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Abstract The finite-time stability for discrete descriptor systems with time-
varying delay and nonlinear uncertainties is studied. A new discrete inequality
is obtained. On this basis, by combining exponential weighted Lyapunov-like
functional (LLF) and convex combination techniques, the sufficient conditions
for the system to be finite-time stable are obtained. Finally, we demonstrate
the effectiveness of our method through three specific examples.
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1. Introduction

Descriptor systems(also referring to singular systems), have special properties differ-
ent from normal system, which used in many fields widely. For example, economic
system, power system and robot system. In the past decades, correlated study on
descriptor systems has become more and more in-depth and extensive, and many
excellent results have emerged [3–8, 10, 15, 17–19, 21]. As everyone knows, in most
actual production systems, delay may cause unstable, oscillatory or other poor sys-
tem performance. Descriptor systems with time-delay have achieved rich research
results with respect to Lyapunov asymptotic stability (LAS), the filtering problems,
the controller design and the stability analysis [3, 6, 7, 10, 18, 21]. We noticed that
most of the relevant results are about LAS. However, in some practical systems,
such as systems related to chemical fields or missile launching process [14]. In these
practical systems, what we need is for the system to remain stable within a certain
time interval. This inspires us to study the finite-time stability of the system.

Finite-time stability (FTS) refers to that the state within a certain range for a
given initial state within the specified time interval. By definition, FTS is different
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from LAS fundamentally. Indeed, in some cases, a system may be FTS but not
LAS, and vice versa [1]. Recently, there have been rich achievements focusing on
FTS [1, 2, 11, 16, 20, 23]. Among them, relatively, there are few studies for discrete
descriptor systems.

There are two important issues to be considered in the research of FTS for
discrete descriptor systems.

Q-1: What kind of Lyapunov functional can effectively reduce conservatism?
Q-2: How to handle finite-sum term to get less conservative results when using

Lyapunov functional method?
Regarding the first question, the LLF considering the influence of exponential

weighting is established in [11]. On the second, unfortunately, at present, there
is no suitable method for the FTS of discrete systems. Considering the specific
research objectives of FTS, we believe the improvement is possible. This is also the
motivation for us to conduct relevant research.

The contributions of the paper mainly include the following two points: firstly,
we obtain a new inequality suitable for handle finite-sum term. Secondly, we intro-
duce a new LLF, which allows us to achieve less conservative results. The new LLF
makes the derivation process easier to implement.

Notations. Rn means the n dimensional Euclidean space, Rm×n denotes the set of
matrices with m× n dimensions. Q > 0 means Q is positive definite. λmax (Q) and
λmin (Q) are the maximum and minimum eigenvalues of Q respectively. N stands
for the set of natural numbers. ∗ denotes the symmetric block in symmetric matrix.

2. Problem formulation

The discrete descriptor systems under consideration is as follows:

Ex (k + 1) = Ax (k) +Adx (k − d(k)) +g1 (k, x (k)) + g2 (k, x (k − d(k))),
(2.1)

x (k) = ψ (k) , k ∈ [−dM , − dM + 1, · · · , 0] ,

where E ∈ Rn×n is a singular matrix with rank(E) = r < n, A ∈ Rn×n and
Ad ∈ Rn×n are two known constant matrices, x (k) ∈ Rn is state vector, g1 (k, x (k))
and g2 (k, x (k − d(k))) are nonlinear uncertainties that satisfy the following assump-
tions,

‖g1 (k, x (k))‖ ≤ l1 ‖x (k)‖ , (2.2)

‖g2 (k, x (k − d (k)))‖ ≤ l2 ‖x (k − d (k))‖ , (2.3)

where li (i = 1, 2) are known contants. The initial condition ψ (k) satisfies

(ψ (k + 1)− ψ (k))
T

(ψ (k + 1)− ψ (k)) 6 c0, k ∈ [−dM , − dM + 1, · · · , 0] ,

in which c0 is a known positive integer. The time-varying delay d (k) satisfies
0 < dm 6 d (k) 6 dM , where dm and dM are two known positive integers. For
simplicity, we denote d = dM −dm. Without loss of generality, we consider the case

where E =

 Ir 0

0 0

.
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Based on the previously mentioned questions Q−1 and Q−2, our aim is to study
the FTS of system (2.1), and we assume that the system (2.1) is regular and causal.

