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HOPF BIFURCATION AND CONTROL FOR
THE DELAYED PREDATOR-PREY MODEL
WITH NONLINEAR PREY HARVESTING∗

Guodong Zhang1,†, Huangyu Guo1 and Jing Han2

Abstract In our study, we focused on investigating a delayed differential-
algebraic system. The system incorporates a square root functional response
and non-linear prey harvesting. Employing the normal form of differential
algebraic systems and the central manifold theory, we conducted a detailed
analysis of the system’s stability and bifurcation phenomena, with time delay
identified as a critical bifurcation parameter. When the time delay reached a
critical value, the system’s equilibrium points underwent the Hopf bifurcation,
resulting in system instability. To achieve stability, we introduced a feedback
controller, successfully transitioning the system from an unstable to a stable
state. Through subsequent numerical simulations, we validated the accuracy
and correctness of our research conclusions.

Keywords Stability, predator-prey system, time delay, Hopf bifurcation, pe-
riodic solution.
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1. Introduction

In the fields of ecology and dynamic system theory, the study of delayed predator-
prey systems has a profound background. In the past few decades, numerous re-
searchers [1–4, 7, 9, 14, 15, 17, 20–26] have delved into the dynamic behavior of in-
teractions between different species in ecosystems, especially in predator-prey rela-
tionships. Researchers are gradually realizing that time delay plays a crucial role in
these interactions. Time delay often leads to new dynamic behaviors in the system,
such as periodic oscillations, stable coexistence, or system collapse. Research in this
area is crucial for understanding the behavior of complex natural ecosystems, the
formation and maintenance of ecological balance, and the impact of environmental
changes on biodiversity. Further research on delayed predatory systems can help
better predict and manage ecosystem responses, especially in the context of global
climate change and increasing human interference. The in-depth exploration in
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this field provides an important theoretical basis for formulating effective ecological
protection strategies and sustainable management plans in the future.

In recent years, the academic community has shown strong interest in the fol-
lowing research questions. Jiao et al. [13] extended the Leslie Gower model in non
smooth Filippov control systems, introduced time delay to investigate the influence
of predator maturation time, and conducted in-depth research on the stability of
system equilibrium points and the existence of Hopf bifurcation. Chakraborty et
al. [5] focused on studying the bioeconomic model of predator-prey systems with
prey dispersal in a two-patch environment, which includes discrete-type gestational
delay and delves into the system Hopf bifurcation. Zhang et al. [27] are dedicated
to studying a class of differential algebraic predator-prey systems with time delays.
They use time delay as bifurcation parameter and use normal form theory and cen-
tral manifold theory to study the stability direction of Hopf bifurcation. Liu et
al. [16] proposed a Gause predator-prey model that includes pregnancy delay and
Michaelis Menten type harvest.

In this study, we introduce a delayed bioeconomic system characterized by dif-
ferential algebraic equations, following the methods of Jiao et al. [13], Chakraborty
et al. [5], Zhang et al. [27] and Liu et al. [16]. The system contains a square root
functional response and non-linear prey harvesting, with time delay as the bifur-
cation parameter. Through the application of central manifold theory and normal
form theory, we conducted an in-depth analysis of the stability of the system and
determined the direction of Hopf bifurcation. We delve deeper into the complex
dynamic behavior of systems under the influence of time delay.

Mortuja et al. [18] delved into the dynamic properties of predator-prey interac-
tions, specifically focusing on systems characterized by nonlinear prey harvesting.
The system which they studied is given by the following equation:

dx(t)

dt
= rx

(
1− x

k

)
− ϱ

√
xy

1 + thϱ
√
x
− qEx

m1E +m2x
,

dy(t)

dt
= −βy +

eϱ
√
xy

1 + thϱ
√
x
,

(1.1)

where, the population density of prey is denoted by x, the population density of
predator is denoted by the variable y, the prey population growth rate is represented
by r, the environmental carrying capacity is represented by k. The growth rate of
the prey population is denoted by r, and the environmental carrying capacity is
represented by k. The average handling time of captured prey is expressed by th,
the depletion rate is expressed by e, the efficiency in searching for prey is expressed
by ϱ, and the natural mortality rate of the predator in the absence of prey is
expressed by β. Additionally, the model incorporates nonlinear prey harvesting,
where the coefficient of harvesting capacity is denoted by q, harvesting effort is
represented by E, and m1 and m2 are intrinsic constants.

Simultaneously, taking practical significance into account, our model incorpo-
rates algebraic equations to account for the economic dimension of harvesting ac-
tivities. This new model comprehensively considers various factors related to the
profitability of harvesting activities, providing a more holistic understanding of the
dynamics of predator-prey systems by simultaneously integrating ecological and
economic factors. According to the economic theory of Gordon [10]: Net Economic
Revenue (NER) is calculated as the value obtained by subtracting Total Cost (TC)
from Total Revenue (TR).
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In the framework of the system (1.1), the expressions for Total Revenue (TR)
and Total Cost (TC) are as follows:

TR =
qEx

m1E +m2x
p,

TC =
qE

m1E +m2x
c,

where p represents the unit price and c represents the unit harvesting cost, economic
profit (m) is equivalent to Net Economic Revenue (NER). Mathematically, this
relationship can be expressed by the following equation:

NER = TR− TC =
qE

m1E +m2x
(px− c) = m.

By amalgamating the aforementioned algebraic equation concerning the
biological-economic aspect with system (1.1), the system can be expressed through
differential-algebraic equations as follows:

dx(t)

dt
= rx

(
1− x

k

)
− ϱ

√
xy

1 + thϱ
√
x
− qEx

m1E +m2x
,

dy(t)

dt
= −βy +

eϱ
√
xy

1 + thϱ
√
x
,

0 =
qE

m1E +m2x
(px− c)−m.

(1.2)

It is a special case for system(1.2). In the real world, time delay exists in various
phenomena, such as the transmission of electricity, the transmission and reception
of signals, the gestation cycle and reaction time of biological individuals, and so on.
Therefore, studying systems with time delay is more in line with practical needs
and has greater significance. Now we add time delay to system (1.2):

dx(t)

dt
= rx(t)

(
1− x(t− τ)

k

)
−

ϱ
√
x(t)y(t)

1 + thϱ
√
x(t)

− qE(t)x(t)

m1E(t) +m2x(t)
,

dy(t)

dt
= −βy(t) +

eϱ
√

x(t)y(t)

1 + thϱ
√
x(t)

,

0 =
qE(t)

m1E(t) +m2x(t)
(px(t)− c)−m.

