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Abstract The main aim of this paper is to introduce new ideas, called large
s-simulation functions and large Zs-contractions, which are inspired by the
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s-simulation functions are presented. Moreover, fixed point results for large
Zs-contractions are investigated.
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1. Introduction and preliminaries

From the past until now, one of the great power tools for solving many real-world
problems and mathematical problems is the theorem concerning fixed points, in-
cluding the existence theorem for fixed points of nonlinear mappings and the con-
vergence theorem for fixed point algorithms. One cornerstone in metric fixed point
theory combining both mentioned parts is the Banach contraction mapping princi-
ple in [1]. This principle originates from many more metric fixed point results in
this era. In addition to the theoretical aspects mentioned above, the Banach con-
traction mapping principle has greatly benefited many other fields, such as science,
engineering, economics, chaos theory, artificial intelligence studies, big data studies,
etc.

Nowadays, there are several ways to improve the Banach contraction mapping
principle, such as the investigations on spaces having more structure than metric
spaces, the invention of new nonlinear mappings, and proving fixed point results for
these new mappings, etc. To lead to the inspiration of this paper, needed details in
interesting research articles concerning these mentioned ways are given in the next
paragraph.
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In 2015, Khojasteh et al. [9] introduced the concept of a simulation function
significantly impacting the fixed point theory because it can be used to invent
a broad class of new nonlinear mappings covering several nonlinear contraction
mappings. They use simulation functions to establish the incredible contraction
mapping named Z-contraction mapping. In addition, the existence and uniqueness
of fixed point for Z-contraction mappings in metric spaces are presented in such
an article. These results also show that any Z-contraction mapping is a Picard
mapping. Afterward, Roldán López de Hierro et al. [10] showed that simulation
functions require symmetry in their arguments, which is not necessary for the proofs.
Then, they slightly modified the original definition to highlight this difference and
enlarged the family of all simulation functions.

Although the idea of simulation functions seems helpful, we still need to apply
it in more expansive spaces such as in b-metric spaces, formally introduced by
Czerwik [6] in 1993. An intelligent solution to the problem, as mentioned earlier,
was suggested by Yamaod and Sintunavarat [15] in 2017. They introduced the
fantastic class of s-simulation functions, where s ≥ 1. They also showed that
this class could be used to invent the new generalized contraction mappings in
b-metric spaces. This contraction is called a Zs-contraction mapping. Moreover,
many results in fixed point theory involving the ideas of s-simulation functions and
Zs-contraction mappings are proved.

On the other hand, it is well-known that many mathematical definitions and
theorems originated from the goal that the users want to solve some problems, such
as integral equations, differential equations, matrix equations, etc. For instance, the
Banach contraction mapping and its fixed point results are presented to solve some
integral equations. In 1996, Burton [5] established the concept of large contraction
mappings, weaker than Banach contraction mappings, and applied its fixed point
results to solve the specific integral equation. Next, we give its definition, which is
one of the inspirations for inventing the main idea in this paper.

Definition 1.1 ( [5]). Let (X, d) be a metric space. A mapping T : X → X is
called a large contraction mapping if the following conditions hold:

(B1) d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y;

(B2) for all ϵ > 0, there is δ ∈ [0, 1) such that

[∀x, y ∈ X with d(x, y) ≥ ϵ] ⇒ d(Tx, Ty) ≤ δd(x, y). (1.1)

We observe that every Banach contraction mapping is a large contraction map-
ping, but the converse does not true as in the following example:

Example 1.1. Let (X, d) = (R, | · |) be a usual metric space and let T : X → X be
defined by Tx = x−x3 for all x ∈ X. By applying the mean value theorem, we get
that T is a large contraction mapping, but is not a Banach contraction mapping
(the reader can see more details in [5], and also [8]).

Surprisingly, no researchers have combined two ideas of s-simulation functions
and large contraction mappings. The main goal of this paper is to fill this gap in
the research on this trend. First, the new idea of a large s-simulation function with
phenomenal examples is presented. Second, we use the concept of large s-simulation
functions to construct the definition of new generalized contraction mappings named
large Zs-contraction mappings and prove that any large Zs-contraction mapping is
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a Picard mapping. The example to illustrate our main results and the numerical
method are given.