Firstly, let’s introduce the following definition and lemmas.

Definition 2.1. (FTS) The descriptor system (2.1) is said to be finite-time stable
with respect to (c1, c2, N), in which 0 < c1 < c2, N ∈ N, if it is regular, causal such
that:

sup
k∈[−dM ,−dM+1,··· ,0]

ψT (k)ψ (k) 6 c1 ⇒ xT (k)ETEx (k) < c2, k = 0, 1, · · ·N.

Lemma 2.1 ( [12]). For a given matrix R > 0 and integers hj (j = 1, 2) satisfying
0 < h1 6 h2 6 i, we denote y (s) = x(s+ 1)− x(s),

χ(i, h1, h2) =


1

h2 − h1

[
2

i−h1−1∑
s=i−h2

x (s) + x (i− h1)− x (i− h2)

]
, h1 < h2,

2x (t− h1) , h1 = h2,
then we have

− (h2 − h1)

i−h1−1∑
s=i−h2

yT (s)Ry (s) 6 −ΩT0 RΩ0 − 3ΩT1 RΩ1,

where

Ω0 = x (i− h1)− x (i− h2) ,

Ω1 = x (i− h1) + x (i− h2)− χ (i, h1, h2) .

Lemma 2.2 ( [13]). For given matrices U and P > 0, real scalars νi, vectors ζi,

satisfying

 P U

UT P

 > 0,
2∑
i=1

νi = 1, we have

−
2∑
i=1

1

νi
ζTi Pζi 6 −

(
ζ1

ζ2

)T  P U

UT P

(ζ1
ζ2

)
.

Lemma 2.3. (Cauchy matrix inequality) For any vectors x,y and scalar ρ > 0, one
has

2xTXy ≤ ρ−1xTXTXx+ ρyT y.

3. Main results

3.1. Discrete weighted inequality

First, we introduce the relevant knowledge about discrete orthogonal polynomials
to be used in the subsequent proof.

For integers h1 < h2 and vector function f1 (i) , f2 (i)∈ {Z [h1, h2 − 1]→ Rn},

we define (f1, f2)ω =
h2−1∑
i=h1

ω (i) f1 (i) f2 (i), where ω (i) is the weighted function.

f1 (i) and f2 (i) are orthogonal with respect to ω (i) if (f1, f2)ω = 0.
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Lemma 3.1. For any matrix R > 0 and integers h1 < h2, vector-valued function
χ (i) ∈ {Z [h1, h2 − 1]→ Rn}, one has

h2−1∑
i=h1

χT (i)Rχ (i)w (i) >
∞∑
k=0

µkΩTk (χ)RΩk (χ), (3.1)

in which Ωk (χ) =
h2−1∑
i=h1

lk (i)χ (i), µk =
1

λk
, where λk = (lk, lk)ω−1 , lk (i) is a

discrete orthogonal monic polynomial sequence with respect to ω−1 (i), k = 0, 1, · · · .

Proof. Upon introducing

z (i) =

∞∑
k=0

µkΩk (χ)Sk (i),

where Sk (i) = ω−
1
2 (i) lk (i), k = 0, 1, · · · , one has

0 6
h2−1∑
i=h1

(√
ω (i)χ (i)− z (i)

)T
R
(√

ω (i)χ (i)− z (i)
)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

h2−1∑
i=h1

z(i)
T
Rχ (i)

√
ω (i) +

h2−1∑
i=h1

zT (i)Rz (i)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

h2−1∑
i=h1

( ∞∑
k=0

µkΩk (χ)Sk (i)

)T
Rχ (i)

√
ω (i)

+

h2−1∑
i=h1

( ∞∑
k=0

µkΩk (χ)Sk (i)

)T
R

( ∞∑
k=0

µkΩk (χ)Sk (i)

