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THE STUDY OF NONLINEAR FRACTIONAL
PARTIAL DIFFERENTIAL EQUATIONS VIA
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Abstract This paper studies nonlinear fractional partial differential equa-
tions via the Khalouta-Atangana-Baleanu operator. Using Banach’s fixed
point theorem we obtain new results on the existence and uniqueness of solu-
tions to the proposed problem. Furthermore, two new semi-analytical methods
called Khalouta homotopy perturbation method (KHHPM) and Khalouta vari-
ational iteration method (KHVIM) are presented to find new approximate an-
alytical solutions to our nonlinear fractional problem. The first of the two new
proposed methods, KHHPM, is a hybrid method that combines homotopy per-
turbation method and Khalouta transform in the sense of Atangana-Baleanu-
Caputo derivative. The other method, KHVIM is also a hybrid method that
combines variational iteration method and Khalouta transform in the sense of
Atangana-Baleanu-Caputo derivative. Convergence and absolute error anal-
ysis of KHHPM and KHVIM were also performed. A numerical example is
provided to support our results. The results obtained showed that the pro-
posed methods are very impressive, effective, reliable, and easy methods for
dealing with complex problems in various fields of applied sciences and engi-
neering.
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1. Introduction

Fractional calculus and its applications have attracted the attention of many sci-
entistes and researchers in recent years, not only in mathematics but also in a
variety of scientific disciplines such as physics [17], chemical kinetics [21], fluid dy-
namics [18], viscoelastic [5], electrochemistry [16], elasticity [2], engineering [23],
economics [22], financial systems [19], biology [9], medicine [20], statistics [1], com-
puting image [25], nonlinear heat conduction [6], optimal control [4], etc. Moreover,
many cosmic events that classical differential equations cannot describe can be de-
scribed by fractional differential equations.
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One of the most exciting and challenging studies today is the search for the exact
or approximate solutions of nonlinear fractional differential equations in mathemati-
cal and physical sciences. Recently, various methods have been presented for solving
nonlinear fractional differential equations. For example, in [11], the author proposed
the modified fractional Taylor series method (MFTSM) to achieve an approximate
solution for nonlinear fractional Lienard’s equations with Caputo fractional deriva-
tive. In [12], presented a novel iterative method to approximate the solution of
nonlinear wave-like equations of fractional order with variable coefficients. Homo-
topy perturbation transform method (HPTM) was presented in [13] for the approx-
imate solution of Caputo time-fractional nonlinear system of equations describing
the unsteady flow of a polytropic gas. It was proven that the method converges to
the exact solution. In [14] it was introduced Elzaki differential transform method
(EDTM) to get to numerical solution of the the fractional SIS epidemic model.

The aim of this paper is to determine sufficient conditions for the existence
and uniqueness of the solution of nonlinear fractional partial differential equations
involving Atangana-Baleanu-Caputo fractional derivative of arbitrary order α ∈
(0, 1) of the form

ABCDα
ς Θ(κ, ς) = RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς),

with the initial condition

Θ(κ, 0) = Θ0(κ),

where κ ∈ [a, b] , b > a, ς ≥ 0, ABCDα
ς is the Atangana-Baleanu-Caputo fractional

derivative operator of order α ∈ (0, 1) , R and N are linear and nonlinear operators,
respectively, and F is the source term.

In addition, we propose two semi analytical methods called Khalouta homo-
topy perturbation method (KHHPM) and Khalouta variational iteration method
(KHVIM) to find new approximate analytical solution to the proposed problem.
The KHHPM and KHVIM are a combination of the homotopy perturbation method
and the variational iteration method which were first proposed by Ji-Haun-He [7,8]
and the Khalouta transform which is a generalization of the several well-known
integral transforms [10].

The most important features of the proposed methods can be summarized in
the following points.

1- The KHHPM and KHVIM can be applied to analyze the solution of linear
or nonlinear fractional problems without any type of discretization, linearization,
perturbation, or restrictive assumptions.

2- The KHHPM and KHVIM gives a series solutions which converge rapidly
within few number of iterations.

3- The KHHPM and KHVIM are accurate and effective with minimal effort to
achieve results.

4- The KHHPM and KHVIM are used to investigate the analytical and numerical
solutions of fractional partial differential equations which naturally arises in applied
sciences and engineering.

The remainder of this paper is organized as follows. In Section 2, we start with
some basic definitions and theorems of fractional calculus and Khalouta transform,
respectively. In Section 3 and 4, we study the existence and uniqueness theorem and
propose two algorithms for KHHPM and KHVIM to solve the nonlinear fractional
partial differential equations via the Atangana-Baleanu-Caputo fractional derivative
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which are considered as the main contributions in this paper. In Section 5, we
present an example illustrating the main result. In Section 6, we provide results
and discussions on the proposed methods. Finally, concluding remarks are given in
Section 7.