2. Preliminaries

Throughout this paper, we denote by N, R+ and R the set of positive integers,
the set of non-negative real numbers and the set of real numbers, respectively.
In 1993, Czerwik [6] formally introduced the idea of b-metric spaces, which is an
extension of metric spaces, and presented the Banach contraction mapping in the
framework of b-metric spaces. After the appearance of this research, there are a lot
of mathematicians who investigated many results in b-metric spaces. Here, we give
some basic ideas related to b-metric spaces as follows:

Definition 2.1 ( [6]). Let X be a nonempty set and s ≥ 1 be a fixed real number.
Suppose that the mapping d : X ×X → R+ satisfies the following conditions for all
x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ s[d(x, z) + d(z, y)].

Then d is called a b-metric, and (X, d) is called a b-metric space with the coefficient
s.

It is easy to see that each metric is a b-metric with s = 1, but the converse is not
true. The mapping R× R ∋ (x, y) 7→ |x− y|p, where p ≥ 1, is a known b-metric on
R with the coefficient s = 2p−1. The reader can see more examples of b-metrics and
some space related to b-metrics from many research articles in fixed point theory
(see [3, 4, 7, 11–14] and references therein).

Definition 2.2 ( [3]). Let (X, d) be a b-metric space and {xn} be a sequence in X.

(i) {xn} is b-convergent if there exists x ∈ X such that lim
n→∞

d(xn, x) = 0. In this

case, we write lim
n→∞

xn = x or xn → x as n→ ∞.

(ii) {xn} is called a b-Cauchy sequence if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is called b-complete if every b-Cauchy sequence in X b-converges.

From the above definition, it is well-known that for each b-metric space (X, d),
a b-convergent sequence in X is a b-Cauchy sequence and it has a unique limit. In
general, a b-metric is not continuous (see more details in [3]). Recently, a good
survey about a brief history and survey of b-metric spaces with some important
related aspects and the early developments in fixed point theory on b-metric spaces
is presented in [2].

Next, we review some basic knowledge about simulation functions and
Z-contraction mappings which are needed for our investigation.

Definition 2.3 ( [9]). A function ζ : [0,∞) × [0,∞) → R is called a simulation
function if it satisfies the following conditions:

(S1) ζ(0, 0) = 0;
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(S2) ζ(t, s) < s− t for all t, s > 0;

(S3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

We denote by Z the class of all simulation functions.

Example 2.1 ( [9]). Let ζ1, ζ2, ζ3 : [0,∞)× [0,∞) → R be defined by

(a) ζ1(t, s) = ks− t for all t, s ∈ [0,∞), where k ∈ [0, 1);

(b) ζ2(t, s) = ψ(s) − ϕ(t) for all t, s ∈ [0,∞), where ψ, ϕ : [0,∞) → [0,∞) are
two continuous functions such that ψ(t) = ϕ(t) = 0 if and only if t = 0 and
ψ(t) < t ≤ ϕ(t) for all t > 0;

(c) ζ3(t, s) = s − φ(s) − t for all t, s ∈ [0,∞), where φ : [0,∞) → [0,∞) is a
continuous function such that φ(t) = 0 if and only if t = 0;

(d) ζ4(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,∞), where f, g : [0,∞) → [0,∞) are two

continuous functions with respect to each variable such that f(t, s) > g(t, s)
for all t, s > 0.

Then ζ1, ζ2, ζ3, ζ4 ∈ Z.

Definition 2.4 ( [9]). Let (X, d) be a metric space. A mapping T : X → X is
called a Z-contraction mapping with respect to ζ ∈ Z if the following condition is
satisfied:

ζ(d(Tx, Ty), d(x, y)) ≥ 0

for all x, y ∈ X.

It is easy to see that a Banach contraction mapping is a Z-contraction map-
ping concerning ζ1 ∈ Z defined in Definition 2.1. Furthermore, by utilization of
simulation functions, we can show that many contraction mappings in the past are
Z-contraction mappings.