)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

∞∑
k=0

µkΩk
T (χ)R

h2−1∑
i=h1

Sk (i)χ (i)
√
ω (i)

+

h2−1∑
i=h1

( ∞∑
k=0

µkΩk (χ)Sk (i)

)T
R

( ∞∑
k=0

µkΩk (χ)Sk (i)

)

=

h2−1∑
i=h1

χT (i)Rχ (i)ω (i)− 2

∞∑
k=0

µkΩTk (χ)RΩk (χ)

+

h2−1∑
i=h1

( ∞∑
k=0

µ2
kS

2
k (i) Ωk (χ)

)T
RΩk (χ)

=

h2−1∑
i=h1

χT (i)Rχ (i)w (i)−
∞∑
k=0

µkΩTk (χ)RΩk (χ)

which means (3.1). The proof is completed.

Remark 3.1. For the weighting function ω (i), according to the properties and
operating rules of orthogonal polynomials, we obtain the calculation formula of
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lk (i) in Lemma 3.1,

lk (i) = ik +

k−1∑
j=0

κkj lj (i) , k = 1, 2, · · · , n, · · · , (3.2)

where κkj = −
(
ik, lj

)
ω−1

(lj , lj)ω−1

, l0 (i) = 1.

As mentioned in Q-1 above, for introducing an appropriate LLF, the weighting
function should be appropriately selected. Then, one has

Corollary 3.1. For integers h1 < h2 − 1 and matrix R > 0, vector function χ (i)∈
{Z [h1, h2 − 1]→ Rn}, by choosing the weighted function ω (i) = σh2−i with scalar
σ, one has

h2−1∑
i=h1

χT (i)Rχ (i)σh2−i >
∞∑
k=0

µkΩTk (χ)RΩk (χ), (3.3)

where µk is the same as that defined in Lemma 3.1.

Remark 3.2. According to actual needs, we can increase the number of terms in
(3.3). It should be noted that µk could be obtained easily according to (3.2). Here
for k = 0, 1, 2, the following results can be obtained by careful calculation,

λ0 =
σh − 1

σh (σ − 1)
,

λ1 =
σ + σ2h+1 − σhh2 − 2σh+1 − σh+2

h2 + 2σh+1h2

σh (σh − 1) (σ − 1)
3 ,

λ2 =
6σ3h4 − 4σ4h3 + σ5h2 − 4σ4h4 + 2σ5h3

(σ − 1)
5

(σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

+
18σ3 + hh2 − 8σ4 + 2hh2 − 6σ3 + hh4 − 4σ4 + hh3

(σ − 1)
5

(σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

+
4σ4 + hh4 + 2σ5 + hh3 − σ5 + hh4 + 8σ2h2 + 4σ2h3

(σ − 1)
5

(σ + σ1+2h − σhh2 − 2σ1+h − σ2 + hh2 + 2σ1+hh2)

−

(
2σh3 − σh2 − 12σ3 − σh4 + 12σh+1 − 4σ2h+3

)
(σ − 1)

5
(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2

h2 + 2σ1+hh2
)

−
σ1−h (σ2hh4 + 4σ2 − 8σ5h2 + 8σ1+2hh2 − 4σ1+2hh3 − 4σ1+2hh4

)
(σ − 1)

5
(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2

h2 + 2σ1+hh2
)

+

(
σ5h4 − σ5 + hh2 − 4σ2h4 − σ1+hh2 − 2σ1+hh3 − 18σ3h2

)
(σ − 1)

5
(
σ + σ1+2h − σhh2 − 2σ1+h − σh+2

h2 + 2σ1+hh2
) ,
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where h = h2 − h1. According to Lemma 3.1, µk =
1

λk
, naturally, we have

h2−1∑
i=h1

χT (i)Rχ (i)γh2−1 >
2∑
k=0

µkΩTk (χ)RΩk (χ). (3.4)

Remark 3.3. By setting µk and Ωk as defined in Lemma 3.1, we can get lim
σ→1

µ0 =

1

h
. Then, for k = 0, (3.4) reduces to the discrete Jensen-type inequality in [9].

