tw(t1)− Tw(t2)| ≤
∫ 1

0

|G(t1, s)−G(t2, s)||p(s)h(s, w(s)) + q(s)|ds

+ |A(t1)−A(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)||p(s)|φ(s)ψ(‖w‖)ds

+

∫ 1

0

|G(t1, s)−G(t2, s)||q(s)|ds+ |A(t1)−A(t2)|

≤‖p‖ψ(r)

∫ 1

0

|G(t1, s)−G(t2, s)|φ(s)ds

+ ‖q‖
∫ 1

0

|G(t1, s)−G(t2, s)|ds+ |A(t1)−A(t2)|.

We can get the following equality by use of Hölder inequality∫ 1

0

|G(t1, s)−G(t2, s)|φ(s)ds
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≤
∫ 1

0

|(m(t1)−m(t2))(κ(1)− κ(s))α−1φ(s)|dκ(s)

+

∫ t2

0

∣∣(κ(t2)− κ(s))α−1φ(s)
∣∣ dκ(s)−

∫ t1

0

∣∣(κ(t1)− κ(s))α−1φ(s)
∣∣ dκ(s)

≤ |m(t1)−m(t2)|
(∫ 1

0

(κ(1)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ 1

0

φp(κ(s))dκ(s)

) 1
p

+

(∫ t2

0

(κ(t2)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ t2

0

φp(κ(s))dκ(s)

) 1
p

−
(∫ t1

0

(κ(t2)− κ(s))(α−1)qdκ(s)

) 1
q
(∫ t1

0

φp(κ(s))dκ(s)

) 1
p

≤ ‖φ‖p|m(t1)−m(t2)|
(1 + (α− 1)q)

1
q

(κ(1)− κ(0))
1+(α−1)q

q

+
‖φ‖p

(1 + (α− 1)q)
1
q

(
(κ(t2)− κ(0))

1+(α−1)q
q − (κ(t1)− κ(0))

1+(α−1)q
q

)
,

where p > 1 with 1
p + 1

q = 1 and m(t) = (κ(t)−κ(0))2

(κ(1)−κ(0))2
. It is easy to see that

|Tw(t1) − Tw(t2)| → 0 as t1 − t2 → 0 due to Lemma 3.1, and the convergence is
independent of w ∈ Br. This show that T (Br) is equicontinuous. By Arzela-Ascolli
theorem, we deduce that T is completely continuous.

Now, let Ω = {w ∈ Br : ‖w‖ < r}. Then, Ω is an open and bounded subset in
Br and 0 ∈ Ω. If there is a w ∈ ∂Ω such that w = λTw for some λ ∈ (0, 1) and for
each t ∈ [0, 1], then we have

|w(t)| = λ|Tw(t)| ≤ |Tw(t)| ≤M(ψ(r) + 1) < r.

This is contradict to the fact that w ∈ ∂Ω. Hence Lemma 2.1 (Leray-Schauder
nonlinear alternative) allows us to conclude that T has a fixed point w∗ ∈ Ω̄.
Therefore the BVP (1.1) has at least a solution w∗ ∈ Br. This completes the proof.

In our next theorem, we replace condition (H3) with anothor condition.

(H4) There exists positive functions a1, a2 ∈ C[0, 1] such that

|h(t, w)| ≤ a1(t) + a2(t)|w|

for all t ∈ [0, 1].

Similar to Theorem 3.2 above, we let B = max0≤t≤1

∣∣∣∫ 1

0
G(t, s)p(s)a2(s)ds

∣∣∣, A =

max0≤t≤1

∣∣∣∫ 1

0
G(t, s)a1(s)ds

∣∣∣ + max0≤t≤1

∣∣∣∫ 1

0
G(t, s)q(s)ds

∣∣∣ + k, and k = ||A(t)|| =

|d|, where a1 and a2 are the functions appearing in condition (H4).

Theorem 3.3. Assume that conditions (H1) and (H4) hold. Suppose that 0 < B <
1. Then, there exists a solution of BVP (1.1).

Proof. Let us prove that T is completely continuous firstly. It is clear that T is
continuous since h and G are continuous. Let U = {w ∈ C([0, 1],R) : ‖w‖ < R},
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where R = A
1−B or R = RB +A. Then,

|Tw(t)| =
∣∣∣∣∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds+A(t)

∣∣∣∣
≤
∫ 1

0

|G(t, s)|[|p(s)|(a1(s) + a2(s)|w|) + |q(s)|]ds+ |A(t)|

≤ ‖w‖
∫ 1

0

|G(t, s)p(s)a2(s)|ds+

∫ 1

0

|G(t, s)a1(s)|ds

+

∫ 1

0

|G(t, s)q(s)|ds+ k

≤ ‖w‖B +A

≤ RB +A.