(1.3)

For simplicity, let

f(X,E) =

f1(X,E)

f2(X,E)

 =

rx(1− x(t−τ)
k

)
− ϱ

√
xy

1+thϱ
√
x
− qEx

m1E+m2x

−βy + eϱ
√
xy

1+thϱ
√
x

 ,

g(X,E) =
qE

m1E +m2x
(px− c)−m,

where X = [x, y]T , time delay τ > 0 serves as a bifurcation parameter, and its
specific definition will be elucidated subsequently.

This paper predominantly focuses on analyzing the model system (1.3) within
the domain R3

+ =
{
[x, y, E]T | x > 0, y > 0, E > 0

}
. The region R3

+ refers to the
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presence of prey density (x), predator density (y), and harvesting effort (E), re-
flecting the ecological relevance and feasibility of the system in practical biological
significance.

The paper is structured as follows: Treating τ as the bifurcation parameter, we
explore the stability and Hopf bifurcation at the equilibrium point of system (1.3).
In Section 2, we investigate the stability and Hopf bifurcation at the equilibrium
point under variations in time delay. In Section 3, we draw inspiration from the
normal form theory and central manifold theory which are introduced by Hassard et
al. [12], and derive formulas characterizing the Hopf bifurcation in system (1.3). In
Section 4, we introduce a feedback controller that successfully transitions the system
from an unstable to a stable state. In Section 5, we present numerical simulations
to validate and complement our analytical findings. In Section 6, we conclude and
outline future prospects.

Remark 1.1. In contrast to the work by Jiao et al. [13], we considered economic
factors and introduced algebraic equations . Distinguishing itself from the investiga-
tions of Zhang et al. [27] and Chakraborty et al. [5], our model introduces nonlinear
harvesting dynamics. Furthermore, in deviation from Liu et al. [16], we employ a
distinct response function and incorporate a feedback controller into the system.
This unique combination of elements adds a novel dimension to our analysis, al-
lowing us to explore a more comprehensive and nuanced set of dynamics in the
considered bioeconomic system.

2. Local stability analysis

Highlighting our exclusive attention to the internal balance represented by Y0 =
(x0, y0, E0) in the model system (1.3), it is noteworthy that this equilibrium point
holds biological significance. The presence of prey, predator, and harvesting in this
interior equilibrium aligns with the core aspects of our study. A thorough analysis of
the model system (1.3) indicates the presence of an equilibrium within the positive
region R3

+ only when the following equations are met:

0 =rx(t)

(
1− x(t− τ)

k

)
−

ϱ
√
x(t)y(t)

1 + thϱ
√

x(t)
− qE(t)x(t)

m1E(t) +m2x(t)
,

0 =− βy(t) +
eϱ
√
x(t)y(t)

1 + thϱ
√
x(t)

, (2.1)

0 =
qE(t)

m1E(t) +m2x(t)
(px(t)− c)−m.

Considering the biological significance of the above internal equilibrium, prey,
predators, and harvesting can coexist in the system. To ensure the existence of
internal equilibrium, certain inequalities must be satisfied, specifically: r − r

kx0 −
qE0

m1E0+m2x0
> 0 and q− px0− qc−mm1 > 0. Therefore, it can be affirmed that the

equations (2.1) have a unique internal equilibrium point Y0 = (x0, y0, E0).

Where:

x0 =(
β

ϱ(e− thβ)
)2,
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y0 =

√
x0(1 + thϱ

√
x0)

ϱ

(
r − r

k
x0 −

qE0

m1E0 +m2x0

)
,

E0 =
mm2x0

qpx0 − qc−mm1
.

To investigate the characteristics of the equilibrium points in the model system
(1.3), we employed an approach similar to that proposed in the literature [6]. Ini-
tially, we focus on the local parameter Φ associated with the final equation of the
system (1.3), defined as follows:

[x(t), y(t), E(t)]T = Φ(ℵ(t)) = Y T
0 + U0ℵ(t) + V0ℏ(ℵ(t)), g(Φ(ℵ(t))) = 0,

where U0 =


1 0

0 1

0 0

, and V0 =


0

0

1

, ℵ(t) = (η1(t), η2(t))
T
, Y0 = (x0, y0, E0) ,

ℏ(ℵ(t)) = ℏ3 (η1(t), η2(t)) : R2 → R is a smooth mapping, that is

x(t) = x0 + η1(t), y(t) = y0 + η2(t), E(t) = E0 + ℏ3 (η1(t), η2(t)) .

Consequently, we obtain the subsequent parametric system within the frame-
work of the model system (1.3):

dx(t)

dt
=r(x0 + η1(t))

(
1− (x0 + η1(t))

k

)
−

ϱ
√

(x0 + η1(t))(y0 + η2(t))

1 + thϱ
√
(x0 + η1(t))

− q(E0 + ℏ3 (η1(t), η2(t)))(x0 + η1(t))

m1(E0 + ℏ3 (η1(t), η2(t))) +m2(x0 + η1(t))
, (2.2)

dy(t)

dt
=− β(y0 + η2(t)) +

eϱ
√
(x0 + η1(t))(y0 + η2(t))

1 + thϱ
√

(x0 + η1(t))
.

Due to the condition g(Φ(ℵ(t))) = 0, we are now able to derive the linearized
system associated with the parametric system (2.2) at (0, 0):

dη1(t)

dt
=(

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)
)η1(t)

− rx0

k
η1(t− τ)−

ϱ
√
x0

1 + thϱ
√
x0

η2(t),

dη2(t)

dt
=

eϱy0
2
√
x0(1 + thϱ

√
x0)2

η1(t).

Lemma 2.1. For the positive equilibrium point Y0 of the system (1.3),

(i) If 0 < m < (px0−c)2

px0
( rkx0 − ϱy0(1+2thϱ

√
x0)

2
√
x0(1+thϱ

√
x0)2

− 2
√

eϱ2y0

2(1+thϱ
√
x0)3

), the non-

negative equilibrium point Y0 of system (1.3) demonstrates asymptotic stability.

