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RELTABILITY STATISTICAL ANALYSIS OF
TWO-PARAMETER EXPONENTIAL
DISTRIBUTION UNDER CONSTANT STRESS
ACCELERATED LIFE TEST WITH INVERSE
POWER LAW MODEL
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Abstract Based on the inverse power law model, the maximum likelihood
estimation and interval estimation of two-parameter Exponential distribution
are derived in detail under constant stress accelerated life test. Secondly,
the accuracy of point estimation and interval estimation is investigated by a
large number of Monte Carlo simulations. Finally, examples and simulation
examples are given to illustrate the application of the proposed method.
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1. Introduction

There has been a great deal of literature on the reliability of accelerated life tests,
which is not listed here. It should be pointed out that the research of accelerated life
tests has achieved fruitful research results and applied in practice in which the fail-
ure distribution of the products involved is usually a location-scale parameter fam-
ily distribution such as a one-parameter exponential distribution, a two-parameter
Weibull distribution or a two-parameter lognormal distribution and etc. In terms
of actual specific conditions, there are indeed a large number of product life subject
to the two-parameter exponential distribution while the reliability analysis of the
two-parameter exponential distribution product accelerated life test results are few,
the main reason is that there is no good understanding of the basic assumption
“failure mechanism unchanged”.

Failure mechanisms are the cause of changes in the physical, chemical and mate-
rial properties of a product. Studying the failure mechanism of the product is crucial
to improving the quality of the product, and also helps to improve the reliability
analysis results of some products, such as accelerated life test statistical analysis
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problems. It is based on three basic assumptions, one of which is to require the
failure mechanism of the product to remain unchanged in different stress environ-
ments. Its reason has been given by Nelson [6-8]. Another example is the problem
of statistical analysis of environmental factors which plays an important role in the
conversion of reliability data in different environments. Therefore, the problem of
statistical inference of environmental factors has attracted a lot of attention. It is
also common to require that the failure mechanism of the product remain unchanged
in different environments while using environmental factors for reliability analysis.
For the life distribution, Sun [11] proved that an invariant coefficient of variation is
a necessary condition for the invariance of the failure mechanism. The coefficient of
variation is a widely used parameter, and since this parameter is a good reflection
of the degree of dispersion of variable values, it is an important indicator of prod-
uct quality stability. Sun [12] proposed a method to test whether the coefficients
of variation are equal to test whether the failure mechanism is changed, and gives
a hypothesis test method to test whether the coefficients of variation are equal in
which the life distribution is lognormal distribution, Gamma distribution, Weibull
distribution, Gumbel distribution and so on. Yang [13] and Zhou [15] have studied
the properties of the acceleration coefficients in depth, pointing out the essential
relationship between these properties and the invariance of the failure mechanism.
The expressions of the conditions and acceleration coefficients of the failure mecha-
nisms of various common life distributions and the failure distributions suitable for
accelerated life tests are given, the time conversion formula and the basic assump-
tions of the accelerated life test are discussed as well. But in fact, the condition
given by Yang [13] and Zhou [15] that the failure mechanism is unchanged is that
the coefficient of variation remains constant.

Let the population X follow a two-parameter exponential distribution Exp(u, 6),
ie. X ~ Exp(u,0), and its distribution function and density function are

_ 1 _
F(l’)zl_exp<—w),f($):eeXp(—W>7$ZMZO,9>O,

where 6 is the scale parameter and p is the location parameter.

Zheng and Fang [14] proposed a new approach to obtain the exact lower and
upper confidence limits for the mean life of the exponential distribution in the accel-
erated life tests with type-I censoring data. El-Raheem [2] studied the optimal allo-
cation problem in multiple constant- stress accelerated life testing for the extension
of the exponential distribution under type-II censored data and obtained the exact
and asymptotic optimal allocations for small and large sample sizes under three
optimizations criteria associated with Fisher information matrix. Hassan [4] stud-
ied the estimation of the stress-strength reliability model when the stress and the
strength variables are modeled by two independent but not identically distributed
random variables with generalized inverse exponential distributions. El-Raheem [3]
derived point and interval estimations of parameters for the modified Kies expo-
nential distribution by using the maximum likelihood and Bayes method under
multiple constant-stress testing for progressive type-II censored data with binomial
removal. Alotaibil [1] introduced the Gull alpha power exponentiated exponential
distribution and studied its statistical properties and parameter estimations as well
as a bivariate step-stress accelerated life test based on progressive type-I censoring.
Shi [9,10] pointed out that if the product life follows the two-parameter exponential
distribution, it is assumed that Inf = a + bp(S), Inp = ¢ + d¢(S) where a,b, ¢, d
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are the parameters. When the stress S is temperature, ¢(S) = %, the model is
the Arrhenins model. When the stress S is voltage, ¢(S) = In(S), the model is an
inverse power law model. In addition, the estimation method of product reliability
index under the constant stress acceleration life test site of fixed truncation is given.