Hence TU is uniformly bounded. For all t1, t2 ∈ [0, 1], t1 < t2 and w ∈ U , we have

|Tw(t1)− Tw(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)||p(s)h(s, w(s)) + q(s)|ds+ |A(t1)−A(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)||p(s)|(a1(s) + a2(s)‖w‖)ds

+

∫ 1

0

|G(t1, s)−G(t2, s)||q(s)|ds+ |A(t1)−A(t2)|

≤‖p‖R
∫ 1

0

|G(t1, s)−G(t2, s)|a2(s)ds+ ‖p‖
∫ 1

0

|G(t1, s)−G(t2, s)|a1(s)ds

+

∫ 1

0

|G(t1, s)−G(t2, s)||q(s)|ds+ |A(t1)−A(t2)|

≤(‖pa2‖R+ ‖pa1‖+ ‖q‖)
∫ 1

0

|G(t1, s)−G(t2, s)|ds+ |A(t1)−A(t2)|.

It is easy to see that |Tw(t1) − Tw(t2)| → 0 as t1 − t2 → 0 due to Lemma 3.1.
Thus |Tw(t1) − Tw(t2)| → 0, and the convergence is independent of w ∈ U . This
show that TU is equicontinuous. By Arzela-Ascolli theorem, we deduce that T is
completely continuous.

Now let Ω = {w ∈ B : ‖w‖ < R}. Then, Ω is an open and bounded subset in B
and 0 ∈ Ω. If there is a w ∈ ∂Ω such that w = λTw for some λ ∈ (0, 1) and each
t ∈ [0, 1], then for this w and λ we have

R = ‖w‖ = λ‖Tw‖ < ‖Tw‖ ≤ A+B‖w‖ ≤ RB +A = R,

which is a contradiction. By Lemma 2.1 (Leray-Schauder nonlinear alternative),
there exists a fixed point w ∈ Ω̄ of T . This fixed point is a solution of BVP (1.1)
and the proof is complete.

As a special case of κ-type fractional integrals and fractional derivatives,
Hadamard type fractional integrals and fractional derivatives are given.
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Definition 3.2. [11] Let (a, b)(0 ≤ a < b ≤ ∞) be a finite or infinite interval of
the half-axis R+, and the left-sided and right-sided Hadamard fractional integral of
order α > 0 is defined by

Jα;H
a+ w(t) :=

1

Γ(α)

∫ t

a

(
log

t

s

)α−1
w(s)ds

s
(a < t < b),

and

Jα;H
b− w(t) :=

1

Γ(α)

∫ b

t

(
log

s

t

)α−1 w(s)ds

s
(a < t < b).

Definition 3.3. [11] Provided that the integral in Definition 3.2 exists. Let δ =
td/dt. The left-sided and right-sided Hadamard fractional derivatives of order α > 0
on (a, b) are defined by

cDα;H
a+ w(t) := δnJn−α;H

a+ w(t) =

(
t
d

dt

)n
1

Γ(n− α)

∫ t

a

(
log

t

s

)n−α+1
w(s)ds

s
,

and

cDα;H
b− w(t) := (−δ)nJn−α;H

b−α w(t) =

(
−t d
dt

)n
1

Γ(n− α)

∫ b

t

(
log

s

t

)n−α+1 w(s)ds

s
,

where n = [α] + 1 and a < t < b.

Remark 3.1. Let κ(t) = log(t), then κ-type fractional integrals and fractional
derivatives turn into Hadamard type fractional integrals and fractional derivatives.
We obtain the following boundary value problems for fractional differential equation cDα;Hw(t) + p(t)h(t, w(t)) + q(t) = 0, 0 < t < 1,

w(0) = a, w′(0) = b, w(1) = d,
(3.3)

where cDα;H is Hadamard fractional derivatives with 2 < α ≤ 3, a, b, d ∈ R are
constants, q : (0, 1) → R is continuous and Lebesgue integrable and p : (0, 1) →
[0,∞) is continuous and does not vanish identically on any subinterval of (0, 1). It
is obvious that we can get corollarys below.

Corollary 3.1. Suppose that the condition (H1) and (H2) are satisfied. If

N = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)ds

∣∣∣∣ < 1

then the BVP (3.3) has a unique solution in C([0, 1],R).

Corollary 3.2. Suppose that (H1) and (H3) are satisfied. If

lim sup
r→+∞

M
ψ(r)

r
< 1,

then the BVP (3.3) has at least one solution in C([0, 1],R).