(ii) If m > (px0−c)2

px0
( rkx0− ϱy0(1+2thϱ

√
x0)

2
√
x0(1+thϱ

√
x0)2

+2
√

eϱ2y0

2(1+thϱ
√
x0)3

), the positive equi-

librium point Y0 is unstable.

Proof. To begin with, we easily derive the characteristic equation for the lin-
earized system associated with the parametric system (1.3) when τ = 0 at the point
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(0, 0). This equation is expressed as follows:

λ2 + (
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− qpx0E0

(px0 − c) (m1E0 +m2x0)
)λ+

eϱ2y0
2(1 + thϱ

√
x0)3

= 0. (2.3)

We denote ∆ by

∆ = (
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− qpx0E0

(px0 − c) (m1E0 +m2x0)
)2 − 2eϱ2y0

(1 + thϱ
√
x0)3

.

Clearly, if

0 < m <
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)
,

all roots of the equation (2.3) have negative real parts. Conversely, when

m >
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

+ 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)
,

all roots of the equation (2.3) have positive real parts. Consequently, both part (i)
and part (ii) hold true.

Remark 2.1. To ensure the existence of an internal balance point, we have

0 < m <
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)
.

When τ = 0 and

0 < m =
r(3x0 + 4thϱx

3
2
0 − 2kthϱ

√
x0 − k)(px0 − c)2

k(c+ 2cthϱ
√
x0 + px0)

<
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)
,

all the roots of equation (2.3) have zero real part. Consequently, the positive equi-
librium point of system (1.3) becomes a center.

Moreover, considering m as the bifurcation parameter, the Hopf bifurcation
occurs in the model system (1.3) when m reaches the bifurcation value

m0 =
r(3x0 + 4thϱx

3
2
0 − 2kthϱ

√
x0 − k)(px0 − c)2

k(c+ 2cthϱ
√
x0 + px0)

.

This bifurcation scenario can be analyzed similarly as discussed in the academic
paper [11].

Now, we delve into the local stability in the vicinity of Y0 and examine the pos-
sible emergence of the Hopf bifurcation at Y0 for τ > 0. To initiate our exploration,
we introduce the following Lemma.
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Lemma 2.2. For the model system (1.3), if

0< m <
(px0 − c)2

px0
(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

),

then,
(i) if(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

>
eϱ2y0

(1 + thϱ
√
x0)3

+ (
rx0

k
)2,

for all τ ≥ 0, the real parts of every root in Eq. (2.5) consistently have negative
values.

(ii) if(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

<
eϱ2y0

(1 + thϱ
√
x0)3

+ (
rx0

k
)2

and [(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

− eϱ2y0
(1 + thϱ

√
x0)3

− (
rx0

k
)2
]2

> (
eϱ2y0

(1 + thϱ
√
x0)3

)2.

Eq.(2.8) possesses two positive roots denoted as ϖ+ and ϖ−. Upon substituting
these roots into (2.7), we obtain:

τ±n =
1

ϖ± arccos

 ( ϱy0(1+2thϱ
√
x0)

2
√
x0(1+thϱ

√
x0)2

+ qpx0E0

(px0−c)(m1E0+m2x0)
)k

rx0

+
2nπ

ϖ± ,

n = 0, 1, 2, . . . (2.4)

Proof. Firstly, we readily obtain the characteristic equation for the linearized sys-
tem associated with the parametric system (1.3) at the point (0, 0). This equation
is expressed as follows:

λ2 + (
r

k
x0e

−λτ −
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

(2.5)

− qpx0E0

(px0 − c) (m1E0 +m2x0)
)λ+

eϱ2y0
2(1 + thϱ

√
x0)3

= 0,

we consider ±iϖ as the pair of purely imaginary roots for equation (2.5). Substi-
tuting iϖ (where ϖ is a positive real value) into equation (2.5), we get:

−ϖ2 + iϖ(
r

k
x0(cosϖτ − i sinϖτ)−

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− qpx0E0

(px0 − c) (m1E0 +m2x0)
) +

eϱ2y0
2(1 + thϱ

√
x0)3

= 0.
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Upon separating the real and imaginary parts, we obtain two transcendental equa-
tions as follows:

rx0ϖ

k
sinϖτ = ϖ2 − eϱ2y0

2(1 + thϱ
√
x0)3

, (2.6)

rx0ϖ

k
cosϖτ = ϖ

(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)
. (2.7)

Squaring and adding (2.6) and (2.7), the calculation yields:

ϖ4 +

[(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

− eϱ2y0
(1 + thϱ

√
x0)3

− (
rx0

k
)2
]
ϖ2 + (

eϱ2y0
2(1 + thϱ

√
x0)3

)2 = 0. (2.8)

When τ = 0, the condition

0 < m <
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)

ensures that all roots of equation (2.5) have negative real parts.
Furthermore, when τ = 0, in the case where

0 < m <
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)

holds, it implies that all the roots of equation (2.5) have negative real parts. Ac-
cording to Rouche’s theorem [19], the sum of the order of the zeros of

P
(
λ, e−λτ

)
= λ2 +

(
rx0

k
e−λτ − qpx0E0

(px0 − c)(m1E0 +m2x0)

−
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

)
λ+

eϱ2y0
2(1 + thϱ

√
x0)3

on the open right half plane can only change if a zero appears on or crosses the
imaginary axis.

Therefore, based on the above discussions, it can be concluded that equation
(2.5) with τ > 0 maintains the same number of roots with a negative real part as
equation (2.5) with τ = 0. In conclusion, when τ > 0 and if

0 < m <
(px0 − c)2

px0

(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

)

and(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

>
eϱ2y0

(1 + thϱ
√
x0)3

+
(rx0

k

)2
hold, all the roots of equation (2.5) also have negative real parts.
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When(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

<
eϱ2y0

(1 + thϱ
√
x0)3

+ (
rx0

k
)2

and [(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

− eϱ2y0
(1 + thϱ

√
x0)3

− (
rx0

k
)2
]2

>(
eϱ2y0

(1 + thϱ
√
x0)3

)2,

it can be easily deduced that equation (2.8) has two positive roots ϖ+ and ϖ−.
Substituting ϖ± into (2.7), we obtain τ±n . With this, the demonstration of Lemma
2.2 concludes.