2. The fundamental assumptions of the constant
stress accelerated life test and the inverse power
law model

The statistical analysis of the constant stress accelerated life test of the two-
parameter exponential distribution product under the inverse power law model is
based on the following three basic assumptions.

Assumption 2.1. Suppose that the life of the product X at any stress level V
obeys the two-parameter exponential distribution with the scale parameter 0 and the
position parameter .

Assumption 2.2. The failure mechanism of the product does not change at various

stress levels, i.e. the coefficients of variation CV = ﬁ are the same for the product
life distribution at each stress level. It also means that the ratios of parameters =1

are the same.

Assumption 2.3. The scale parameter 8 and the acceleration stress level V' satisfy
the inverse power law model.

According to the physical principle and experimental experience summary, the
inverse power law model means that when the voltage is accelerated stress, the
inverse power law relationship between the scale parameter 6 (unit: hours) and
voltage (unit: volts) of some products (such as insulation materials, capacitors,
micro motors and some electronic devices) is 6 = (117, where d > 0, ¢ > 0 are
constants.

After taking the logarithm on both sides of the above equation, the logarithmic
linear relationship is satisfied for 6:

In6 = a+bp(V),

where a = —Ind, b = —¢, and ¢(V) =InV is a function of stress V.

3. Point and interval estimates for parameters

A constant stress acceleration life test is performed on n products whose life dis-
tribution is two-parameter exponential distribution Exp(u, ) with the location pa-
rameter p and the scale parameter . The products are divided into k parts, that
is n1, N9, - , Nk, while the constant stress is divided into k stress, i.e. Vi < V5 <
-+ < Vi. The n; products are subjected to a life test until all the products fail
under the constant stress V;, ¢ = 1,2,--- ,k, and the corresponding order failure
times (1), Z(i2),* " » T(in;) Of the n; products are recorded.

Under constant stress V;, i = 1,2,--- , k, the life X; of the product follows a
two-parameter exponential distribution Exp(u;,6;), and its distribution function
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and density function are

ot = 1o (~27) 1 [ (21)].

—(x—T>:|,x>,ui>0,9i>0,i:1,2,~~~,k.

1. Maximum likelihood estimations of parameters
The likelihood function is:

L{e,d,T) H H {aVe exp (—dVixuj) + 1)}

i=1j=1

k k n;
- (H V”) exp (=AY VD x|
i—1 i=1  j=1

Uz

InL(c,d, ) —nlnd—knr—i-canan dZV Zaj(”)

=1 =1 j=1

k k
= nlnd+m’+CZniani — dznifivf,

i=1 i=1
1
where z; = .- '21 T(ij)-
j=

k
CdT Zman danxZV InV;, oL (CdT 771 anml

Let 2L(edn) _ BL(g,dd,T)

BE = 0, and the following system of equations are obtained:

k k
> iV, —d Y nz VeV =0,

i=1 i=1
n k
d

i=1

Simplify to obtain the following univariate transcendence equation with the only
parameter c:

k
> mziVinVi ok
S (3.1)
Z nifz‘/;C " i=1
=1
Z n;T; In'V;
Lemma 3.1. If Z n;InV; > =——— then the equation (3.1) of the param-
=1 Z niT;

eter ¢ has a unique positive real root
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Proof. Denote

k
VelnV;
_i=1
g(C) - k
> i Ve
i=1
k k
E n;T; InV; Z n; T (W) InV;
It is easy to see lim g(c) = = , lim g(c) = lim = =InV;
S niZ c—+00 c—+o00 > nlwl(L)
i=1 i=1 k
and
k k k
S iz VeI Vi) - 30 n;T;VE— 3 iz VEen V- Z n;z;VEInV;
’ =1 Jj=1 =1 7j=1
g'(c) = A 2
o)
i=1
k k
It is noted that the numerator Y. n,z;Ve(InV;)® - 30 n;z;V; Z n;z; VeV -
i=1 j=1 =1