2. Preliminaries and results

In this section, we demonstrate some important ideas and consequences of frac-
tional calculus that have recently been developed by [3]. In addition, the Khalouta
transform and some of its useful theorems used in this paper are also presented.

Definition 2.1. Let a function Θ(., ς) ∈ H1(0, T ), T > 0 for each fixed κ ∈ I =
[a, b] ⊂ R and 0 < α < 1, then the Atangana-Baleanu fractional derivative in
Riemann-Liouville sense is defined as

ABRDα
ς Θ(κ, ς) =

AB(α)
1− α

d

dς

∫ ς

0

Θ(κ, τ)Eα

(
−α (ς − τ)

α

1− α

)
dτ, (2.1)

and the Atangana-Baleanu fractional derivative in Caputo sense is defined as

ABCDα
ς Θ(κ, ς) =

AB(α)
1− α

∫ ς

0

Θ′(κ, τ)Eα

(
−α (ς − τ)

α

1− α

)
dτ, (2.2)

where AB(α) represents the normalization function that satisfies the conditions
AB(0) = AB(1) = 1 and Eα(.) represents the special function known as Mittag-
Leffler function for one parameter is defined as [15]

Eα (z) =

∞∑
i=0

zi

Γ(iα+ 1)
, α > 0, z ∈ C.

Definition 2.2. The fractional integral associate to the Atangana-Baleanu frac-
tional derivative of order 0 < α < 1 is defined as

ABIας Θ(κ, ς) =
1− α

AB(α)
Θ(κ, ς) +

α

AB(α)Γ(α)

∫ ς

0

Θ(κ, τ) (ς − τ)
α−1

dτ.

Now, we present a new result related to the Khalouta transform of the Atangana-
Baleanu fractional derivative. The Khalouta transform is a new integral transform
that is applied to solve ordinary and partial differential equations, defined and
developed by [10].

Definition 2.3. The Khalouta transform of the piecewise continuous function
Θ(κ, ς) on I × [0, T ] and of exponential order is given by the following integral

KH [Θ(κ, ς)] = K(κ, s, γ, η) =
s

γη

∫ ∞

0

exp

(
− sς

γη

)
Θ(κ, ς)dς, s, γ, η > 0. (2.3)

The basic properties of the Khalouta transform are given in the following theo-
rem [10].

Theorem 2.1. 1) If Θ(κ, ς) and Ψ(κ, ς) be piecewise continuous and of exponential
order, then for all constants λ and µ, we have

KH [λΘ(κ, ς) + µΨ(κ, ς)] = λKH [Θ(κ, ς)] + µKH [Ψ(κ, ς)] .
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2) If the nth derivative of Θ(κ, ς) with respect to ”ς” is Θ(n)(κ, ς), then its
Khalouta transform is given as

KH
[
Θ(n)(κ, ς)

]
=

sn

γnηn
K(κ, s, γ, η)−

n−1∑
k=0

(
s

γη

)n−k

Θ(k)(κ, 0), n ≥ 1.

3) If the Khalouta transform of Θ(κ, ς) and Ψ(κ, ς) are K(κ, s, γ, η) and V(κ, s,
γ, η) respectively, then

KH [(Θ ∗Ψ) (κ, ς)] =
∫ ∞

0

Θ(κ, ς)Ψ(κ, ς − τ)dτ =
γη

s
K(κ, s, γ, η)V(κ, s, γ, η),

where KH [(Θ ∗Ψ) (κ, ς)] is the Khalouta convolution of the functions Θ(κ, ς) and
Ψ(κ, ς).

4) The Khalouta transforms of some special functions are as follows

KH[1] = 1,

KH[ς] =
γη

s
,

KH
[
ςn

n!

]
=

γnηn

sn
, n = 0, 1, 2, ...,

KH
[

ςα

Γ (α+ 1)

]
=

γαηα

sα
, α > −1,

KH [Eα(−aςα)] =
sα

sα + aγαηα
, a ∈ R.

Theorem 2.2. Let K(κ, s, γ, η) be the Khalouta transform of the function Θ(κ, ς).
Then the Khalouta transform of the Atangana-Baleanu fractional derivative in
Riemann-Liouville sense is expressed as

KH
[
ABRDα

ς Θ(κ, ς)
]
=

(
sαAB(α)

sα − α (sα − γαηα)

)
K(κ, s, γ, η).

Proof. Using the definition of Khalouta transform (2.3) and the Atangana-Baleanu
fractional derivative in Riemann-Liouville sense (2.1), we get

KH
[
ABRDα

ς Θ(κ, ς)
]
= KH

[
AB(α)
1− α

d

dς

∫ ς

0

Θ(κ, τ)Eα

(
−α (ς − τ)

α

1− α

)
dτ

]
.