Now from (2.5) we obtain

(
dλ

dτ

)−1

=
2λ− rx0

k λτe−λτ+

(
rx0
k e−λτ− ϱy0(1+2thϱ

√
x0)

2
√

(x0)(1+thϱ
√

x0)2
− qpx0E0

(px0−c)(m1E0+m2x0)

)
rx0
k λ2e−λτ .

Thus,

sign

{
Re

(
dλ

dτ

)}
λ=iϖ

=sign

{
Re

(
dλ

dτ

)−1
}

λ=iϖ

=sign

 ϖ4−
(

eϱ2y0
2(1+thϱ

√
x0)3

)2

ϖ2

[
ϖ2

(
− ϱy0(1+2thϱ

√
x0)

2
√

(x0)(1+thϱ
√

x0)2
− qpx0E0

(px0−c)(m1E0+m2x0)

)2

+

(
eϱ2y0

2(1+thϱ
√

x0)3
−ϖ2

)2]
.

The following transversality conditions can be easily verified:

sign

{
Re

(
dλ

dτ

)}
τ=τ+

n ,ϖ=ϖ+

> 0

and

sign

{
Re

(
dλ

dτ

)}
τ=τ−

n ,ϖ=ϖ−
< 0.

In summary of the aforementioned results, the following theorem is presented
regarding the stability and Hopf bifurcation of system (1.3).

Theorem 2.1. For system (2.2), if

0 < m <
(px0 − c)2

px0
(
r

k
x0 −

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

− 2

√
eϱ2y0

2(1 + thϱ
√
x0)3

),
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then,
(i) When(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

>
eϱ2y0

(1 + thϱ
√
x0)3

+ (
rx0

k
)2,

then, for all τ ≥ 0, the real parts of all roots of Equation (2.5) are negative, thereby
confirming the asymptotic stability of the equilibrium point Y0 in the system (1.3).

(ii) When(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

<
eϱ2y0

(1 + thϱ
√
x0)3

+ (
rx0

k
)2

and [(
ϱy0(1 + 2thϱ

√
x0)

2
√
x0(1 + thϱ

√
x0)2

+
qpx0E0

(px0 − c)(m1E0 +m2x0)

)2

− eϱ2y0
(1 + thϱ

√
x0)3

− (
rx0

k
)2
]2

> (
eϱ2y0

(1 + thϱ
√
x0)3

)2,

then, for any positive integer M , there exist M intervals where the stability of the
equilibrium point Y0 in system (1.3) alternates between stable and unstable. More
precisely, when τ ∈

[
0, τ+0

)
,
(
τ−0 , τ+1

)
, . . . ,

(
τ−M−1, τ

+
M

)
, the equilibrium point Y0 is

stable. Conversely, when τ ∈
[
τ+0 , τ−0

)
,
(
τ+1 , τ−1

)
, . . . ,

(
τ+M , τ−M

)
, the equilibrium

point Y0 is unstable. Hence, bifurcations occur at the equilibrium point Y0 of system
(1.3) when τ = τ±n , n = 0, 1, 2, . . . ,M .

3. Direction and the stability of Hopf bifurcation

In this section, we extensively investigate the direction of Hopf bifurcation and the
stability of bifurcating periodic solutions though employing the normal form theory
and the central manifold theory [12].

In the subsequent analysis, we assume that system (1.3) undergoes the Hopf
bifurcation at the positive equilibrium point Y0 for τ = τn, where iϖ represents the
corresponding purely imaginary root of the characteristic equation at the positive
equilibrium Y0. We employ the parameterized form (2.2) of system (1.3) to inves-
tigate the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions in system (1.3). Initially, by employing the transformations η1 = x− x0,
η2 = y − y0, t =

t
τ , τ = τn + ℘, the parameterized form (2.2) of system (1.3) can

be equivalently expressed as the following Functional Differential Equation (FDE)
system in D = D

(
[−1, 0], R2

)
,

ℵ̇(t) = L℘ (ℵt) + f (℘,ℵt) , (3.1)

where ℵ(t) = (η1(t), η2(t))
T
and L℘ : D → R, f : R×D → R are given:

L℘(φ) = (τn + ℘)

a11 a12

a21 0

φT (0) + (τn + ℘)

 b11 0

0 0

φT (−1),
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where

a11 =
qpx0y0

(px0 − c)(m1E0 +m2x0)
+

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

,

a12 = −
ϱ
√
x0

1 + thϱ
√
x0

,

a21 =
eϱy0

2
√
x0(1 + thϱ

√
x0)2

,

b11 = −rx0

k
,

and

f(℘, φ) = (τn + ℘)

 f11
f22

 ,

where

f11 =(
ϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

+
m1m2qE

2
0

(m1E0 +m2x0)3

− E0q(m1pE0 +m2c)(cm1E0 +m2p
2x0)

(px0 − c)2(m1E0 +m2x0)3
)φ2

1(0)

− r

k
φ1(0)φ1(−1)− ϱ

2
√
x0(1 + thϱ

√
x0)2

φ1(0)φ2(0) + · · · ,

f22 =−
eϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

φ2
1(0) +

eϱ

2
√
x0(1 + thϱ

√
x0)2

φ1(0)φ2(0) + · · · ,

and φ = (φ1, φ2) ∈ D. On the basis of the Riesz representation theorem, there exists
a matrix function whose components are functions ϕ(ζ, ℘) of bounded variation in
ζ ∈ [−1, 0], such that:

L℘φ =

∫ 0

−1

dϕ(ζ, ℘)φ(ζ), φ ∈ D.

To be precise, we can select

ϕ(ζ, ℘) = (τn + ℘)

a11 a12

a21 0

 δ(ζ) + (τn + ℘)

−b11 0

0 0

 δ(ζ + 1),

where δ(ζ) =

0, ζ ̸= 0,

1, ζ = 0
For φ ∈ D1

(
[−1, 0],R2

)
, define

ℑ(℘)φ(ζ) =


dφ(ζ)

dζ
, −1 ≤ ζ < 0,∫ 0

−1

dϕ(ζ, ℘)φ(ζ), ζ = 0.
(3.2)
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Then, the equivalent formulation of system (3.1) is:

ℵ̇(t) = ℑ(℘)ℵt +R(℘)ℵt. (3.3)

For Φ ∈ D1
(
[0, 1],

(
R2
)∗)

, the adjoint operator ℑ∗ of ℑ is defined as

ℑ∗Φ(ג) =


−dΦ(ג)

dג
, 0 < ג ≤ 1,∫ 0

−1

dϕT ,ג) 0)Φ(−ג), ג = 0,
(3.4)

and an alternative representation is provided by a bilinear inner product, expressed
as:

⟨Φ(ג), φ(ζ)⟩ = Φ̄(0)φ(0)−
∫ 0

ζ=−1

∫ ζ

ξ=0

Φ̄(ξ − ζ)dϕ(ζ)φ(ξ)dξ, (3.5)

where ϕ(ζ) = ϕ(ζ, 0). It can be easily shown that ℑ(0) and ℑ∗ constitute a pair of
adjoint operators.