In 2017, the concept of simulation functions was extended to the following idea:

Definition 2.5 ( [15]). Let s ≥ 1 be a given real number. A function ζ : [0,∞)×
[0,∞) → R is called an s-simulation function if it satisfies (S2) and the following
condition:

(S4) if {αn}, {βn} are sequences in (0,∞) such that

0 < lim inf
n→∞

αn ≤ s

(
lim sup
n→∞

βn

)
≤ s2

(
lim inf
n→∞

αn

)
and

0 < lim inf
n→∞

βn ≤ s

(
lim sup
n→∞

αn

)
≤ s2

(
lim inf
n→∞

βn

)
,

then

lim sup
n→∞

ζ(αn, βn) < 0.
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3. Large s-simulation functions

The main aim of this section is to present a new type of simulation function, which
is named a large s-simulation function. Using this simulation function to define
the new contractive condition in fixed point theory has the advantage of being used
more than other simulations in the past. First, we start with defining the mentioned
simulation function type.

Definition 3.1. Let s ≥ 1 be a given real number. A function ζ : [0,∞)× [0,∞) →
R is called a large s-simulation function if it satisfies (S4). Throughout this paper,
we denote by Cs the collection of all large s-simulation functions.

Directly from Definition 3.1, each s-simulation function is a large s-simulation
function and so it is also a generalization of a simulation function. The reader can
see the relation of various types of simulations from Figure 1.

Figure 1. The relation of various types of simulations.

To claim the accurate proper generalization of a class of large s-simulation func-
tions, we must give the example of a large s-simulation function, which is not an
s-simulation function.

Example 3.1. Let ζ : [0,∞)× [0,∞) → R be defined by

ζ(α, β) =

1 if α = 0;

2β − 4α− 1 if α ̸= 0.

First, we will claim that for any s ≥ 1, we obtain ζ is not an s-simulation function.
To claim this, we will show that (S2) does not hold. Choosing α, β ∈ (0,∞) with
β ≥ 3α+ 1, we have

ζ(α, β)− (β − α) = (2β − 4α− 1)− (β − α)

= β − 3α− 1

≥ 0.

It follows that ζ(α, β) ≥ β − α and then (S2) does not hold. Therefore, ζ is not an
s-simulation function for all s ≥ 1.
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Next, we will show that ζ ∈ C2, that is, ζ satisfies (S4) with s = 2. To show
this, we suppose that {αn}, {βn} ⊆ (0,∞) are two sequences such that

0 < lim inf
n→∞

αn ≤ 2

(
lim sup
n→∞

βn

)
≤ 4

(
lim inf
n→∞

αn

)
and

0 < lim inf
n→∞

βn ≤ 2

(
lim sup
n→∞

αn

)
≤ 4

(
lim inf
n→∞

βn

)
.

From all the above relations, we obtain

lim sup
n→∞

ζ(αn, βn) = lim sup
n→∞

(2βn − 4αn − 1)

≤ 2

(
lim sup
n→∞

βn

)
− 4

(
lim inf
n→∞

αn

)
− 1

≤ 4
(
lim inf
n→∞

αn

)
− 4

(
lim inf
n→∞

αn

)
− 1

< 0.

It yields that (S4) holds. Therefore, ζ ∈ C2, that is, ζ is a large 2-simulation
function.

The above example can be extended to the following example:

Example 3.2. Let A ∈ R, B > 0, s ≥ 2 and ζ : [0,∞)× [0,∞) → R be defined by

ζ(α, β) =

A if α = 0;

sβ − s2α−B if α ̸= 0.

First, we will claim that ζ is not an s-simulation function by showing that (S2) does

not hold. Choosing α, β ∈ (0,∞) with β ≥ 1

s− 1

[
(s2 − 1)α+B

]
, we have

ζ(α, β)− (β − α) = (sβ − s2α− β)− (β − α)

= (s− 1)β − (s2 − 1)α−B

≥ 0.

This implies that ζ(α, β) ≥ β − α. Therefore, (S2) does not hold and then ζ is not
an s-simulation function.

Here, we will show that ζ ∈ Cs, that is, ζ satisfies (S4) with arbitrary s ≥ 2.
Assume that {αn}, {βn} ⊆ (0,∞) are two sequences such that

0 < lim inf
n→∞

αn ≤ s

(
lim sup
n→∞

βn

)
≤ s2

(
lim inf
n→∞

αn

)
and

0 < lim inf
n→∞

βn ≤ s

(
lim sup
n→∞

αn

)
≤ s2

(
lim inf
n→∞

βn

)
.