Corollary 3.3. Assume that conditions (H1) and (H4) hold. Suppose that 0 <
B < 1. Then, there exists a solution of BVP (3.3).
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4. HU-stability and HUR-stability

In this section, the analysis of HU-stability and HUR-stability of the fractional
differential equation (1.1) is presented.

Theorem 4.1. Assume that the conditions of Theorem 3.1 are satisfied and the
inequality (2.3) has at least one solution. Then, the BVP (1.1) is HU-stable.

Proof. For each ε > 0, and each function ŵ that satisfies the following inequalities

|cDα;κŵ(t) + p(t)h(t, ŵ(t)) + q(t)| ≤ ε, ∀t ∈ [0, 1],

a function w̄(t) = cDα;κŵ(t) + p(t)h(t, ŵ(t)) + q(t) can be found. Then, we have
|w̄(t)| ≤ ε, which implies that

Jα;κw̄(t) = ŵ(t)−A(t)−
∫ 1

0

G(t, s)[p(s)h(s, ŵ(s)) + q(s)]ds, ∀t ∈ [0, 1],

where A(t) is a polynomial function which is given in Lemma 2.2. Then,

ŵ(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, ŵ(s)) + q(s)]ds+ Jα;κw̄(t), ∀t ∈ [0, 1].

According to Theorem 3.1, it has been verified that there is a unique solution w(t)
of BVP (1.1), and w can be expressed as

w(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds.

So, we have

|w(t)− ŵ(t)|

≤
∣∣∣∣∫ 1

0

G(t, s)p(s)(h(s, w(s))− h(s, ŵ(s)))ds

− 1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1w̄(s)ds

∣∣∣∣
≤
∫ 1

0

G(t, s)p(s)|h(s, w(s))− h(s, ŵ(s))|ds

+
1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|w̄(s)|ds.

Since |h(s, w)− h(s, ŵ)| ≤ g(t)|w − ŵ|, it indicates that

|w(t)− ŵ(t)|

≤
∫ 1

0

G(t, s)p(s)g(s)‖w − ŵ‖ds+
1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|w̄(s)|ds

≤ ‖w − ŵ‖
∫ 1

0

G(t, s)p(s)g(s)ds+ ε
1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1ds



Hyers-Ulam-Rassias stability of κ-Caputo fractional... 2915

≤ ‖w − ŵ‖N +
(κ(t)− κ(0))α

Γ(α+ 1)
ε,

where N is as in Theorem 3.1. Let N1 = supt∈[0,1](
(κ(t)−κ(0))α

Γ(α+1) ) = (κ(1)−κ(0))α

Γ(α+1) , we

have
‖w − ŵ‖ ≤ ‖w − ŵ‖N + εN1, ∀t ∈ [0, 1],

or

‖w − ŵ‖ ≤ N1

1−N
ε, ∀t ∈ [0, 1].

If we take Ch = N1

1−N , then we can deduce that

‖w − ŵ‖ ≤ Chε, ∀t ∈ [0, 1],

which leads to the HU-stability of BVP (1.1).

Theorem 4.2. Assume that the conditions of Theorem 3.1 are satisfied, the in-
equality (2.8) has at least one solution and there exists a constant Cϕ > 0 such
that

1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1ϕ(s)ds ≤ Cϕϕ(t), ∀t ∈ [0, 1],

where ϕ ∈ C([0, 1],R+) is an increasing function. Then, the BVP (1.1) is HUR-
stable.

Proof. For each ε > 0, and for each function ŵ that satisfies the following in-
equality

|cDα;κŵ(t) + p(t)h(t, ŵ) + q(t)| ≤ εϕ(t), ∀t ∈ [0, 1],

a function w̃(t) = cDα;κŵ(t) + p(t)h(t, ŵ) + q(t) can be found. Then, we have
|w̃(t)| ≤ εϕ(t), which implies that

Jα;κw̃(t) = ŵ(t)−A(t)−
∫ 1

0

G(t, s)[p(s)h(s, ŵ(s)) + q(s)]ds, ∀t ∈ [0, 1],

where A(t) is a polynomial function which is given in Lemma 2.2. Then,

ŵ(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, ŵ(s)) + q(s)]ds+ Jα;κw̃(t), ∀t ∈ [0, 1].

According to Theorem 3.1, it has been verified that there is a unique solution w(t)
of BVP (1.1), and w can be expressed as

w(t) = A(t) +

∫ 1

0

G(t, s)[p(s)h(s, w(s)) + q(s)]ds,

then, we have

|w(t)− ŵ(t)|

≤
∣∣∣∣∫ 1

0

G(t, s)p(s)(h(s, w(s))− h(s, ŵ(s)))ds

− 1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1w̃(s)ds

∣∣∣∣
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≤
∫ 1

0

G(t, s)p(s)|h(s, w(s))− h(s, ŵ(s))|ds

+
1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|w̃(s)|ds.