Especially for y (i) = x(i+ 1)− x(i) and k = 0, 1, we have

Corollary 3.2. As µk and Ωk are defined in Lemma 3.1. Then, the following
inequality holds

h2−1∑
i=h1

σh2−iyT (i)Ry (i) >
1∑
i=0

µkΩTi (χ)RΩi (y),

where

Ω0 (y) = x (h2)− x (h1) ,

Ω1 (y) = (h2 + c10 − 1)x (h2)− (h1 + c10 − 1)x (h1)−
h2−1∑
i=h1

x (i),

in which κ10 is defined in Remark 3.1.

3.2. FTS analysis

By constructing a new LLK, applying convex combination technique and the
weighted inequality obtained previously, sufficient conditions guaranteeing FTS of
the system are obtained. For the sake of conciseness in the following Theorem 3.1,
there are the following notations.

ei =
[
0n×(i−1)n In 0n×(7−i)n

]
, i = 1, 2, ..., 7,

Ψ1 = (Ae1 +Ade3)
T
P1 (Ae1 +Ade3) + eT1

(
−σETP1E +MSA+ATSTMT

)
e1

+eT3
(
MSA+ATSTMT

)
e1,

S =

0 0

0 In−r

,

Ψ2 = eT1 (Q1 +Q2) e1 − σdmeT2 Q1e2 − σdM eT4 Q2e4,

Ψ3 = (Ae1 +Ade3 − Ee1)T (dm − 1)P2(Ae1 +Ade3 − Ee1)

−(e1 − e2)Tµ1E
TP2E(e1 − e2)

−[E ∗ ((µ+ dm) e1 − µe2)− e5]
T
µ2P2 [E ∗ ((µ+ dm) e1 − µe2)− e5] ,

in which

µ =
σdm (1 + dm + σdm)− 1

(σdm − 1) (σ − 1)
, µ1 =

σd (σ − 1)

σd − 1
,
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µ2 =
σd
(
σd − 1

)
(σ − 1)

3

σ − d2 σd − 2σd+1 + 2 d2 σd+1 − d2 σd+2 + σ2 d+1
,

Ψ4 = (Ae1 +Ade3 − Ee1)T (d2 − 1)P3(Ae1 +Ade3 − Ee1)

−σdm+1ΩT

P3 U

∗ P3

Ω,

Ω = [E ∗ (e2 − e3);E ∗ (e2 + e3)− e6;E ∗ (e3 − e4);E ∗ (e3 + e4)− e7)],

P 3 =

P3 0

0 3P3

,

t1 =
σdm − 1

σ − 1
, t2 =

σdM − 1

σ − 1
, t3 =

dm − σ + σ σdm − dm σ
(σ − 1)

2 ,

t4 =
σdM+1

(σ − 1)
2 −

σdm (dm − dM + σ + dM σ − dm σ)

(σ − 1)
2 ,

Ψ5 = e1
T
[
l21 (ρ1 + ρ3 + ρ5) I + l21P1

]
e1 + e3

T
[
l22 (ρ2 + ρ4) I + P1

]
e3. (3.5)

Theorem 3.1. For given c1, c2 and N , the system (2.1) is finite-time stable, if
there exist scalar σ > 1 and υi > 0 (i = 1, 2, ..., 6), ρi > 0 (i = 1, 2, 3, 4, 5), matrices

Qi ∈ Rn×n(i = 1, 2), U ∈ R2n×2n, M =

 ∗ ∗
∗ M4

(M4 ∈ R(n−r)×(n−r)), and Pi =

Pi1 ∗

∗ ∗

 (Pi1 ∈ Rr×r , i = 1, 2, 3) satisfying the following inequalities

P3 U

∗ P3

 > 0, (3.6)

Ψ =

5∑
i=1

Ψi < 0, (3.7)

Ψ eT1 PA eT1 PA eT3 PAd e
T
3 PAd l2e

T
3 P

∗ −ρ1I 0 0 0 0

∗ ∗ −ρ2I 0 0 0

∗ ∗ ∗ −ρ3I 0 0

∗ ∗ ∗ ∗ −ρ4I 0

∗ ∗ ∗ ∗ ∗ −ρ5I


< 0, (3.8)