Building upon the exploration in Section 2, recognizing that ±iϖ are eigenvalues
of ℑ(0), it follows that they also function as eigenvalues for ℑ∗. Going ahead,
we engage in determining the eigenvector ϑ(ζ) of ℑ corresponding to iϖ and the
eigenvector ϑ(ג) of ℑ∗ corresponding to the eigenvalue −iϖ. Subsequently, it is
easy to demonstrate:

ϑ(ζ) = (1, γ)T eiϖτnζ , ϑ∗(ג) = G (γ∗, 1) eiϖτnג,

where γ = iϖ−a11−b11e
−iϖτn

a12
, γ∗ = − iϖ

a12
, Ḡ =

(
γ + γ̄∗ − τnγ̄

∗b11e
−iϖτn

)−1
. More-

over, ⟨ϑ∗(ג), ϑ(ζ)⟩ = 1 and
〈
ϑ∗(ג), ϑ̄(ζ)

〉
= 0.

Following this, we explore the stability analysis of bifurcated periodic solutions.
Using notations distinct from those in [12], we first calculate the coordinates em-
ployed to characterize the center manifold D0 at ℘ = 0. Define:

ς̇(t) = ⟨ϑ∗,ℵt⟩ , P (t, ζ) = ℵt − 2Re{ς(t)ϑ(ζ)}. (3.6)

On the center manifold D0 , we have

P (t, ζ) = P (ς(t), ς̄(t), ζ) = P20(ζ)
ς2

2
+ P11(ζ)ςς̄ + P02(ζ)

ς̄2

2
+ · · · . (3.7)

Indeed, ς and ς̄ serve as local coordinates for the center manifoldD0 in the directions
of ϑ and ϑ̄∗. It is crucial to note that P is real when ℵt is real. In this context, we
exclusively focus on real solutions. For the solution ℵt ∈ D0, given that ℘ = 0 and
considering (3.1), we obtain:

ς̇ = iϖτnς + ⟨ϑ∗(ζ), f(0, P (ς, ς̄ , ζ) + 2Re[ς(t)ϑ(ζ)])⟩ ,
= iϖτnς + ϑ̄∗(0)f(0, P (ς, ς̄ , 0) + 2Re[ς(t)ϑ(ζ)]). (3.8)

Rewrite this equation as

ς̇ = iϖτnς + g(ς, ς̄), (3.9)



2966 G. Zhang, H. Guo & J. Han

where

g(ς, ς̄) = g20(ζ)
ς2

2
+ g11(ζ)ςς̄ + g02(ζ)

ς̄2

2
+ · · · . (3.10)

From (3.3) and (3.8), we have

Ṗ = ℵ̇t − ς̇ϑ− ˙̄ςϑ̄,

=

ℑP − 2Re
{
ϑ̄∗(0)f(ς, ς̄)ϑ(ζ)

}
, −1 ≤ ζ < 0,

ℑP − 2Re
{
ϑ̄∗(0)f(ς, ς̄)ϑ(ζ)

}
+ f, ζ = 0.

(3.11)

Rewrite (3.11) as

Ṗ = ℑP +H(ς, ς̄ , ζ), (3.12)

where

H(ς, ς̄ , ζ) = H20(ζ)
ς2

2
+H11(ζ)ςς̄ +H02(ζ)

ς̄2

2
+ · · · . (3.13)

By substituting the corresponding series into (3.12) and comparing coefficients, we
obtain expressions:

(ℑ− 2iϖτn)P20(ζ) = −H20(ζ),

ℑP11(ζ) = −H11(ζ). (3.14)

Notice that ϑ(ζ) = (1, γ)Teiϖτnζ , ϑ∗(0) = G (γ∗, 1) , and from (3.6) we obtain

η1t(0) = ς + ς̄ + P (1)(t, 0),

η2t(0) = γς + γ̄ς̄ + P (2)(t, 0),

η1t(−1) = ςe−iϖτnζ + ς̄eiϖτnζ + P (1)(t, 0),

η2t(−1) = γςe−iϖτnζ + γ̄ς̄eiϖτnζ + P (2)(t, 0).

According to (3.8) and (3.9), we know that

g(ς, ς̄) = ϑ̄∗(0)f0(ς, ς̄) = Ḡτn (γ̄
∗, 1)

 f0
11

f0
22

 , (3.15)

where

f11 =(
ϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

+
m1m2qE

2
0

(m1E0 +m2x0)3

− E0q(m1pE0 +m2c)(cm1E0 +m2p
2x0)

(px0 − c)2(m1E0 +m2x0)3
)η21t(0)

− r

k
η1t(0)η1t(−1)− ϱ

2
√
x0(1 + thϱ

√
x0)2

η1t(0)η2t(0) + · · · ,

f22 =−
eϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

η21t(0) +
eϱ

2
√
x0(1 + thϱ

√
x0)2

η1t(0)η2t(0) + · · · .
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By (3.7) it follows that

g(ς, ς̄) =Ḡτn

{
γ̄∗

(
ϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

+
m1m2qE

2
0

(m1E0 +m2x0)3

)

×
[
ς + ς̄ + P

(1)
20 (0)

ς2

2
+ P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]2
−γ̄∗

(
E0q(m1pE0 +m2c)(cm1E0 +m2p

2x0)

(px0 − c)2(m1E0 +m2x0)3

)
×
[
ς + ς̄ + P

(1)
20 (0)

ς2

2
+ P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]2
− γ̄∗r

k

[
ς + ς̄ + P

(1)
20 (0)

ς2

2
+ P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]
×
[
ςe−iϖτnζ + ς̄eiϖντnζ + P

(1)
20 (−1)