Since |h(s, w)− h(s, ŵ)| ≤ g(t)|w − ŵ|, it indicates that

|w(t)− ŵ(t)|

≤
∫ 1

0

G(t, s)p(s)g(s)‖w − ŵ‖ds+
1

Γ(α)

∫ t

0

κ′(s)(κ(t)− κ(s))α−1|w̃(s)|ds

≤ ‖w − ŵ‖
∫ 1

0

G(t, s)p(s)g(s)ds+
1

Γ(α)

∫ t

0

εκ′(s)(κ(t)− κ(s))α−1ϕ(s)ds

≤ ‖w − ŵ‖N + Cϕεϕ(t),

where N is as in Theorem 3.1. Then we can get

‖w − ŵ‖ ≤ ‖w − ŵ‖N + Cϕεϕ(t), ∀t ∈ [0, 1],

or

‖w − ŵ‖ ≤ Cϕ
1−N

εϕ(t), ∀t ∈ [0, 1].

If we take Ch,ϕ =
Cϕ

1−N , then we can deduce

‖w − ŵ‖ ≤ Ch,ϕεϕ(t), ∀t ∈ [0, 1],

which leads to the HUR-stability of BVP (1.1).

5. Example

Example 5.1. Consider the following fractional boundary value problem:
cD

7
3 ;κw(t) +

t sin(w)

3(1 + t)
+ t = 0, 0 ≤ t ≤ 1,

w(0) = a, w′(0) = b, w(1) = d,

(5.1)

where κ(t) =
√

1 + t. In this case, we have

h(t, w) =
t sin(w)

3
, 2 < α =

7

3
< 3, p(t) =

1

1 + t
, q(t) = t,

|h(t, w)− h(t, v)| ≤ 1 + t

3
|2 cos(

w + v

2
) sin(

w − v
2

)| ≤ 1 + t

3
|w − v|, g(t) =

1 + t

3
.

Clearly, the problem (5.1) satisfies Theorem 3.1 due to

N = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)g(s)ds

∣∣∣∣



Hyers-Ulam-Rassias stability of κ-Caputo fractional... 2917

= max
0≤t≤1

1

Γ( 7
3 )

∣∣∣∣∣
(√

1 + t− 1
)2(√

2− 1
)2 ∫ 1

0

1

2
√

1 + s
(
√

2−
√

1 + s)
4
3 p(s)g(s)ds

−
∫ 1

0

1

2
√

1 + s

(√
1 + t−

√
1 + s

) 4
3 p(s)g(s)ds

∣∣∣∣
≤ max

0≤t≤1

1

3Γ( 7
3 )

(∣∣∣∣∣
(√

1 + t− 1
)2(√

2− 1
)2 ∫ 1

0

1

2
√

1 + s
(
√

2−
√

1 + s)
4
3 ds

∣∣∣∣∣
+

∣∣∣∣∫ 1

0

1

2
√

1 + s

(√
1 + t−

√
1 + s

) 4
3 ds

∣∣∣∣)

≤ max
0≤t≤1

1

Γ( 7
3 )

((√
1 + t− 1

)2(√
2− 1

)2 1

7
(
√

2− 1)
7
3 +

1

7
(
√

2− 1)
7
3

)

≈0.0307

<1.

In addition, we have

|h(t, w)| = t sin(w)

3
≤ φ(t)ψ(|w|),

M1 = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)φ(s)ds

∣∣∣∣ ≈ 0.0307,

M2 = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)q(s)ds

∣∣∣∣+ k ≈ 0.0298,

where φ(t) = 1 + t, ψ(|w|) = sin(|w|)
3 , k = d = 0, M = max{M1,M2} ≈ 0.0298.

Then,

M(ψ(r) + 1)− r ≈ 0.0298(
r

3
+ 1)− r < 0, for r = 2.

The assumptions (H1) and (H3) of Theorem 3.2 hold. Therefore, it can be verified
that the problem (5.1) has a unique solution.