k
le n;z;VFInVj of g'(c) contains the term in terms of V°V :

nia’:iVic(ln ‘/;)2 . nj:EjVjc + njfchjc(ln ‘/})2 . nii‘in — 2’1%3?,“/20 InV; - nj:EjVjc In ij
=n;n;z;3; VIV (InV; — InV;)?
>0,
i.e. g(c) is a strictly monotonic increasing function. Since

k
>z InV; L&
=1 <= nilnV; <InVj,

n
Z n;T; i=1
i=1
k
the equation g(c) = £ 3~ n;InV; has a unique positive real root. O
Z:1
Z InV;
If L Z n; InV; > =—— is satisfied, then the maximum likelihood estimate
i=1 Z niTi

¢ of the parameter ¢ can be obtained by solving the equation (3.1). Moreover the

n
k

Z n;xT;V,
At the same time, the max1mum hkehhood estimates of the parameters 60;,i =
, , k are derived by [ W'
OL(c,d,T)
or

maximum likelihood estimation d = of the parameter d can be obtained.
1,2

Since =n > 0, the maximum likelihood estimate of 7 is

%:min{xg”,z':m,... l-c}

Set n =70, k =4, n; =5, ng = 10, ng = 20, ny = 35 and their corresponding
constant stress levels to be V7 = 10V, Vo = 20V, V3 = 30V, V; = 40V, respectively.
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k Zk: n;%; In'V;
The number of times that the condition 1 3 n;InV; > =1 ——— satisfied is
i=1 igl niT;
calculated from 1000 Monte Carlo simulations. As well as the mean and mean
square error (MSE) of the maximum likelihood estimates of the parameter c,d, T
are calculated when this condition is satisfied. The results are shown in Table
1, from which it can be seen that: Firstly, almost all the sample data meet the
conditions, that is, the maximum likelihood estimation of the parameter ¢ can be
obtained through equation (3.1). Secondly, the maximum likelihood estimations of
the parameters ¢, d, 7 also have high accuracy.

Table 1. Simulation results for the maximum likelihood estimations of parameters

truth values of -

™
B
<>

parameters times
c d T mean MSE mean MSE mean MSE
0.1 999 0.9756 | 0.0832 | 0.0016 | 4.7795 x 10-° | 0.1032 0.0003
0.001 | 0.2 1000 0.9731 | 0.0723 | 0.0014 | 3.2756 x 10-° | 0.1758 | 0.00112
0.3 1000 0.9894 | 0.0539 | 0.0011 1.1011 x 10~ % | 0.2370 | 0.00474

0.1 1000 0.9614 | 0.0811 | 0.0172 0.000567 0.1034 | 0.00031

1 0.01 0.2 1000 0.9727 | 0.0662 | 0.0134 0.000224 0.1755 | 0.00114
0.3 1000 0.9875 | 0.0552 | 0.0112 0.000110 0.2372 | 0.00474

0.1 998 0.9747 | 0.0751 | 0.1553 0.035784 0.1047 | 0.00036

0.1 0.2 1000 0.9692 | 0.0616 | 0.1328 0.018108 0.1768 | 0.00103

0.3 1000 0.966 0.0585 | 0.1227 0.013921 0.2371 0.00475

0.1 1000 1.9830 | 0.0793 | 0.0016 | 3.6217 x 10~¢ 0.1047 | 0.00036
0.001 | 0.2 1000 1.9774 | 0.0673 | 0.0014 | 2.4764 x 10~ © 0.1761 0.00115
0.3 1000 1.9964 | 0.0565 | 0.0011 1.2694 x 10~ © 0.2356 | 0.00497

0.1 1000 1.9693 | 0.0833 | 0.0172 0.000707 0.1035 | 0.00036

2 0.01 0.2 1000 1.9868 | 0.0629 | 0.0130 0.000228 0.1770 | 0.00106
0.3 1000 1.9837 | 0.0594 | 0.0116 0.000140 0.2371 0.00480

0.1 1000 1.9727 | 0.0773 | 0.1628 0.054764 0.1033 | 0.00033

0.1 0.2 1000 1.9850 | 0.0712 | 0.1360 0.029058 0.1764 | 0.00109

0.3 1000 1.9937 | 0.0519 | 0.1073 0.008869 0.2375 | 0.00470

0.1 1000 3.9741 0.0878 | 0.0017 | 6.7213 x 10~© 0.1039 | 0.00034
0.001 0.2 1000 3.9704 | 0.0647 | 0.0014 | 2.2084 x 10~© 0.1761 0.00112
0.3 1000 3.9780 | 0.0591 0.0012 1.3617 x 10~ © 0.2367 | 0.00475