ς2

2
+ P

(1)
11 (−1)ςς̄ + P

(1)
02 (−1)

ς̄2

2

]
− ϱγ̄∗

2
√
x0(1 + thϱ

√
x0)2

[
ς + P

(1)
20 (0)

ς2

2
+ ς̄ + P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]
×
[
γς + P

(2)
11 (0)ςς̄ + P

(2)
20 (0)

ς2

2
+ γ̄ς̄ + P

(2)
02 (0)

ς̄2

2

]
−

ϱey0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

[
ς + ς̄ + P

(1)
20 (0)

ς2

2
+ P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]2
+

ϱe

2
√
x0(1 + thϱ

√
x0)2

[
ς + ς̄ + P

(1)
20 (0)

ς2

2
+ P

(1)
11 (0)ςς̄ + P

(1)
02 (0)

ς̄2

2

]
×
[
γς + γ̄ς̄ + P

(2)
20 (0)

ς2

2
+ P

(2)
11 (0)ςς̄ + P

(2)
02 (0)

ς̄2

2

]
+ · · ·

}
.

For simplicity, let

H =
ϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

+
m1m2qE

2
0

(m1E0 +m2x0)3

− E0q(m1pE0 +m2c)(cm1E0 +m2p
2x0)

(px0 − c)2(m1E0 +m2x0)3
,

then, we have:

g(ς, ς̄)

=Ḡτn

{
ς2

[
Hγ̄∗ − ϱγγ̄∗ − eϱγ

2
√
x0(1 + thϱ

√
x0)2

− rγ̄∗

k
e−iϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

]

+ ςς̄

[
2Hγ̄∗ +

2eϱ− 2ϱγ̄∗

2
√
x0(1 + thϱ

√
x0)2

Re(γ)

−
eϱy0(1 + 3thϱ

√
x0)

4x
3
2
0 (1 + thϱ

√
x0)3

− 2rγ̄∗

k
Re
(
eiϖπnζ

)]

+ ς̄2

[
Hγ̄∗ − ϱγ̄∗γ̄ − eϱγ̄

2
√
x0(1 + thϱ

√
x0)2

− rγ̄∗

k
eiϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

]
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+ ς2ς̄

[(
2Hγ̄∗ − rγ̄∗

k
e−iϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

4x
3
2
0 (1 + thϱ

√
x0)3

− ϱγγ̄∗ − eϱγ

2
√
x0(1 + thϱ

√
x0)2

)

× P
(1)
11 (0) +

(eϱ− ϱγ̄∗)P
(2)
11 (0)

2
√
x0(1 + thϱ

√
x0)2

+

(
Hγ̄∗ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

− rγ̄∗eiϖτnζ

2k
+

eϱγ̄ − ϱγ̄∗γ̄

4
√
x0(1 + thϱ

√
x0)2

)
P

(1)
20 (0)

−rγ̄∗P
(1)
11 (−1)

k
+

(eϱ− ϱγ̄∗)P
(2)
20 (0)

4
√
x0(1 + thϱ

√
x0)2

− rγ̄∗P
(1)
20 (−1)

2k

]
+ · · ·

}
.

By comparing the coefficients with (3.10), we can deduce:

g20 =2Ḡτn

[
Hγ̄∗ − ϱγγ̄∗ − eϱγ

2
√
x0(1 + thϱ

√
x0)2

− rγ̄∗

k
e−iϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

]
,

g11 =Ḡτn

[
2Hγ̄∗ +

2eϱ− 2ϱγ̄∗

2
√
x0(1 + thϱ

√
x0)2

Re(γ)−
eϱy0(1 + 3thϱ

√
x0)

4x
3
2
0 (1 + thϱ

√
x0)3

−2rγ̄∗

k
Re
(
eiϖπnζ

)]
,

g02 =2Ḡτn

[
Hγ̄∗ − ϱγ̄∗γ̄ − eϱγ̄

2
√
x0(1 + thϱ

√
x0)2

− rγ̄∗

k
eiϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

]
,

g21 =2Ḡτn

[(
2Hγ̄∗ − rγ̄∗

k
e−iϖτnζ −

eϱy0(1 + 3thϱ
√
x0)

4x
3
2
0 (1 + thϱ

√
x0)3

− ϱγγ̄∗ − eϱγ

2
√
x0(1 + thϱ

√
x0)2

)

× P
(1)
11 (0) +

(eϱ− ϱγ̄∗)P
(2)
11 (0)

2
√
x0(1 + thϱ

√
x0)2

+

(
Hγ̄∗ −

eϱy0(1 + 3thϱ
√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

− rγ̄∗eiϖτnζ

2k
+

eϱγ̄ − ϱγ̄∗γ̄

4
√
x0(1 + thϱ

√
x0)2

)
P

(1)
20 (0)

−rγ̄∗P
(1)
11 (−1)

k
+

(eϱ− ϱγ̄∗)P
(2)
20 (0)

4
√
x0(1 + thϱ

√
x0)2

− rγ̄∗P
(1)
20 (−1)

2k

]
.

Given that P20(ζ) and P11(ζ) are present in g21, it is necessary to calculate
them.

Referring to (3.11) and (3.12), we observe that for ζ ∈ [−1, 0), an expression
can be stated as:

H(ς, ς̄ , ζ) = −2Re
{
ϑ̄∗(0)f(ς, ς̄)ϑ(ζ)

}
= −g(ς, ς̄)ϑ(ζ)− ḡ(ς, ς̄)ϑ̄(ζ). (3.16)

Comparing with (3.13) yields:

H20(ζ) = −g20ϑ(ζ)− ḡ02ϑ̄(ζ), H11(ζ) = −g11ϑ(ζ)− ḡ11ϑ̄(ζ). (3.17)
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It follows from (3.14) thatṖ20(ζ) = 2iϖP20(ζ) + g20ϑ(ζ) + ḡ02ϑ̄(ζ),

Ṗ11(ζ) = g11ϑ(ζ) + ḡ11ϑ̄(ζ).
(3.18)

Then, we obtain
P20(ζ) =

ig20
τnϖ

ϑ(0)eiϖτnζ +
iḡ02
3ϖτn

ϑ̄(0)e−iϖτnζ + L1e
2iϖτnζ ,

P11(ζ) = − ig11
τnϖ

ϑ(0)eiϖτnζ +
iḡ11
ϖτn

ϑ̄(0)e−iϖτnζ + L2.
(3.19)

In the subsequent discussion, we will look for suitable values for L1 and L2 in
(3.19).