Then we obtain

lim sup
n→∞

ζ(αn, βn) = lim sup
n→∞

(
sβn − s2αn −B

)
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≤ s

(
lim sup
n→∞

βn

)
− s2

(
lim inf
n→∞

αn

)
−B

≤ s2
(
lim inf
n→∞

αn

)
− s2

(
lim inf
n→∞

αn

)
−B

< 0.

It follows that (S4) holds. Therefore, ζ ∈ Cs, that is, ζ is a large s-simulation
function.

4. The connection between large Zs-contraction
mappings and Picard mappings

Based on the help of large s-simulation functions in the previous section, the new
idea of a Zs-contraction mapping is defined. The class of new contractions cov-
ers classes of generalized contraction mappings related to simulation functions and
classes of some famous generalized contraction mappings in fixed point theory from
the past until the present (see Figure 2). Moreover, the connection between large
Zs-contraction mappings and Picard mappings is investigated in this section.

Figure 2. The relation of classes of important generalized contraction mappings.

Definition 4.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A
mapping T : X → X is called a large Zs-contraction mapping if the following
conditions hold:

(L1) d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y;
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(L2) for all ϵ > 0, there is ζ ∈ Cs such that

[∀x, y ∈ X with d(x, y) ≥ ϵ] =⇒ ζ(d(Tx, Ty), d(x, y)) ≥ 0. (4.1)

Remark 4.1. For each b-metric space (X, d), we observe that if T : X → X is a
Zs-contraction mapping with respect to an s-simulation function ζs, then T is also
a large Zs-contraction mapping because (S2) implies (L1), and the Zs-contractive
condition implies (4.1). But, the converse is not true in general.

Theorem 4.1. Let (X, d) be a b-complete metric space with the coefficient s ≥ 1
and T : X → X be a large s-simulation contraction mapping. Then T is a Picard
mapping, that is, T has a unique fixed point x⋆ ∈ X, and the Picard sequence {xn}
defined by xn = Txn−1 for all n ∈ N, where x0 ∈ X, converges to the fixed point
x⋆.

Proof. It is easy to see that if T has a fixed point, then the uniqueness of its fixed
point follows from (L1). Hence, in the remaining proof of this theorem, we will
show only the existence of a fixed point of T . By fixing x0 ∈ X, the proof is finish
if Tn0x0 = Tn0−1x0 for some n0 ∈ N. This implies that Tnx0 ̸= Tn−1x0 for all
n ∈ N, where T 0 is an identity mapping. It follows from (L1) that for each n ∈ N,
we obtain

d(Tn+1x0, T
nx0) < d(Tnx0, T

n−1x0) < · · · < d(Tx0, x0).

Thus, the sequence {γn := d(Tnx0, T
n−1x0)} is strictly decreasing. It is easy to

see that {γn} is also bounded below. Then there exists inf
n∈N

γn =: γ ≥ 0 such that

lim
n→∞

γn = γ. We will show that γ = 0. Assume that γ > 0. By using (L2), there is

ζ ∈ Cs such that

ζ(d(Tn+1x0, T
nx0), d(T

nx0, T
n−1x0)) ≥ 0 (4.2)

for all n ∈ N because d(Tnx0, T
n−1x0) ≥ γ for all n ∈ N. Since ζ ∈ Cs, we obtain ζ

satisfies (S4) and then

lim sup
n→∞

ζ(d(Tn+1x0, T
nx0), d(T

nx0, T
n−1x0)) < 0. (4.3)

Two inequlities (4.2) and (4.3) imply

0 ≤ lim sup
n→∞

ζ(d(Tn+1x0, T
nx0), d(T

nx0, T
n−1x0)) < 0,

which is a contradiction. Hence, γ = 0 and so

lim
n→∞

d(Tnx0, T
n−1x0) = 0. (4.4)

Consider the Picard sequence {xn} defined by

xn = Txn−1

for all n ∈ N. Let us prove that xn ̸= xm for all n,m ∈ N. Indeed, assume that
there are n0,m0 ∈ N such that n0 < m0 and xn0