υ1Ir < P11 < υ2Ir, (3.9)

0 < Q1 < υ3In, (3.10)

0 < Q2 < υ4In, (3.11)
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0 < P21 < υ5Ir, (3.12)

0 < P31 < υ6Ir, (3.13)

σN (υ2 + υ3t1 + υ4t2) c1 + c0 (υ5t3 + dυ6t4) < υ1c2, (3.14)

where Φi and ti are defined in (3.5).

Proof. Consider the following LLK

V (k) =

3∑
i=1

Vi(k), (3.15)

in which

V1(k) = xT (k)ETP1Ex(k),

V2(k) =

k−1∑
i=k−dm

σk−1−ixT (i)Q1x(i) +

k−1∑
i=k−dM

σk−1−ixT (i)Q2x(i),

V3(k) =

k−1∑
i=k−1−dm

σk−1−i(dm − k + 1 + i)yT (i)ETP2Ey(i)

+ d

k−dm−1∑
i=k−1−dM

σk−1−i(dM − k + 1 + i)yT (i)ETP3Ey(i).

Taking the difference of (3.15), one has

∆V1 =V1(k + 1)− V1(k)

=xT (k + 1)ETP1Ex(k + 1)− xT (k)ETP1Ex(k) (3.16)

=xT (k)(ATP1A− σETP1E)x(k) + 2xT (k)ATP1Adx(k − d(k))

+ xT (k − d(k))ATd P1Adx(k − d(k)) + (σ − 1)V1 (k)

+ 2xT (k)MSAx (k) + 2xT (k)MSAdx (k − d (k))

+ 2xT (k)ATP1g1 (k, x (k)) + 2xT (k)ATP1g2 (k, x (k − d (k)))

+ 2xT (k − d (k))Ad
TP1g1 (k, x (k))

+ 2xT (k − d (k))Ad
TP1g2 (k, x (k − d (k)))

+ g1
T (k, x (k))P1g1 (k, x (k)) + 2g1

T (k, x (k))P1g2 (k, x (k − d (k)))

+ g2
T (k, x (k − d (k)))P1g2 (k, x (k − d (k))) .

According to Lemma 2.3, combined with (2.2) and (2.3), there exists ρi
(i = 1, 2, 3, 4, 5), such that

2xT (k)ATP1g1 (k, x (k)) + 2xT (k)ATP1g2 (k, x (k − d (k)))

+ 2xT (k − d (k))Ad
TP1g1 (k, x (k))
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+ 2xT (k − d (k))Ad
TP1g2 (k, x (k − d (k)))

+ g1
T (k, x (k))P1g1 (k, x (k)) + 2g1

T (k, x (k))P1g2 (k, x (k − d (k)))

+ g2
T (k, x (k − d (k)))P1g2 (k, x (k − d (k)))

≤l21xT (k) [(ρ1 + ρ3 + ρ5) I + P1]x (k)

+ l22x
T (k − d (k)) [(ρ2 + ρ4) I + P1]x (k − d (k))

+
(
ρ−1

1 + ρ−1
3

)
xT (k)P1AA

TPT1 x (k)

+
(
ρ−1

2 + ρ−1
4

)
xT (k − d (k))P1AdA

T
d P

T
1 x (k − d (k))

+ ρ−1
5 l22x

T (k − d (k))P1P
T
1 x (k − d (k)) , (3.17)

∆V2 (k)

=V2(k + 1)− V2(k)

=

k∑
i=k−dm+1

σk−ixT (i)Q1x
T (i)−

k−1∑
i=k−dm

σk−i−1xT (i)Q1x(i)

+

k∑
i=k−dM+1

σk−ixT (i)Q2x(i)−
k−1∑

i=k−dM

σk−i−1xT (i)Q2x(i) (3.18)

=xT (k)Q1x(k)− σdmxT (k − dm)Q1x(k − dm) + xT (k)Q2x(k)