Referring to (3.11) and (3.15), we can express them as:

H20(0) = −g20ϑ(0)− ḡ02ϑ̄(0) + 2τnℑ1, (3.20)

H11(0) = −g11ϑ(0)− ḡ11ϑ̄(0) + 2τnℑ2, (3.21)

where

ℑ1 =

ℑ(1)
1

ℑ(2)
1

 =


H − ϱγ

2
√
x0(1 + thϱ

√
x0)2

− r

k
e−iϖτnζ

eϱγ

2
√
x0(1 + thϱ

√
x0)2

−
eϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

 ,

ℑ2 =

ℑ(1)
2

ℑ(2)
2

 =

 H − ϱRe(γ)

2
√
x0(1 + thϱ

√
x0)2

− r

k
Re
(
eiϖτnζ

)
eϱRe(γ)

2
√
x0(1 + thϱ

√
x0)2

−
eϱy0(1 + 3thϱ

√
x0)

8x
3
2
0 (1 + thϱ

√
x0)3

 .

Substituting (3.19)-(3.21) into (3.14) and noting that(
iϖτnI −

∫ 0

−1

eiϖτnζdη(ζ)

)
ϑ(0) = 0,

(
−iϖτnI −

∫ 0

−1

e−iϖτnζdη(ζ)

)
ϑ(0) = 0,

we obtain 2iϖ − a11 − b11e
−2iϖτn −a12

−a21 2iϖ

L1 = 2ℑ1, (3.22)

−a11 − b11 −a12

−a21 0

L2 = 2ℑ2. (3.23)

Obtaining L1 and L2 from (3.22) and (3.23) is a straightforward process, namely:

L
(1)
1 = − 4ℑ(1)

1 iϖ + 2a12ℑ(2)
1

a12a21 + 2b11iϖe−2iϖτn + 4ϖ2 + 2a11iϖ
,
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L
(2)
1 = −

2ℑ(1)
1 a21 +

(
4iϖ − 2a11 − 2b11e

−2iϖτn
)
ℑ(2)

1

a12a21 + 2b11iϖe−2iϖτn + 4ϖ2 + 2a11iϖ
,

L
(1)
2 = −2ℑ(2)

2

a21
, L

(2)
2 =

−2a21ℑ(1)
2 + 2 (a11 + b11)ℑ(2)

2

a12a21
.

Therefore, we can compute the following values

κ1(0) =
i

2ϖτn

(
g11g20 − 2 |g11|2 −

|g02|2

3

)
+

g21
2

,

χ2 = − Re {κ1(0)}
Re {λ′ (τn)}

, α2 = 2Re {κ1(0)} ,

T2 = − Im {κ1(0)}+ ℘2 Im {λ′ (τn)}
ϖτn

.

The results obtained in the previous calculation determine the Hopf bifurcation
orientation and the stability of bifurcated periodic solutions in the system (1.3) at
the critical value τn.

Theorem 3.1. (i) The orientation of the Hopf bifurcation relies on the sign of χ2:
if χ2 > 0, the bifurcation is identified as supercritical, whereas it is classified as
subcritical when χ2 < 0.

(ii) The stability of the bifurcated periodic solutions is contingent on the value
of α2: these solutions are stable when α2 < 0 and unstable when α2 > 0.

(iii) The period of the bifurcated periodic solutions is influenced by T2: it in-
creases with T2 > 0 and decreases with T2 < 0.

Remark 3.1. Drawing on the normal form introduced by [8], there is ample op-
portunity to explore the stability of periodic solutions and the orientation of Hopf
bifurcation. We plan to delve into this matter in our upcoming research and regard
it as a significant direction for future publications.

4. Control of bifurcation for uncontrolled system

A feedback controller has the ability to dynamically adjust control strategies in
real-time based on the current state of the system, and to enhance adaptability
to the dynamic variations in a predator-prey system. By continuously monitoring
the system state and making adjustments, the feedback controller contributes to
maintaining system stability, preventing the occurrence of unstable behaviors or
system collapse in the predator-prey system. Additionally, the feedback controller
can optimize system performance, ensuring the system achieves improved dynamic
equilibrium in predator-prey interactions under different conditions, thereby en-
hancing overall system efficiency. In the ensuing discussion, we will introduce a
feedback controller to transition the system from an unstable state to a stable one.

u1(t) = k1(x(t)− x0), (4.1)

where k1 represents the feedback gains.
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Alternatively, we can describe this by incorporating the controller u1(t) into the
first equation of system (1.3), yielding:

dx(t)

dt
= rx(t)

(
1− x(t− τ)

k

)
−

ϱ
√
x(t)y(t)

1 + thϱ
√
x(t)

− qE(t)x(t)

m1E(t) +m2x(t)
− k1(x(t)− x0),

dy(t)

dt
= −βy(t) +

eϱ
√

x(t)y(t)

1 + thϱ
√
x(t)

,

0 =
qE(t)

m1E(t) +m2x(t)
(px(t)− c)−m.

(4.2)

Theorem 4.1. For system (4.2), When

k1 > 2

√
eϱ2y0

(1 + thϱ
√
x0)3

− rx0

k
+

qpx0E0

(px0 − c)(m1E0 +m2x0)
+

ϱy0(1 + 2thϱ
√
x0)

2
√
x0(1 + thϱ

√
x0)2

,

the equilibrium point Y0 of system (4.2) demonstrates asymptotic stability.

The demonstration closely parallels the argumentation in Lemma 2.2 and The-
orem 2.1, and is therefore omitted.

5. Numerical simulation

In this section, we confirm the findings through simulation, employing the parame-
ters listed below:

r = 2, k = 8, th = 1, β = 2, ϱ = 1, q = 1,

e = 3, c = 1,m1 = 4,m2 = 1, p = 1, k1 = 1.3,m =
1

4
, (5.1)

then the system (1.3) becomes

dx(t)

dt
= 2x(t)

(
1− x(t− τ)

8

)
−
√
x(t)y(t)

1 +
√
x(t)

− E(t)x(t)

4E(t) + x(t)
,

dy(t)

dt
= −2y(t) +

3
√
x(t)y(t)

1 +
√
x(t)

,

0 =
E(t)

4E(t) + x(t)
(x(t)− 1)− 1

4
.