Applying the properties of the Khalouta transform given in Theorem 2.1, we get

KH
[
ABRDα

ς Θ(κ, ς)
]
=

AB(α)
1− α

KH
[
d

dς

(
Θ(κ, ς) ∗ Eα

(
− αςα

1− α

))]

=
AB(α)
1− α

 s
γηKH

[
Θ(κ, ς) ∗ Eα

(
− αςα

1−α

)]
− s

γηKH [Θ(κ, 0) ∗ Eα (0)]


=

AB(α)
1− α

(
sα

sα + α
1−αγ

αηα
K(κ, s, γ, η)

)

=

(
sαAB(α)

sα − α (sα − γαηα)

)
K(κ, s, γ, η).

This completes the proof.
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Theorem 2.3. Let K(κ, s, γ, η) be the Khalouta transform of the function Θ(κ, ς).
Then the Khalouta transform of the Atangana-Baleanu fractional derivative in Ca-
puto sense is expressed as

KH
[
ABCDα

ς Θ(κ, ς)
]
=

(
sαAB(α)

sα − α (sα − γαηα)

)
(K(κ, s, γ, η)−Θ(κ, 0)) .

Proof. Using the definition of Khalouta transform (2.3) and the Atangana-Baleanu
fractional derivative in Caputo sense (2.2), we get

KH
[
ABCDα

ς Θ(κ, ς)
]
= KH

[
AB(α)
1− α

∫ ς

0

Θ′(κ, τ)Eα

(
−α (ς − τ)

α

1− α

)
dτ

]
.

Applying the properties of the Khalouta transform given in Theorem 2.1, we get

KH
[
ABCDα

ς Θ(κ, ς)
]
=

AB(α)
1− α

KH
[(

Θ′(κ, ς) ∗ Eα

(
− αςα

1− α

))]
=

AB(α)
1− α

(
γη

s
KH [Θ′(κ, ς)]KH

[
Eα

(
− αςα

1− α

)])
=

AB(α)
1− α

sα

sα + α
1−αγ

αηα
(K(κ, s, γ, η)−Θ(κ, 0))

=

(
sαAB(α)

sα − α (sα − γαηα)

)
(K(κ, s, γ, η)−Θ(κ, 0)) .

This completes the proof.

3. Existence and uniqueness results

In this section, our main objective is to use Banach fixed point theorem to estab-
lish existence and uniqueness results to the nonlinear Atangana-Baleanu-Caputo
fractional partial differential equation

ABCDα
ς Θ(κ, ς) = RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς), (3.1)

with the initial condition

Θ(κ, 0) = Θ0(κ), (3.2)

where κ ∈ [a, b] , b > a, ς ≥ 0, ABCDα
ς is the Atangana-Baleanu-Caputo fractional

derivative operator of order 0 < α ≤ 1, R and N are linear and nonlinear operators,
respectively, and F is the source term.

Theorem 3.1. Let Θ(., ς) ∈ H1(0, T ), T > 0 for each fixed κ ∈ I = [a, b] ⊂ R, then
Θ(κ, ς) is a solution of equations (3.1)-(3.2), if and only if it is a solution of the
integral equation

Θ(κ, ς) = Θ0(κ) +
1− α

AB(α)
(RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς))

+
α

AB(α)Γ(α)

∫ ς

0

(RΘ(κ, τ) +NΘ(κ, τ) + F (κ, τ)) (ς − τ)
α−1

dτ.
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Proof. The proof is clear and direct. Applying the integral operator ABIας to
equation (3.1), we have

Θ(κ, ς)−Θ0(κ) =AB Iας (RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς)).

Using Definition 2.2, we can write

Θ(κ, ς) = Θ0(κ) +
1− α

AB(α)
(RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς))

+
α

AB(α)Γ(α)

∫ ς

0

(RΘ(κ, τ) +NΘ(κ, τ) + F (κ, τ)) (ς − τ)
α−1

dτ.

This completes the proof.

Theorem 3.2. Consider the nonlinear Atangana-Baleanu-Caputo fractional partial
differential equation (3.1) with initial condition (3.2). If RΘ(κ, ς) and NΘ(κ, ς)
are Lipschitz functions with ∥RΘ1 −RΘ2∥+ ∥NΘ1 −NΘ2∥ ≤ L ∥Θ1 −Θ2∥, where
Θ1 and Θ2 are different functions and L is a Lipschitz constant which verifies the
following condition

L <
AB(α)Γ(α)

(1− α) Γ(α) + Tα
,

then equations (3.1)-(3.2) has a unique solution in H1(0, T ).