= xm0
. Let p0 = m0−n0. Clearly,

p0 ∈ N and p0 ≥ 2. In this case, xn0+p0
= xm0

= xn0
. Furthermore,

xn0+2p0
= xn0+p0+p0

= xm0+p0
= T p0xm0

= T p0xn0
= xn0+p0

= xm0
= xn0

.
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By induction, it can be proved that xn0+k·p0
= xn0

for all k ∈ N. Therefore,

{d (xn0+k·p0
, xn0+k·p0+1)}k∈N = {d (xn0

, xn0+1)}k∈N,

which is a posive constant sequence. However, this is a contradiction because
lim
n→∞

d (xn, xn+1) = 0. As a consequence, we have proved that

xn ̸= xm for all n,m ∈ N. (4.5)

Next, we will show that the Picard sequence {xn} is a b-Cauchy sequence in X.
Assume that {xn} is not a b-Cauchy sequence in (X, d). Then there exists ε > 0
and two subsequence {xnk

} and {xmk
} of {xn} such that for each k ∈ N, nk is the

smallest number such that

d(xnk
, xmk−1) ≤ ε < d(xnk

, xmk
)

and k ≤ nk < mk. By the triangular inequality, we have

ε < d(xnk
, xmk

) ≤ s[d(xnk
, xmk−1) + d(xmk−1, xmk

)] ≤ sε+ sd(xmk−1, xmk
).

Taking the limit superior as k → ∞ in the above inequality and using (4.4), we get

ε ≤ lim sup
k→∞

d(xnk
, xmk

) ≤ sε. (4.6)

In the same way, we have

ε ≤ lim inf
k→∞

d(xnk
, xmk

) ≤ sε. (4.7)

From the triangular inequality, we obtain

ε < d(xnk
, xmk

)

< d(xnk−1, xmk−1) (4.8)

≤ s[d(xnk−1, xnk
) + d(xnk

, xmk−1)]

≤ sd(xnk−1, xnk
) + sε.

Taking the limit superior as k → ∞ in the above inequality and using (4.4), we
have

ε ≤ lim sup
k→∞

d(xnk−1, xmk−1) ≤ sε. (4.9)

Similarly, we obtain
ε ≤ lim inf

k→∞
d(xnk−1, xmk−1) ≤ sε. (4.10)

From (4.6), (4.7), (4.9) and (4.10), we have

ε < lim inf
k→∞

d(xnk
, xmk

)

≤ s

(
lim sup
k→∞

d(xnk−1, xmk−1)

)
≤ s2

(
lim inf
k→∞

d(xnk
, xmk

)

)
≤ s3ε (4.11)
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and

ε < lim inf
n→∞

d(xnk−1, xmk−1)

≤ s

(
lim sup
n→∞

d(xnk
, xmk

)

)
≤ s2

(
lim inf
n→∞

d(xnk−1, xmk−1)
)

≤ s3ε. (4.12)

Since ϵ > 0, from (4.8) and (L2), there is ζ ′ ∈ Cs such that

ζ ′(d(Txnk−1, Txmk−1), d(xnk−1, xmk−1)) ≥ 0 (4.13)

for all k ∈ N. Since ζ ′ satisfies (S4), from (4.11) and (4.12), we get

lim sup
k→∞

ζ ′(d(xnk
, xmk

), d(xnk−1, xmk−1)) < 0. (4.14)

It follows from (4.13) and (4.14) that

0 ≤ lim sup
k→∞

ζ ′(d(Txnk−1, Txmk−1), d(xnk−1, xmk−1))

= lim sup
k→∞

ζ ′(d(xnk
, xmk

), d(xnk−1, xmk−1))

< 0,

which is a contradiction. Therefore, {xn} is a b-Cauchy sequence in X. Since (X, d)
is a complete b-metric space, there exists x⋆ ∈ X such that lim

n→∞
xn = x⋆, that is,

lim
n→∞

d(xn, x⋆) = 0. (4.15)

Next, we are going to claim that x⋆ is a fixed point of T reasoning by contradiction.
Assume to contrary that x⋆ is not a fixed point of T , that is, Tx⋆ ̸= x⋆ and hence

d(x⋆, Tx⋆) > 0.