(5.2)

According to Sections 2 and 3, we have determined the stability of the positive
equilibrium point and identified the occurrence of Hopf bifurcation. The exclusive
positive equilibrium point for the model system (5.2) is denoted as Y0 = (4, 5.5, 0.5).
Following calculations, we derived values of ϖ+ = 0.8455 and ϖ− = 0.3613. As
outlined in Section 2, the critical values are τ+ = 0.5978 and τ− = 1.3988. In accor-
dance with Theorem 2.1, the equilibrium point Y0 demonstrates local asymptotic
stability for τ ∈ [0, τ+0 ) = [0, 0.5978) and instability when τ ∈ (τ+0 , τ−0 ). Addition-
ally, Hopf bifurcation is happened at τ = τ±n , n = 0, 1, 2, . . . ,M .

At τ = 0, it is straightforward to show that the positive equilibrium point
Y0 = (4, 5.5, 0.5) exhibits asymptotic stability.
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Next, we determined the direction of a Hopf bifurcation at τ0 = τ+0 = 0.5978
and explored additional characteristics of periodic solutions based on the theory
established by Hassard et al. [12]. Utilizing mathematical tools for computation,
the resulting numerical values are as follows:

κ1(0) = 0.0023 + 0.0012i, λ
′
(τn) = 0.3941− 1.8822i. (5.3)

Therefore, we obtain χ2 = −0.0058 < 0, α2 = 0.0046 > 0, and T2 = 0.0194 > 0.
Utilizing these numerical results in conjunction with Theorem 3.1, we infer that
the Hopf bifurcation in system (5.2) at τ0 = 0.5978 is subcritical. The bifurcated
periodic solution emerges as τ transitions to the left of τ0, and the resulting periodic
solution is unstable.
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Figure 1. Under the condition τ = 0.45 < τ0, the positive equilibrium point Y0 demonstrates local
asymptotic stability, considering the special initial conditions x0 = 3.9, y0 = 5.4, E0 = 0.49.

The simulation outcomes can be succinctly summarized as follows:
(i) When τ = 0.45 < τ0, the positive equilibrium point Y0 demonstrates local

asymptotic stability (refer to Fig.1).
(ii) At τ = 0.595 < τ0, periodic solutions emerge at the positive equilibrium

points Y0 (refer to Fig.2).
(iii) When k1 = 1.3 > 0.98, the controller effectively changes the hopf bifurcation

behavior of the system, causing the system to transition from an unstable state to
a stable state. The positive equilibrium point Y0 exhibits local asymptotic stability
(refer to Fig.3).
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Figure 2. At τ = 0.595 < τ0, periodic solutions manifest at the positive equilibrium points Y0 under
the provided initial conditions x0 = 3.9, y0 = 5.4, E0 = 0.49.

The simulation results reveal that the stability of the system (1.3) undergoes a
switch with the variation of the parameter τ . Therefore, it is imperative for the
government to adjust tax rates, formulate preferential policies, encourage fisheries
production, and mitigate environmental pollution. These measures aim to maintain
the ecological and economic differential-algebraic system (1.3) in a stable state,
fostering the continued stable development of the ecosystem.

This study emphasizes the stability and Hopf bifurcation in a delayed predator-
prey system with nonlinear predation and square root functional response, holding
significant implications for ecology and biology. The results provide valuable in-
sights into the dynamics of interacting populations, contributing to a deeper under-
standing of ecological and biological systems.

The impact of time delay on population dynamics is well-established. According
to the theorems and simulation results, time delay in the range of 0 < τ < τ0 leads
to system stability. This stability is reflected in balanced population densities of
predators and prey, as well as consistent predation. A stable predator-prey system
promotes ecological equilibrium, protecting the overall structure and function of the
ecosystem.

The study thoroughly investigates the influence of time delay on system stabil-
ity. According to Theorem 2.1 and numerical simulation results, time delay at the
critical delay value (τ0 = 0.5978) induces oscillatory behavior in the system. In
ecological systems, both Hopf bifurcation and instability are unsatisfactory status.
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To address instability, a feedback controller is introduced, effectively transform-
ing the system from an unstable to a stable state. By dynamically adjusting the
prey population, the feedback controller contributes to maintaining a relatively sta-
ble ecosystem.

In conclusion, the investigation into the stability and Hopf bifurcation within
delayed predator-prey systems offers valuable ecological insights, shedding light on
the adaptive responses of biological systems to environmental changes. The signifi-
cance of these findings spans various disciplines, encompassing ecology, conservation
biology, and the sustainable management of resources.
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Figure 3. When k1 = 1.3 > 0.98, the controller effectively changes the hopf bifurcation behavior of
the system, causing the system to transition from an unstable state to a stable state. The positive
equilibrium point Y0 exhibits local asymptotic stability with the specified initial conditions x0 = 3.9,
y0 = 5.4, E0 = 0.49.

6. Discussion

This research delves into the dynamics of differential-algebraic predator-prey sys-
tems featuring nonlinear prey harvesting, with a particular emphasis on capturing
the realism of nonlinear interactions. The study systematically explores the role of
time delay as a bifurcation parameter, shedding light on its impact on the stability
of the system. The noteworthy findings center around the emergence of Hopf bi-
furcation, leading to a transition from system stability to instability at the internal
equilibrium point Y0.

The principal contributions of this study encompass the incorporation of time
delay, an in-depth investigation of the dynamics surrounding Hopf bifurcation, and
the introduction of a feedback controller. In the future research, we could con-
sider extending the model to incorporate nonlinear predator harvesting, refining its
practical applicability, and exploring more advanced control strategies.

This research significantly contributes to the understanding of complex ecolog-
ical systems and opens up avenues for further exploration at the intersection of
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mathematical modeling, ecology, and control theory.
In the future, we can combine time delay factors with other ecological factors

(such as spatial heterogeneity and environmental changes) to study their compre-
hensive effects in predator-prey systems.

We can apply our understanding of time delay to practices such as resource man-
agement, biodiversity conservation, and ecosystem services to promote sustainable
development and ecosystem protection.

We can consider time delay in complex networks and study the dynamic behavior
of predator-prey systems in multi-level and multi-scale network structures.
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