0.1 1000 3.9755 | 0.0788 | 0.0163 0.000481 0.1038 | 0.00035

4 0.01 0.2 1000 3.9818 | 0.0671 | 0.0135 0.000234 0.1758 | 0.00113
0.3 1000 3.9911 | 0.0562 | 0.0112 0.000119 0.2364 | 0.00489

0.1 1000 3.9898 | 0.0773 | 0.1551 0.045374 0.1044 | 0.00035

0.1 0.2 1000 3.9593 | 0.0673 | 0.1436 0.025530 0.1759 | 0.00114

0.3 1000 3.9989 | 0.0551 | 0.1083 0.011681 0.2366 | 0.00482

3.2. Interval estimations of parameters c, 7

According to the property of the order statistics of exponential distribution, it

. X Xim—X (s Xiny =X i(ms—
is easy to know that n; (7&1) —T) ,(ng — )= =0 T

, are
i

independent and obey the standard exponential distribution Exp(1) under stress
Viei=1,2,--- k.
X

. X(iay—X X(in,y =X (i(n;
Besides, 2n; (—0 —7-)72(7% ~- 1) “2)9- G .. 9Xny ei(( =) are

i i

i

independent and follow x?(2). Moreover, & > (n; —j+ 1)(X(j) — X(j—-1)))

=
~x? (2(n; — 1)).
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Ifi= [g], then we have

l

1 < )
22 0; > (i =+ 1) (Xij) = Xag-1) ~ X (2 (E n; — l>> :
=1 j=2 :

k

1 «— )
2 Z 0, Z (ni — j + D)(X(ij) — Xag-1))) ~ X (2 (Z n; —k+ l)) ’

i=l41 =2

which means

l
QdZ VCZ i =7+ DX — Xag-1)) ~ X (2 (Zm - l)) ;
Jj=2 i

n;

k
2d Z Ve (i =+ 1)(Xij) = Xag-1y) ~ x° <2 > ”i"‘/’“))

1=l+1 j=2

Therefore,

n;

k i
2d 30 VE D (mi—i+ 1) (X —X(iG-1)))
i=l+1 j=2

2(» 5 ni7k+l> !
l > - < ( Z " k ’ l) <Z l)) .
2di§1 Ve ,Ez (ni—j+1)(X i) —X(i(—1))) i=l+1 i=1
i=1

Denote
l k n;
Sng—1 > VEY (ni =i+ 1) (Xaj) — Xag-1y)
T(c) = =1 i= l+1 j=2
ng ’
Xl;rlm —k+1 E Ve ZQ (ni —J + D (Xaj) — Xg-1))
then

T(c ( (Zzl;lnz—ml) (z:n—z))

Lemma 3.2. If lin%) T (¢) < a, then the equation T (c) = a of the parameter ¢ has a
c—

unique positive real T00t.

Proof.
l ko ng )
Y-l X Z (ni —j + D(Xaij) — Xiig-1))
IIII(I) 7—( ) i=1 1= l+1 7= 7
c—
Z n; —k+1 Z Z (ni — 3 + DXy — X(igi-1)))
i=l+1 i=1j=
lim 7 (c) = +o0,

c——+oo
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= G(c)
[T(c)) = - 5
izXlJ:rlnL T e S g D(X¢ij) = Xai-1))
i=1  j=2
where
k n;
Glo)= > VeV (n—j+ D)( X5 — Xagi-1))
i=l+1 Jj=2
l ng
XD VEY (i =i+ D(Xaj) — Xii-1)
i=1  j=2
k} n;g
= D VEY (i — i+ D)X — X-1y)
i=l+1  j=2
X ZVC InV; Z n; —j+ 1)( X(U) (i(jfl)))
niy Niy

Z > Z > O VEVEIV;, (ni, — g1+ 1)(ni, — j2 + 1)

i1=l4+1 j1=21i2=1 jo=2
X (Xum) - X(mjl 1)) (X(i2j2) = X(ia(j2—1))

Ny Ny

Z > Z > VEVEIM Vi, (ni, — g1+ 1)(niy — j2 + 1)

i1=l4+1 j1=212=1 jo=2
(ijl) - X(za(jl 1)) (X(i2j2) = X(is(j2—1))

Tiq Tig

Z > Z S VEVEWV, Vi) (g, — ji + D), — jo + 1)

11=l4+1 j1=21i2=1 jo=2
X (Xirjn) = X (i—1)) (X (izja) = X(ia(j2—1)))
>0.