From (4.15), there is n1 ∈ N such that d(xn, x⋆) < d(x⋆, Tx⋆) for all n ≥ n1. In
particular, xn ̸= Tx⋆ for all n ≥ n1, that is,

d(Txn, Tx⋆) = d(xn+1, Tx⋆) > 0 (4.16)

for all n ≥ n1.
On the other hand, it is impossible that there exists n2 ∈ N such that xn = x⋆

for all n ≥ n2. Hence, there exists a subsequence {xσ(n)} of {xn} such that

xσ(n) ̸= x⋆ (4.17)

for all n ∈ N. Let n3 ∈ N be such that σ(n3) ≥ n1. Then, by (4.16) and (4.17), we
have d(xσ(n), x⋆) > 0 and d(Txσ(n), Tx⋆) > 0 for all n ≥ n3. By using the contrac-
tive of mapping T with xσ(n) ̸= x⋆, we have

0 ≤ d(Txσ(n), Tx⋆) < d(xσ(n), x⋆)
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for all n ≥ n3. In particular, by (4.15), we obtain

xσ(n)+1 = Txσ(n) → Tx⋆.

By the unicity of the limit, we get x⋆ = Tx⋆, which is a contradiction with the fact
that we have supposed that Tx⋆ ̸= x⋆. Therefore, x⋆ is a fixed point of T . This
completes the proof.

Now, we give an illustrative example supporting Theorem 4.1.

Example 4.1. Let X = [0,∞) and d : X ×X → [0,∞) be defined by

d(x, y) =

0 if x = y;

(x+ y)2 if x ̸= y,

for all x, y ∈ X. Therefore, (X, d) is a complete b-metric space with s = 2. Define
T : X → X by

Tx =


x2

2
if x ∈ [0, 1);

x

2
if x ∈ [1,∞).

Here, we will show that T is a large Zs-contraction mapping with s = 2. From the
definition of T , it is easy to see that (L1) holds, and then we will only show (L2).
Suppose that ϵ > 0. We will show that (4.1) holds with ζ ∈ C2 defined by

ζ(α, β) =

1 if α = 0;

2β − 4α− ϵ if α ̸= 0

(see the claim for ζ ∈ C2 in Example 3.1). Assume that x, y ∈ X with d(x, y) ≥ ϵ.
It implies that x ̸= y. Next, we will divide into 4 cases.

Case I. For each x, y ∈ [0, 1), we obtain

ζ(d(Tx, Ty), d(x, y)) = ζ

((
x2

2
+
y2

2

)2

, (x+ y)2

)

= 2(x+ y)2 − 4

(
x2

2
+
y2

2

)2

− ϵ

≥ 2(x+ y)2 − (x+ y)2 − ϵ

= (x+ y)2 − ϵ

= d(x, y)− ϵ

≥ 0.

Case II. For each (x, y) ∈ [0, 1)× [1,∞), we obtain

ζ(d(Tx, Ty), d(x, y)) = ζ

((
x2

2
+
y

2

)2

, (x+ y)2

)

= 2(x+ y)2 − 4

(
x2

2
+
y

2

)2

− ϵ
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≥ 2(x+ y)2 −
(
x2 + y

)2 − ϵ

≥ 2(x+ y)2 − (x+ y)2 − ϵ

= (x+ y)2 − ϵ

= d(x, y)− ϵ

≥ 0.

Case III. For each (x, y) ∈ [1,∞)× [0, 1), we obtain

ζ(d(Tx, Ty), d(x, y)) = ζ

((
x

2
+
y2

2

)2

, (x+ y)2

)

= 2(x+ y)2 − 4

(
x

2
+
y2

2

)2

− ϵ

≥ 2(x+ y)2 −
(
x+ y2

)2 − ϵ

≥ 2(x+ y)2 − (x+ y)2 − ϵ

= (x+ y)2 − ϵ

= d(x, y)− ϵ

≥ 0.

Case IV. For each x, y ∈ [1,∞), we obtain

ζs(d(Tx, Ty), d(x, y)) = ζs

((x
2
+
y

2

)2
, (x+ y)2

)
= 2(x+ y)2 − 4

(x
2
+
y

2

)2
− ϵ

= 2(x+ y)2 − (x+ y)
2 − ϵ

= (x+ y)2 − ϵ

= d(x, y)− ϵ

≥ 0.