Proof. To prove this result, let B is the Banach space with the norm on Ω = I×
[0, T ] defined by

∥Θ(κ, ς)∥ = max
(κ,ς)∈Ω

|Θ(κ, ς)| for all Θ(., ς) ∈ H1(0, T ),κ ∈ I = [a, b] ⊂ R,

and consider the operator T : H1(0, T ) → H1(0, T ), defined by

(T Θ)(κ, ς) = Θ0(κ) +
1− α

AB(α)
(RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς))

+
α

AB(α)Γ(α)

∫ ς

0

(RΘ(κ, τ) +NΘ(κ, τ) + F (κ, τ)) (ς − τ)
α−1

dτ.

Finding a solution to equations (3.1)-(3.2) is equivalent to finding a fixed point
of T .

Now, for all Θ1(κ, ς),Θ2(κ, ς) ∈ H1(0, T ) and κ ∈ I = [a, b] ⊂ R, we have

∥(T Θ1)(κ, ς)− (T Θ2)(κ, ς)∥

=

∥∥∥∥ 1− α

AB(α)
(RΘ1(κ, ς)−RΘ2(κ, ς) +NΘ2(κ, ς)−NΘ2(κ, ς))

+
α

AB(α)Γ(α)

∫ ς

0

 RΘ1(κ, τ)−RΘ2(κ, τ)

+NΘ2(κ, τ)−NΘ2(κ, τ)

 (ς − τ)
α−1

dτ

∥∥∥∥∥∥
≤ 1− α

AB(α)
L ∥Θ1(κ, ς)−Θ2(κ, ς)∥

+
α

AB(α)Γ(α)
L ∥Θ1(κ, τ)−Θ2(κ, ς)∥

∣∣∣∣∫ ς

0

(ς − τ)
α−1

dτ

∣∣∣∣
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=
1− α

AB(α)
L ∥Θ1(κ, ς)−Θ2(κ, ς)∥

+
α

AB(α)Γ(α)
L ∥Θ1(κ, ς)−Θ2(κ, ς)∥

ςα

α

≤
(
(1− α) Γ(α) + Tα

AB(α)Γ(α)

)
L ∥Θ1(κ, ς)−Θ2(κ, ς)∥ .

Since

(
(1− α) Γ(α) + Tα

AB(α)Γ(α)

)
L < 1, then T is contraction and by Banach fixed

point theorem, T has a unique fixed point Θ(κ, ς) ∈ H1(0, T ). Thanks to Theorem
3.1, then Θ(κ, ς) ∈ H1(0, T ) is a unique solution for equations (3.1)-(3.2).

The proof is complete.

4. Semi-analytical methods

In this section, we discuss two different methods that are used to solve the non-
linear Atangana-Baleanu-Caputo fractional partial differential equation (3.1) with
initial condition (3.2). Furthermore, we illustrate the convergence and absolute
error analysis of these methods.

4.1. Khalouta homotopy perturbation method (KHHPM)

Theorem 4.1. The solution of the nonlinear Atangana-Baleanu-Caputo fractional
partial differential equation described by equation (3.1) is given by

Θ(κ, ς) = lim
m−→∞

m∑
k=0

Θk(κ, ς) =
∞∑
k=0

Θk(κ, ς), (4.1)

with

Θk(κ, ς) = KH−1

[
sα + αγαηα

sαAB(α)
KH [RΘk−1(κ, ς) +Hk−1(Θ)]

]
,

where KH [.] is the Khalouta transform and Hk(Θ) are He’s polynomials.

Proof. Operating the Khalouta transform on both sides of equation (3.1), we get

KH
[
ABCDα

ς Θ(κ, ς)
]
= KH [RΘ(κ, ς) +NΘ(κ, ς) + F (κ, ς)] .

Using Theorem 2.3 and the initial condition (3.2), we have

KH [Θ(κ, ς)] = Θ(κ, 0) +
(
sα − α (sα − γαηα)

sαAB(α)

)
KH [F (κ, ς)]

+

(
sα − α (sα − γαηα)

sαAB(α)

)
KH [RΘ(κ, ς) +NΘ(κ, ς)] . (4.2)

Taking the inverse Khalouta transform to both sides of equation (4.2) to get

Θ(κ, ς) = G(κ, ς) +KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

 RΘ(κ, ς)

+NΘ(κ, ς)

 , (4.3)
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where G(κ, ς) represents the term arising from the source term and the prescribed
initial condition.

According to the homotopy perturbation method, we can write

Θ(κ, ς) =
∞∑

m=0

pmΘm(κ, ς), (4.4)

where p ∈ [0, 1] is the homotopy parameter.
The nonlinear term can be decomposed as

NΘ(κ, ς) =
∞∑

m=0

pmHm(Θ), (4.5)

where Hm(Θ) are He’s polynomials [7], that are given by

Hm(Θ0,Θ1, ...,Θm) =
1

m!