Thus the function 7 (c) is a strictly monotonic increasing function of the parameter
c¢. Furthermore, if liné T (¢) < a, then the equation T (c) = a of the parameter ¢ has
c—r

a unique positive real root. O
Given the confidence level 1 — «, if

k l
lir%'T(c) < Fi_a (2 ( Z n; — k+l> ,2 (an — l>>
o i=l+1 i=1

is satisfied, the confidence interval for the parameter ¢ is [é1,és], where &1, éo are
the roots of the following equations, respectively:

k l
T = Fioasa (2 ( > ni—mz) g (Zni_z» |
i=l+1 i=1
l
T(C) a/2< (Z nz_k+l> (an—l>)
i=l+1 =1
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According to Li [5], the minimum variance unbiased estimators of the parameters
0;, w; under stress V;, i = 1,2,--- , k are respectively denoted as 0, = - (X; —

’n,i*l
X(il))a fi = X(il) - ,%’ and

2 2 - 2
W D(p) = — s cov(i ) =~

n; — ].7
The point estimate of the parameter 7 can be taken as

4:X(i1)7i:ni*1_X(i1) 1

0; n; ni Xi—Xuy oni

Lemma 3.3. (i) The expected value of 7; is E(T;) = "2:57' + ﬁ,

(i) 7; = Zijﬁ'— (m,ll)ni = n;l_Q Xi)i()i(l()m - ni is an unbiased and consistent esti-
mate of T, and its corresponding variance is D(7;) = ﬁ (7'2 + 7%_7‘ + ”;1751)
Proof. Let Z;) = X‘%i_”"’,j =1,2,---,n;, and we have
Xijy = i +0:i 2y = 0:(Z(jy +7), 5 = 1,2, -+, ny.
(i)
ConXs Xy
J:
o ng— 1 2TliZ(1)
23, (ni =G+ 1)(Zy) ~ Z-1)
J:
2(n; — 1 1
e 2y Y
2 22 (ni —j+)(Zw — Zi-1))
i=
Mg
Denote U =23, (ni = j+1)(Z) = Zg-n),V = 2mZq), then 7i = vt
;=

w — ni Noting that U,V are independent of each other and U ~ x?(2(n; —

1)),V ~ x%(2). Then

i — 1 _ _ 1
BE(#) :”nv E(V)E(U™) +2(n = TEU ™) — —
1 1
ni—1 1 1 1
BT B T R
n; — 1 1

= T+ .
n; — 2 ni(n; —2)
(ii) It is easy to see that 7; is an unbiased estimation of 7, and

n; —2 . 1 ni—2V+2(ni—2)7' 1
T— = e
n; — 1 (n; — 1)n; n; U U n;’

T =
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R n;—2V  2(n; —2)1 1 1V  2r
1

4
= (n; — 2)? [nQD(VUl) +4r2D(UY) + %cov(VU’l, Ul)} :

?

DVU ) =E(WV*U?) - [E(VU )]’ =E(V)EU?) - [E(V)EU )
1 1 2
=D —3) [22@% - 2>}
2 R
(ni =2)(ni =3)  (n; —2)>  (n; —2)*(n; — 3)’

— E(V)DWU™) = L ,

(V)DU™) 2 — 2% (m —3)

1 n; — 1 1

D7A'Z = n1—22 — 22 47_2 .
(7)) = ( ) [nz (n; —2)"(n; — 3) 4(n; —2)*(n; — 3)

O
By denoting
1 2 n; —1
= D(#) = 24 = ‘
w; (Tz) ng — 3 (Tz + iTz + 12 ) 5
1 9 n; —1
b = + =7 + ) _1727 ak7
i ng — 3 (7’Z inL Zz ) 7
Xk: w; 1'?1
the unbiased estimation of 7 can be 7 = = , and
> wjl

When n;, i =1,2,--- ,k is extremely large, we have the following approximation

k k
\l;(f—T)f‘vN(O,l), > (7 = T)RN(0,1).
i=1 i=1
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At the confidence level 1 — «, denote that the upper § quantile of the standard
normal distribution N(0,1) is U, 2, and the approximate confidence interval for the
parameter T is