− σdMxT (k − dM )Q2x(k − dM ) + (σ − 1)V2 (k) ,

∆V3 (k)

=V3(k + 1)− V3(k)

=(dm − 1)yT (k)ETP2Ey (k) + (d2 − 1)yT (k)ETP3Ey(k) (3.19)

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(i)− d
k−dm−1∑
i=k−dM

σk−iyT (i)ETP3Ey(i)

+ (σ − 1)V3 (k)

6(dm − 1)yT (k)ETP2Ey(k) + (d2 − 1)yT (k)ETP3Ey (k) + (σ − 1)V3 (k)

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(k)− dσdm+1
k−dm−1∑
i=k−dM

yT (i)ETP3Ey(i),

then, by Corollary 3.2 we obtain:

−
k−1∑

i=k−dm

σk−iyT (i)ETP2Ey(i) 6 −
2∑
i=1

µiU
T
i (k)ETP2EUi (k), (3.20)

where

U1 (k) = x(k)− x (k − dm) ,

U2 (k) = (µ+ dm)x(k)− µx (k − dm)−G1 (k) ,
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G1(k) =


k−1∑

i=k−dm

Ex (i), dm > 0,

Ex (k) , dm = 0.

Based on Lemma 2.1, when dm < d(k) < dM we have

− d

 k−dm−1∑
i=k−d(k)

yT (i)ETP3Ey (i) +

k−d(k)−1∑
i=k−dm

yT (i)ETP3Ey (i)


6− d

d(k)− dm
(
WT

1 (k)ETP3EW1(k) + 3WT
2 (k)ETP3EW2 (k)

)
(3.21)

− d

dM − d (k)

(
WT

3 (k)ETP3EW3(k) + 3WT
4 (k)ETP3EW4 (k)

)
,

where

W1(k) = x(k − dm)− x (k − d(k)) ,

W2 (k) = x(k − dm) + x (k − d (k))−G2(k),

G2 (k)

=


1

β1

2

k−dm−1∑
i=k−d(k)

Ex (i) + Ex (k − dm)− Ex (k − d (k))

 , dm < d (k) ,

2Ex (dm) , dm = d (k) ,

W3(k) = x(k − d(k))− x(k − dM ),

W4(k) = x (k − d(k)) + x (k − dM )−G3(k),

G3(k)

=


1

β2

2

k−d(k)−1∑
i=k−dM

Ex (i) + Ex (k − d (k))− Ex(k − dM )

 , d (k) < dM ,

2Ex (dM ) , dM = d (k) ,

where β1 = d (k)− dm, β2 = dM − d (k).

Obviously,
β1

d
+
β2

d
= 1, then, by Lemma 2.2, one has

− d
k−dm−1∑
i=k−dM

yT (i)ETP3Ey (i) 6WT (k)

P3 U

∗ P3

W (k) , (3.22)

where

WT (k) =
[
WT

1 (k) , WT
2 (k) , WT

3 (k) , WT
4 (k)

]
, P3 =

P3 0

0 3P3

 .
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Especially when d (k) = dm or d (k) = dM , one has Wi (k) = 0 (i = 1, 2) or
Wi (k) = 0 (i = 3, 4)£¬ respectively. Therefore, we can obtain that (3.22) still
holds.

Then, from (3.15) to (3.22), we can obtain

∆V (k)− (σ − 1)V (k) 6ξT (k) Ψξ (k) + l21x
T (k) [(ρ1 + ρ3 + ρ5) I + P1]x (k)

+ l22x
T (k − d (k)) [(ρ2 + ρ4) I + P1]x (k − d (k))

+
(
ρ−1

1 + ρ−1
3

)
xT (k)P1AA

TPT1 x (k)

+
(
ρ−1

2 + ρ−1
4

)
xT (k − d (k))P1AdA

T
d P

T
1 x (k − d (k))

+ ρ−1
5 l22x

T (k − d (k))P1P
T
1 x (k − d (k))

(3.23)

where

ξT (k)

=
[
xT (k) , xT (k−dm) , xT (k−d (k)) , xT (k−dM ) , GT1 (k) , GT2 (k) , GT3 (k)

]
.