Furthermore, we discuss the Hyers-Ulam stability of the problem (5.1). For each
ε > 0 and each function ŵ that satisfies

|cD 7
3 ;κŵ(t) +

t sin(ŵ)

3(1 + t)
+ t| ≤ ε, ∀t ∈ [0, 1],

a function w̄(t) = cD
7
3 ;κŵ(t) + t sin(ŵ)

3(1+t) + t can be found. Additionally, let w(t) be

the unique solution of the problem (5.1). It follows from that

‖w − ŵ‖ ≤ N1

1−N
ε = Chε,

where N1 = (κ(1)−κ(0))α

Γ(α+1) ≈ 0.0460, N ≈ 0.0307, and Ch ≈ 0.0475. In terms of

Theorem 4.1, it is obvious that problem (5.1) is Hyers-Ulam stable.

Example 5.2. Set κ(t) = exp(t), h(t, w) = tw+t
4+w , α = 11

4 , p(t) = 1
1+t , q(t) = t.
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Consider the following fractional boundary value problem
cD

11
4 ;κw(t) +

tw + t

(1 + t)(4 + w)
+ t = 0, 0 ≤ t ≤ 1,

w(0) = a, w′(0) = b, w(1) = d.

(5.2)

Obviously,

|h(t, w)− h(t, v)| ≤
∣∣∣∣ 4t(w − v)

(4 + w)(4 + v)

∣∣∣∣ ≤ 1 + t

4
|w − v|, g(t) =

1 + t

4
,

N = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)g(s)ds

∣∣∣∣
= max

0≤t≤1

1

Γ( 11
4 )

∣∣∣∣∣ (et − 1)
2

(e− 1)
2

∫ 1

0

es(e− es) 7
4 p(s)g(s)ds−

∫ 1

0

es(et − es) 7
4 p(s)g(s)ds

∣∣∣∣∣
≤ max

0≤t≤1

1

4Γ( 11
4 )

(∣∣∣∣∣ (et − 1)
2

(e− 1)
2

∫ 1

0

es(e− es) 7
4 ds

∣∣∣∣∣+

∣∣∣∣∫ 1

0

es(et − es) 7
4 ds

∣∣∣∣
)

≤ max
0≤t≤1

1

Γ( 11
4 )

(
(et − 1)

2

(e− 1)
2

1

11
(e− 1)

11
4 +

1

11
(e− 1)

11
4

)

≈ 0.5009

< 1.

Next, we examine the assumptions of Theorem 3.3. We have

|h(t, w)| = tw + t

4 + w
≤ a1(t) + a2(t)|w|,

B = max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)p(s)a2(s)ds

∣∣∣∣ ≈ 0.5009 < 1.

Therefore, the assumptions (H1) and (H4) hold. Thus, combining Theorem 3.1 and
Theorem 3.3, it can be verified that the problem (5.2) has a unique solution.

Now, we consider the Hyers-Ulam-Rassias stability of the problem (5.2). Set
ϕ(t) = Eα,1 (5(k(t)− k(0))α). Then, for each ε > 0 and each function ŵ that
satisfies ∣∣∣∣cD 11

4 ;κŵ(t) +
tŵ + t

(1 + t)(4 + ŵ)
+ t

∣∣∣∣ ≤ εϕ(t), ∀t ∈ [0, 1],

a function w̃(t) = cD
11
4 ;κŵ(t) + tŵ+t

(1+t)(4+ŵ) + t can be found. Additionally, let w(t)

be the unique solution of the problem (5.2). We find

1

Γ(α)

∫ t

0

k′(s)(k(t)− k(s))α−1ϕ(s)ds

=Jα;κEα,1 (5 (k(s)− k(0))
α

)
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=
1

5
(Eα,1 (5(k(t)− k(0))α)− 1)

≤1

5
Eα,1 (5(k(t)− k(0))α)

=
1

5
ϕ(t),

where the formula of fractional integrals of the Mittag-Leffler function in Theorem
2.1 is used. It follows from Cϕ = 1

5 and Theorem 4.2 that

‖w − ŵ‖ ≤ Cϕ
1−N

εϕ(t) = Ch,ϕεϕ(t),

where N ≈ 0.5009, Ch,ϕ =
Cϕ

1−N ≈ 0.4007, which means that problem (5.2) is
Hyers-Ulam-Rassias stable.

6. Conclusion

In this paper, we first studied the existence and uniqueness of solutions for a class
of boundary value problem of κ-Caputo fractional differential equations. The Ba-
nach fixed point theorem and the Larry-Schauder nonlinear alternative theorem
are taken up as the major methods for investigating the existence and uniqueness
of solutions. Then, we proposed two sufficient conditions for ensuring the Hyers-
Ulam stability and Hyers-Ulam-Rassias stability of nonlinear fractional differential
equations, respectively. Finally, two examples were presented to verify the numer-
ical applications of the result. In addition, a possible continuation of this work
might be studying the stability of existence results and the optimization of proof
conditions.
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