Let n =70, k =4, ny =5, nyg = 10, ng = 20, ny = 35, and constant stress levels
be V1 =10V, V, = 20V, V3 = 30V, V, = 40V, respectively. The number of times

k l

that the condition im 7(c) < Fi_qsp | 2| > ni—k+1],2( > ni—1 met
c—0 i=l+1 =1
is calculated by 1000 Monte Carlo simulations. Besides, among 1000 simulations
that satisfy above condition, we calculate the average lower bound, the average
upper bound, the average interval length, and the number of times that the interval
contains the true value ¢ when the confidence level is 1 — a = 0.95. The results
are shown in Table 2. At the same time, the average lower bound, the average
upper bound, the average interval length, and the number of times that the interval
contains the true value 7 are calculated by 1000 Monte Carlo simulations when the
confidence level is and the corresponding results are shown in Table 3. It can be
seen from Tables 2 and 3 that most of the observations meet the conditions, and
the number of times satisfied the conditions shows an increasing trend as the value
of ¢ increases, and the interval contains more than 950 times of the true value of
the parameter as well.

Table 2. Simulation results for interval estimation of parameter ¢

truth values of . . .
. average lower average upper average interval number of times that the interval
parameters times )

p p = bound bound length contains the true value ¢
0.1 789 0.4228 1.9692 1.5464 963
0.001 | 0.2 793 0.4264 1.9896 1.5633 974
0.3 805 0.4429 2.0012 1.5583 963
0.1 811 0.4341 1.9938 1.5597 969
1 0.01 0.2 761 0.4353 2.0011 1.5658 966
0.3 788 0.4389 1.9925 1.5536 959
0.1 770 0.4418 2.0057 1.5639 969
0.1 0.2 784 0.4373 1.9944 1.5570 970
0.3 798 0.4440 2.0022 1.5582 957
0.1 997 1.2824 2.8392 1.5568 957
0.001 | 0.2 998 1.2946 2.8420 1.5475 952
0.3 998 1.2956 2.8541 1.5585 956
0.1 998 1.2788 2.8310 1.5522 955
2 0.01 0.2 1000 1.2814 2.8438 1.5624 955
0.3 999 1.2987 2.8601 1.5614 958
0.1 997 1.3149 2.8680 1.5531 951
0.1 0.2 998 1.2993 2.8488 1.5495 954
0.3 998 1.2745 2.8231 1.5486 961
0.1 1000 3.2927 4.8458 1.5531 951
0.001 | 0.2 1000 3.2948 4.8496 1.5548 952
0.3 1000 3.2598 4.8080 1.5483 954
0.1 1000 3.2928 4.8446 1.5518 957
4 0.01 0.2 1000 3.2799 4.8449 1.5651 956
0.3 1000 3.2859 4.8460 1.5601 957
0.1 1000 3.3063 4.8624 1.5561 956
0.1 0.2 1000 3.2724 4.8269 1.5545 953
0.3 1000 3.3008 4.8600 1.5592 963
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Table 3. Simulation results for interval estimation of parameter 7

truth values of . A .
parameters average lower average upper average interval number of' times that the interval

P 4 - bound bound length contains the true value 7
0.1 0.0336 0.1547 0.1211 986
0.001 | 0.2 0.1102 0.2677 0.1575 973
0.3 0.1831 0.3831 0.2000 951
0.1 0.0332 0.1543 0.1211 989
1 0.01 0.2 0.1107 0.2685 0.1578 976
0.3 0.1835 0.3837 0.2002 950
0.1 0.0336 0.1548 0.1212 988
0.1 0.2 0.1104 0.2683 0.1578 969
0.3 0.1833 0.3837 0.2004 954
0.1 0.0318 0.1519 0.1202 978
0.001 | 0.2 0.1089 0.2654 0.1564 965
0.3 0.1816 0.3797 0.1981 955
0.1 0.0325 0.1529 0.1204 993
2 0.01 0.2 0.1089 0.2652 0.1563 969
0.3 0.1787 0.3754 0.1967 955
0.1 0.0316 0.1517 0.1201 988
0.1 0.2 0.1103 0.2675 0.1572 967
0.3 0.1808 0.3783 0.1975 951
0.1 0.0319 0.1521 0.1202 989
0.001 | 0.2 0.1072 0.2627 0.1555 952
0.3 0.1808 0.3788 0.1979 952
0.1 0.0323 0.1529 0.1206 987
4 0.01 0.2 0.1071 0.2628 0.1556 964
0.3 0.1815 0.3799 0.1984 950
0.1 0.0319 0.1522 0.1203 988
0.1 0.2 0.1091 0.2656 0.1566 961
0.3 0.1828 0.3820 0.1992 954