∂m

∂pm

[
N

(
m∑
i=0

piΘi

)]
p=0

, m = 0, 1, 2, .... (4.6)

Substituting equations (4.4) and (4.5) into equation (4.3), we get

∞∑
m=0

pmΘm(κ, ς)

= G(κ, ς) + p

KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

R
∞∑

m=0
pmΘm(κ, ς)

+
∞∑

m=0
pmHm(Θ)



 .

Comparing the coefficients of like powers of p, the following approximations are
obtained

p0 : Θ0(κ, ς) = G(κ, ς),

p1 : Θ1(κ, ς) = KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [RΘ0(κ, ς) +H0(Θ)]

]
,

p2 : Θ2(κ, ς) = KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [RΘ1(κ, ς) +H1(Θ)]

]
,

p3 : Θ3(κ, ς) = KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [RΘ2(κ, ς) +H2(Θ)]

]
,

...

In general, the recursive relation is given by

pn : Θm(κ, ς) = KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [RΘm−1(κ, ς) +Hm−1(Θ)]

]
.

Then, the solution according to homotopy (p → 1) is given by

Θ(κ, ς) = Θ0(κ, ς) + Θ1(κ, ς) + Θ2(κ, ς) + ...+Θm(κ, ς).
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The above series solution converges to the closed form of equation (3.1) as m →
∞, that is

Θ(κ, ς) = lim
m−→∞

m∑
k=0

Θk(κ, ς) =
∞∑
k=0

Θk(κ, ς).

This completes the proof.
The following theorems study the sufficient conditions for convergence and ab-

solute error of the solution using KHHPM.

Theorem 4.2. For 0 < ω < 1, where ω = L
(

(1−α)Γ(α+1)+αςα

AB(α)Γ(α+1)

)
, then the KHHPM

series solution defined by equation (4.1) is convergent.

Proof. Suppose Sm be the mth partial sum, i.e., Sm =
m∑

k=0

Θk(κ, ς) . Firstly, we

prove that {Sm}m≥0 is a Cauchy sequence in Banach space B. Taking into account
a new form of He’s polynomial described in equation (4.6), we obtain

N(Sm) = H̃m +

m−1∑
k=0

H̃k.

Now,

∥Sm − Sn∥
= max

(κ,ς)∈Ω
|Sm − Sn|

= max
(κ,ς)∈Ω

∣∣∣∣∣
m∑

k=n+1

Θk(κ, ς)

∣∣∣∣∣
≤ max

(κ,ς)∈Ω

∣∣∣∣∣∣∣∣∣∣
KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH

[
m∑

k=n+1

RΘk−1(κ, ς)

]]

+KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH

[
m∑

k=n+1

H̃k−1(κ, ς)

]]
∣∣∣∣∣∣∣∣∣∣

= max
(κ,ς)∈Ω

∣∣∣∣∣∣∣∣∣∣
KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH

[
m−1∑
k=n

RΘk(κ, ς)

]]

+KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH

[
m−1∑
k=n

H̃k(κ, ς)

]]
∣∣∣∣∣∣∣∣∣∣

≤ max
(κ,ς)∈Ω

∣∣∣∣∣∣∣∣
KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [R (Sm−1)−R (Sn−1)]

]
+KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH [N (Sm−1)−N (Sn−1)]

]
∣∣∣∣∣∣∣∣

≤ max
(κ,ς)∈Ω

 KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH |R (Sm−1)−R (Sn−1)|

]
+KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH |N (Sm−1)−N (Sn−1)|

]
 .

Since R and N are Lipschitz functions with a Lipschitz constant L, then we have

∥Sm − Sn∥B ≤ L max
(κ,ς)∈Ω

[
KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH |Sm−1 − Sn−1|

]]
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= L max
(κ,ς)∈Ω

KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
KH |Sm−1 − Sn−1|

]
= L max

(κ,ς)∈Ω
KH−1

[(
sα − α (sα − γαηα)

sαAB(α)

)
|Sm−1 − Sn−1|

]
= L max

(κ,ς)∈Ω

(
1− α

AB(α)
+

α

AB(α)
ςα

Γ (α+ 1)

)
|Sm−1 − Sn−1|

= L

(
(1− α) Γ (α+ 1) + αςα

AB(α)Γ (α+ 1)

)
∥Sm−1 − Sn−1∥ .

Consider m = n+ 1, then we have

∥Sn+1 − Sn∥ ≤ ω ∥Sn − Sn−1∥
≤ ω2 ∥Sn−1 − Sn−2∥
≤ ...