From all cases, we get (4.1) is satisfied. Hence, all conditions of Theorem 4.1 hold
and so T is a Picard mapping. In this case, 0 is a fixed point of T . Figure 3 presents
comparative results of Picard iterations with initial points x0 = 0.5, 5, 15, 25. Fig-
ure 4 shows convergence behaviors of Picard iterations with initial points x0 =
0.5, 5, 15, 25.

From the fact in Figure 2, we obtain the the following result covering many fixed
point results in the literature.

Corollary 4.1 ( [15]). Let (X, d) be a b-complete metric space with the coefficient
s ≥ 1 and T : X → X be a Zs-simulation contraction mapping. Then T is a Picard
mapping.

Based on the variety of mappings in class Cs, where s ≥ 1, we get the following
results.

Corollary 4.2. Let (X, d) be a b-complete metric space with the coefficient s ≥ 1
and T : X → X be a mapping satisfying the following conditions:
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Step x0 = 0.5 x0 = 5 x0 = 15 x0 = 25

1 0.1250000000 2.5000000000 7.5000000000 12.5000000000

2 0.0078125000 1.2500000000 3.7500000000 6.2500000000

3 0.0000305176 0.6250000000 1.8750000000 3.1250000000

4 0.0000000005 0.1953125000 0.9375000000 1.5625000000

5 0.0000000000 0.0190734863 0.4394531250 0.7812500000

6 0.0000000000 0.0001818989 0.0965595245 0.3051757813

7 0.0000000000 0.0000000165 0.0046618709 0.0465661287

8 0.0000000000 0.0000000000 0.0000108665 0.0010842022

9 0.0000000000 0.0000000000 0.0000000001 0.0000005877

10 0.0000000000 0.0000000000 0.0000000000 0.0000000000

11 0.0000000000 0.0000000000 0.0000000000 0.0000000000

12 0.0000000000 0.0000000000 0.0000000000 0.0000000000

...
...

...
...

...

Figure 3. Comparative results of Picard iterations with initial points x0 = 0.5, 5, 15, 25 in Example
4.1.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Step (n)

T
h
e
va
lu
e
of
x
n

x0 = 0.5
x0 = 5
x0 = 15
x0 = 25

Figure 4. Behavior of the Picard iteration with initial points x0 = 0.5, 5, 15, 25 in Example 4.1.

(BS1) d(Tx, Ty) < d(x, y) for all x, y ∈ X with x ̸= y;

(BS2) for all ϵ > 0, there is k ∈ [0, 1) such that

[∀x, y ∈ X, with d(x, y) ≥ ϵ] =⇒ sd(Tx, Ty) ≤ kd(x, y). (4.18)

Then T is a Picard mapping.

Corollary 4.3. Let (X, d) be a complete metric space and T : X → X be a large
Banach contraction mapping. Then T is a Picard mapping.
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5. Conclusions

This paper represents a significant advancement in the field of metric fixed point
theory, particularly in the context of an evolution of the Banach contraction map-
ping principle. The introduction of simulation functions by Khojasteh et al. and
the subsequent development of Z-contraction mappings have marked a pivotal shift
in the study of nonlinear mappings in metric spaces. Furthermore, adapting these
concepts to b-metric spaces through the innovative work of Yamaod and Sintu-
navarat [15] has expanded the applicability of fixed point theory. This paper delves
into the intricacies of large contraction mappings, initially presented by Burton [5].
This exploration underscores the versatility and practical relevance of fixed point
theory. A novel contribution of this paper is the amalgamation of the concepts of
s-simulation functions and large contraction mappings, a fusion that has yet to be
explored. The introduction of large s-simulation functions and the establishment of
large Zs-contraction mappings as Picard mappings open new avenues for research
and application. The presented examples and numerical methods serve not only to
validate our findings but also to offer a practical perspective on their implementa-
tion. As we conclude, it’s evident that while this paper fills a crucial gap in the
existing literature, it also sets the stage for further exploration. The potential for
discoveries and applications in the realm of fixed point theory remains vast, and
continued research in this field promises to yield even more groundbreaking results
and solutions to complex problems.
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