3.3. Examples of point estimations and interval estimations of
parameters

Example 3.1. Nelson [8] gives the time for the oil to break through the insulating
liquid at high test voltages. Assuming that the voltage is used as the stress level and
the acceleration model is an inverse power law model, the normal stress level of the
test is Vo = 20KV, and the corresponding failure data (unit: minutes) is obtained
as shown in Table 4 when the constant stress acceleration life test is performed at
various acceleration stress levels.

Table 4. Failure data for Example 3.1

28 kV | 68.85, 108.29, 110.29, 426.07, 1067.60

20 v | 774 17.05, 20,46, 21.02, 22.66, 43.4, 47.3, 130.07, 144.12, 175.88,
194.9

g oy | 0-27- 040, 0.69, 0.79, 2.75, 3.91, 9.8, 13.95, 15.93, 27.80, 53.24,
82.85, 89.29, 100.58, 215.10

oy oy | 0-19: 078, 0.96, 1.31, 278, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.0,
8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89

a6 1y | 0-3%: 059, 0.96, 0.99, 1.69, 197, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99,
5.35, 13.77, 25.50

38 kV | 0.09, 0.39, 0.47, 0.73, 0.74, 1.13, 1.40, 2.38
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Using the method in this paper, the maximum likelihood estimates of the pa-
rameters c,d, T can be obtained ¢ = 17.7996, d = 4.59894 x 1072°, 7 = 0.007675.

At a confidence level of 0.95, the confidence interval for the parameter c is
[13.5938,21.3561], and the upper confidence bound for the parameter 7 is 0.0234.

Example 3.2. Let n =80, k =5, ny = 5, ny = 10, ng = 15, ngy = 20, n5 = 30, and
the constant stress levels are V7 = 10V, Vo, =20V, V3 = 30V, V, =40V, V5 = 50V,
respectively. The truth values of parameters are ¢ = 3, d = 0.01, 7 = 0.2. The
Monte Carlo simulation generates the two-parameter exponential distribution of
constant stress accelerated life test data as shown in Table 5.

Table 5. Simulated sample data for Example 3.2

Vi =10V | 0.0314205, 0.0359857, 0.059218, 0.146946, 0.165314

0.00259428, 0.00374237, 0.00382828, 0.00514573, 0.00758829,
0.0113899, 0.0136778, 0.0351629, 0.0377542, 0.0516479
0.000958262, 0.00194195, 0.0020529, 0.00211367, 0.00212201,

Va3 =30V | 0.00214035, 0.00244233, 0.00252733, 0.00317994, 0.00330975,
0.00357749, 0.00382611, 0.00384307, 0.003916, 0.00422746
0.000343732, 0.000457334, 0.000966568, 0.00113147, 0.00139871,
0.00160937, 0.00175745, 0.00177247, 0.00183533, 0.00184875,

Vo =20V

Vi =40V
0.00303843, 0.00304948, 0.00308138, 0.00326221, 0.00333005,
0.0035067, 0.0038699, 0.00661915, 0.00696539, 0.00752688
0.000178625, 0.000187964, 0.000207027, 0.000305789, 0.000315769,
0.000359765, 0.000362945, 0.000456046, 0.000466002, 0.000487773,
Vi = 501 0.000527234, 0.000552236, 0.000568894, 0.000627443, 0.000669463,

0.000732436, 0.000751225, 0.000770397, 0.000815137, 0.000864102,
0.00100472, 0.00100706, 0.00101873, 0.00102434, 0.00122256,
0.00159513, 0.0015996, 0.00190227, 0.00267328, 0.00293717

Using the method in this paper, the maximum likelihood estimates of the pa-
rameters ¢, d, T are obtained ¢ = 2.848009, d= 0.01387, 7 = 0.17094 respectively.

The confidence interval for the parameter c is [2.4475, 3.8325], and the confidence
interval for the parameter 7 is [0.0742,0.2211] at a confidence level of 0.95.
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