Combining (3.7) and (3.23) £¬one has

∆V (k)− (σ − 1)V (k) < 0, (3.24)

then we get

V (k) < σV (k − 1), (3.25)

further obtaining

V (k) < σV (k − 1) < σ2V (k − 2) < · · · < σkV (0) . (3.26)

According to (3.15), we have

λmin (P11)xT (k)ETEx (k) 6 V (k) , (3.27)

and

V (0) =xT (0)ETP1Ex(0) +
−1∑

i=−dm

σ−1−ixT (i)Q1x (i)

+

−1∑
i=−dm

σ−1−ixT (i)Q2x (i) +

−1∑
i=−dm−1

σ−1−i (dm + i+ 1) yTi E
TP2Ey (i)

(3.28)

+ d

−dm−1∑
i=−dM−1

σ−1−i (dM + i+ 1) yTi (k)ETP3Ey (i) ,

after careful calculation, we have

V (0) 6λmax (P11) c1 + λmax (Q1) c1t1 + λmax (Q2) c1t2

+ δ [λmax (P21) t3 + dλmax (P31) t3] .
(3.29)
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From (3.27) to (3.29)£¬ it can be deduced that

xT (k)ETEx (k) 6
σN (γ1 + γ2)

λmin (P11)
,

in which

γ1 = [λmax (P11) + λmax (Q1) t1 + λmax (Q2) t2] c1,

γ2 = [λmax (P21) t3 + dλmax (P31) t4] c0.

By (3.8) to (3.14), it can be obtained that

xT (k)ETEx (k) < c2,

then, the system (2.1) is finite-time stable from Definition 2.1, which completes the
proof.

Remark 3.4. In Theorem 3.1, different from [20], a new LLK (3.15) for FTS of
discrete system is established. Less conservative results can be obtained. Because
in this way V (k) < σV (k − 1) could be obtained without enlarging the inequality,
unlike simple scaling V (k)− σV (k − 1) < V (k)− V (k − 1) used in [20].

Remark 3.5. Compared with the LLF used in [11], we added the term

V3(k) =

k−1∑
i=k−dm−1

σk−1−i(dm − k + 1 + i)yT (i)ETP2Ey(i)

+ d

k−dm−1∑
i=k−dm−1

σk−1−i(dM − k + 1 + i)yT (i)ETP3E
TEy(i),

in this way, more information from the system (2.1) is used. Moreover, about

the handling of the term
k−1∑

i=k−dm
σk−iyT (i)ETP2Ey(i), we have fully considered

the influence of weighting functions instead of directly reducing it to

σ
k−1∑

i=k−dm
yT (i)ETP2Ey(i). The inequality therefore has theoretical improvements

in analysis.

Remark 3.6. In Theorem 3.1, the parameters c1, c2, σ,N are involved. It is nec-
essary for us to explain the relationship between the relevant parameters. Firstly,
(3.7) and (3.14) are not in the form of LMIs respect to σ. But we note that (3.7)
and (3.14) are LMIs for fixed σ, then, the LMIs (3.8) to (3.14) can be solved for
the given σ. Moreover, based on the actual background of FTS, minimizing c2 for
given c1 and N is a meaningful optimization problem.

Especially when E = In, system (2.1) reduces to a normal time-delay system.
Based on Theorem 3.1, one has

Corollary 3.3. When E = In, the system (2.1) is finite-time stable respect to
(c1, c2, N) , 0 < c1 < c2, if there exist positive scalarσ > 1 and υi > 0 (i = 1, 2, ..., 6),
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ρi > 0 (i = 1, 2, 3, 4, 5) matrices P1, P2, P3, Q1, Q2, M and U , such that £ºP3 U

∗ P3

 > 0, (3.30)

Ψ =

5∑
i=1

Ψi < 0, (3.31)