≤ ωn ∥S1 − S0∥ ,

where

ω = L

(
(1− α) Γ (α+ 1) + αςα

AB(α)Γ (α+ 1)

)
.

Using the triangle inequality, we have

∥Sm − Sn∥ = ∥Sn+1 − Sn + Sn+2 − Sn+1 + ...+ Sm − Sm−1∥
≤ ∥Sn+1 − Sn∥+ ∥Sn+2 − Sn+1∥+ ...+ ∥Sm − Sm−1∥
≤ ωn ∥S1 − S0∥+ ωn+1 ∥S1 − S0∥+ ...+ ωm−1 ∥S1 − S0∥
= ωn

(
1 + ω + ...+ ωm−n−1

)
∥S1 − S0∥

≤ ωn

(
1− ωm−n

1− ω

)
∥Θ1∥ .

Since 0 < ω < 1, we have 1− ωm−n < 1, then

∥Sm − Sn∥ ≤ ωn

1− ω
∥Θ1∥ .

∥Θ1∥ is finite, thus as n → +∞, then ∥Sm − Sn∥ = 0. Hence {Sm}m≥0

is a Cauchy sequence in the Banach space B. Consequently, the series solution
∞∑
k=0

Θk(κ, ς) is convergent.

This completes the proof.

Corollary 4.1. If the series solution
∞∑
k=0

Θk(κ, ς) converges then it is an exact

solution of the nonlinear Atangana-Baleanu-Caputo fractional partial differential
equation described by equation (3.1) with the initial condition (3.2).

Theorem 4.3. Let Θ(κ, ς) be the approximate solution of the truncated finite series
l∑

k=0

Θk(κ, ς). Suppose that it is possible to obtain a real number ω ∈ (0, 1) such that

∥Θk+1(κ, ς)∥ ≤ ω∥Θk(κ, ς)∥,∀k ∈ N. Then the maximum absolute error is∥∥∥∥∥Θ(κ, ς)−
l∑

k=0

Θk(κ, ς)

∥∥∥∥∥ ≤ ωl+1

1− ω
∥Θ0(κ, ς)∥ .
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Proof. Let the series
l∑

k=0

Θk(κ, ς) be finite. Then∥∥∥∥∥Θ(κ, ς)−
l∑

k=0

Θk(κ, ς)

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑

k=l+1

Θk(κ, ς)

∥∥∥∥∥
≤

∞∑
k=l+1

∥Θk(κ, ς)∥

≤
∞∑

k=l+1

ωk ∥Θ0(κ, ς)∥

≤ ωl+1
(
1 + ω + ω2 + ω3 + ...

)
∥Θ0(κ, ς)∥

≤ ωl+1

1− ω
∥Θ0(κ, ς)∥ .

This completes the proof.

4.2. Khalouta variational iteration method (KHVIM)

Theorem 4.4. The exact solution of the nonlinear Atangana-Baleanu-Caputo frac-
tional partial differential equation described by equation (3.1) using the KHVIM, is
given as a limit of the successive approximations Θm(κ, ς),m = 0, 1, 2, ..., in other
words

Θ(κ, ς) = lim
m→∞

Θm(κ, ς). (4.7)

Proof. According to the variational iteration method [24], the correction func-
tional of equation (3.1), is given as

Θm+1(κ, ς) = Θm(κ, ς) +
∫ ς

0

λ(κ, ς − τ)

ABCDα
ς Θm(κ, τ)−RΘm(κ, τ)

−NΘm(κ, τ)− F (κ, τ)

 dτ,

(4.8)
where λ(κ, ς − τ) is a general lagrange multiplier, the subscript m ≥ 0 denotes the
mth approximation.

Taking the Khalouta transform on both sides of equation (4.8) and using part
(3) of Theorem 2.1, we have

KH [Θm+1(κ, ς)] = KH [Θm(κ, ς)]

+KH

∫ ς

0

λ(κ, ς − τ)

ABCDα
ς Θm(κ, τ)−RΘm(κ, τ)

−NΘm(κ, τ)− F (κ, τ)

 dτ


= KH [Θm(κ, ς)]

+
γη

s
KH [λ(κ, ς)]KH

ABCDα
ς Θm(κ, ς)−RΘm(κ, ς)

−NΘm(κ, ς)− F (κ, ς)


= KH [Θm(κ, ς)]

+
γη

s
KH [λ(κ, ς)]

( sαAB(α)
sα − α (sα − γαηα)

)K(κ, s, γ, η)

−Θ(κ, 0)


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−KH [RΘm(κ, ς) +NΘm(κ, ς) + F (κ, ς)]) . (4.9)

The optimal value of λ(κ, ς) can be identified by making the equation (4.9)
stationary with respect to Θm(κ, ς)

δ (KH [Θm+1(κ, ς)])
= δ (KH [Θm(κ, ς)])

+
γη

s
δ

KH [λ(κ, ς)]

( sαAB(α)
sα − α (sα − γαηα)

)K(κ, s, γ, η)

−Θ(κ, 0)


+KH [RΘm(κ, ς) +NΘm(κ, ς) + F (κ, ς)])) .