Ψ eT1 PA eT1 PA eT3 PAd e
T
3 PAd l2e

T
3 P

∗ −ρ1I 0 0 0 0

∗ ∗ −ρ2I 0 0 0

∗ ∗ ∗ −ρ3I 0 0

∗ ∗ ∗ ∗ −ρ4I 0

∗ ∗ ∗ ∗ ∗ −ρ5I


< 0, (3.32)

υ1Ir < P11 < υ2Ir, (3.33)

0 < Q1 < υ3In, (3.34)

0 < Q2 < υ4In, (3.35)

0 < P2 < υ5Ir, (3.36)

0 < P3 < υ6Ir, (3.37)

σN (υ2 + υ3t1 + υ4t2) c1 + c0 (υ5t3 + dυ6t4) < υ1c2, (3.38)

in which the definition of Ψ is the same as in Theorem 3.1.

Remark 3.7. When studying the FTS of linear normal time-delay systems, less
conservative results can be obtained by Corollary 3.3. Because unlike [22], a new
LLK (3.15) for FTS of discrete system is established. In this way ∆V (k) < (σ −
1)V (k) could be obtained without enlarging the inequality, unlike simple scaling
∆V (k) < (σ − 1)V1(k) < (σ − 1)V (k) used in [22].

4. Numerical examples

Example 4.1. Considering the system (2.1) with £º

E=


1 0 0

0 1 0

0 0 0

, A=


0.3 0.2 0.1

0.2 0.3 0.4

0.2 1 0.2

, Ad=


0.1 0.03 0.1

0.1 0 0.02

1 0 0

,

dm = 2, dM = 5, c1 = 3, c0 = 2, (l1, l2)=(0.01, 0.01).

According to Theorem 3.1, the system is finite-time stable. In addition, in order
to observe the impact of nonlinear uncertainties on the finite-time stability of the
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system, we validated different parameters. In Table 1 we obtained the minimum
allowable value of c2 for different (l1, l2).

Table 1. Minimum allowable c2 different l1 and l2

(l1, l2) (0.01, 0.01) (0.03, 0.03) (0.05, 0.05)

c2 79.67 86.34 92.53

We can see that the minimum allowable value of c2 increases as the degree of
nonlinear uncertainties increases.

Example 4.2. Considering the system (2.1) with £º

E=


1 0 0

0 1 0

0 0 0

, A=


1 1 0.5

−1.5 0.5 3.75

1 2 3

, Ad=


0.5 0.2 −0.2

−0.15 −0.6 0.05

1 0 0

,

dm = 1, dM = 3, c1 = 1, c0 = 2.

Based on the actual background of FTS, we hope that c2 is as small as possible
for a given initial state and time interval. About the problem, [20] achieved good
results. In Table 2, we compare the result with [20].

Table 2. Minimum allowable c2 compared with [20]

[20] c1 = 1 N = 4 c2 = 372.49

Theorem 1 c1 = 1 N = 4 c2 = 109.08

We can see that c2 obtained from Theorem 3.1 is smaller than that in [20],
verifying that our result is less conservative than [20].

Example 4.3. Considering the system (2.1) with £º

A=


0.2 0.1 0.1

0.2 0.1 0.4

0.2 1 0.2

, Ad=


0.1 0.01 0.1

0.1 0.01 0.1

0.1 0.1 0.01

,

dm = 2, dM = 5, c1 = 3, c0 = 1.1.

In Table 3, we compare the result with [22].

Table 3. Minimum allowable c2 compared with [22]

[22] c1 = 3 N = 5 c2 = 56

Corollary 3 c1 = 3 N = 5 c2 = 22

We can see that c2 obtained from Corollary 3.3 is smaller than that in [22],
which illustrates that our result is less conservative than [22].
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5. Conclusion

In this paper, we have studied the finite-time stability for singular time-delay sys-
tems. Upon constructing a new Lyapunov-like functional (LLF) and a new weighted
integral inequality, we are able to establish some sufficient conditions such that the
underlying system is finite-time stable. Two numerical examples have been pre-
sented to illustrate the efficiency of the proposed method. Based on the results of
this paper, we can study the synthesis problem of finite-time stability for singular
time-delay systems, which is also our future work.
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