Considering RΘm(κ, ς) +NΘm(κ, ς) as restricted variation, i.e.,

δ (KH [RΘm(κ, ς) +NΘm(κ, ς)]) = 0.

Then we have

1 +KH [λ(κ, ς)]
(

sαγηAB(α)
(sα − α (sα − γαηα)) s

)
= 0,

which implies that

KH [λ(κ, ς)] = − (sα − α (sα − γαηα)) s

sαγηAB(α)
. (4.10)

Using (4.10) in equation (4.9) and taking the inverse Khalouta transform, we
attain a new correction functional

Θm+1(κ, ς)

= Θ(κ, 0) +KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

RΘm(κ, ς) +NΘm(κ, ς)

+F (κ, ς)

 .

The initial value Θ0(κ, ς) can be find as

Θ0(κ, ς) = Θ(κ, 0).

Consequently, the exact solution of equation (3.1) can be obtained by using

Θ(κ, ς) = lim
m→∞

Θm(κ, ς).

Theorem 4.5. Let Θm(κ, ς) and Θ(κ, ς) be in Banach space B. If there exists a

positive constant ϱ = L
(

(1−α)Γ(α+1)+αςα

AB(α)Γ(α+1)

)
∈ (0, 1) such that

∥Θm+1(κ, ς)∥ ≤ ϱ ∥Θm(κ, ς)∥ ,

for all (κ, ς) ∈ Ω = I × [0, T ] with ∥Θ1(κ, ς)−Θ0(κ, ς)∥ < ∞, then the sequence
defined by equation (4.7) with Θ0(κ, ς) = Θ(κ, 0) converges to Θ(κ, ς), i.e. the
exact solution of equation (3.1).
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Proof. To achieve this result, we must show that {Θm(κ, ς)} is a Cauchy sequence
in Banach space B.

∥Θm(κ, ς)−Θn(κ, ς)∥
= max

(κ,ς)∈Ω
|Θm(κ, ς)−Θn(κ, ς)|

≤ max
(κ,ς)∈Ω

∣∣∣∣∣∣∣∣∣∣∣∣

KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

 RΘm(κ, ς)

−RΘn(κ, ς)


+KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

 NΘm(κ, ς)

−NΘm(κ, ς)



∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
(κ,ς)∈Ω


KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

∣∣∣∣∣∣ RΘm(κ, ς)

−RΘn(κ, ς)

∣∣∣∣∣∣


+KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

∣∣∣∣∣∣ NΘm(κ, ς)

−NΘm(κ, ς)

∣∣∣∣∣∣


 .

Since R and N are Lipschitz functions with a Lipschitz constant L, then we have

∥Θm(κ, ς)−Θn(κ, ς)∥

≤ L max
(κ,ς)∈Ω

KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

∣∣∣∣∣∣ Θm(κ, ς)

−Θn(κ, ς)

∣∣∣∣∣∣


= L max
(κ,ς)∈Ω

KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

∣∣∣∣∣∣ Θm(κ, ς)

−Θn(κ, ς)

∣∣∣∣∣∣


= L max
(κ,ς)∈Ω

KH−1

(sα − α (sα − γαηα)

sαAB(α)

) ∣∣∣∣∣∣ Θm(κ, ς)

−Θn(κ, ς)

∣∣∣∣∣∣


= L max
(κ,ς)∈Ω

(
1− α

AB(α)
+

α

AB(α)
ςα

Γ (α+ 1)

) ∣∣∣∣∣∣ Θm(κ, ς)

−Θn(κ, ς)

∣∣∣∣∣∣
= L

(
(1− α) Γ (α+ 1) + αςα

AB(α)Γ (α+ 1)

)
∥Θm(κ, ς)−Θn(κ, ς)∥ .

Let m = n+ 1, then

∥Θn+1(κ, ς)−Θn(κ, ς)∥ ≤ ϱ ∥Θn(κ, ς)−Θn−1(κ, ς)∥
≤ ϱ2 ∥Θn−1(κ, ς)−Θn−2(κ, ς)∥
≤ ... ≤ ϱn ∥Θ1(κ, ς)−Θ0(κ, ς)∥ ,

where

ϱ = L

(
(1− α) Γ (α+ 1) + αςα

AB(α)Γ (α+ 1)

)
.
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From the triangle inequality, we have

∥Θm(κ, ς)−Θn(κ, ς)∥ = ∥Θn+1(κ, ς)−Θn(κ, ς) + Θn+2(κ, ς)−Θn+1(κ, ς)
+...+Θm(κ, ς)−Θm−1(κ, ς)∥

≤ ∥Θn+1(κ, ς)−Θn(κ, ς)∥+ ∥Θn+2(κ, ς)−Θn+1(κ, ς)∥
+...+ ∥Θm(κ, ς)−Θm−1(κ, ς)∥

≤ ϱn ∥Θ1(κ, ς)−Θ0(κ, ς)∥+ ϱn+1 ∥Θ1(κ, ς)−Θ0(κ, ς)∥
+...+ ϱm−1 ∥Θ1(κ, ς)−Θ0(κ, ς)∥

= ϱn
(
1 + ϱ+ ...+ ϱm−n−1

)
∥Θ1(κ, ς)−Θ0(κ, ς)∥

≤ ϱn
(
1− ϱm−n

1− ϱ

)
∥Θ1(κ, ς)−Θ0(κ, ς)∥ .

Since 0 < ϱ < 1, so 1− ϱm−n < 1, then

∥Θm(κ, ς)−Θn(κ, ς)∥ ≤ ϱn

1− ϱ
∥Θ1(κ, ς)−Θ0(κ, ς)∥ .

But ∥Θ1(κ, ς)−Θ0(κ, ς)∥ < ∞, then ∥Θm(κ, ς)−Θn(κ, ς)∥ → 0 as n → ∞.
We conclude that {Θm(κ, ς)} is a Cauchy sequence in the Banach space B. Conse-
quently, the sequence converges.

This completes the proof.

5. Numerical application

Let us consider the following nonlinear Atangana-Baleanu-Caputo fractional partial
differential equation

ABCDα
ς Θ(κ, ς) = − ∂

∂κ

(
12

κ
Θ(κ, ς)− κ

)
Θ(κ, ς)+

∂2

∂κ2
Θ2(κ, ς), 0 < α ≤ 1, (5.1)

with the initial condition
Θ(κ, 0) = κ2. (5.2)

In this section, we apply KHHPM and KHVIM to demonstrate the effectiveness
and accuracy of these methods for solving the nonlinear Atangana-Baleanu-Caputo
fractional partial differential equation (5.1) with the initial condition (5.2).

5.1. KHHPM-solution

Applying the KHHPM described in the subsection 4.1 to equations (5.1)-(5.2), we
obtain

∞∑
m=0

pmΘm(κ, ς)

=κ2 + p


KH−1


(
sα − α (sα − γαηα)

sαAB(α)

)
KH



∞∑
m=0

pmΘm(κ, ς)

+
∞∑

m=0
pmHm(Θ)

−
∞∑

m=0
pmGm(Θ)

+
∞∑

m=0
pmJm(Θ)






, (5.3)
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whereHm(Θ), Gm(Θ) and Jm(Θ) are He’s polynomials that represents the nonlinear

terms, 12
κ2Θ

2(κ, ς), 12
κ Θ(κ, ς) ∂

∂κΘ(κ, ς) and ∂2

∂κ2Θ
2(κ, ς) respectively.

From relation (4.6), the first few components of He’s polynomials are given as
follows

H0(Θ) =
12

κ2
Θ2

0(κ, ς),

H1(Θ) =
12

κ2
(2Θ0(κ, ς)Θ1(κ, ς)) ,

H2(Θ) =
12

κ2

(
2Θ0(κ, ς)Θ2(κ, ς) + Θ2

1(κ, ς)
)
,

...

G0(Θ) =
12

κ
Θ0(κ, ς)

∂

∂κ
Θ0(κ, ς),

G1(Θ) =
12

κ

(
Θ0(κ, ς)

∂

∂κ
Θ1(κ, ς) + Θ1(κ, ς)

∂

∂κ
Θ0(κ, ς)

)
,

G2(Θ) =
12

κ

(
Θ0(κ, ς)

∂

∂κ
Θ2(κ, ς) + Θ1(κ, ς)

∂

∂κ
Θ1(κ, ς) + Θ2(κ, ς)

∂

∂κ
Θ0(κ, ς)

)
,

...

and

J0(Θ) =
∂2

∂κ2
Θ2

0(κ, ς),

J1(Θ) =
∂2

∂κ2
(2Θ0(κ, ς)Θ1(κ, ς)) ,

J2(Θ) =
∂2

∂κ2

(
2Θ0(κ, ς)Θ2(κ, ς) + Θ2

1(κ, ς)
)
,

...

Comparing the coefficient of like powers of p in equation (5.3), the following
result is obtained

p0 : Θ0(κ, ς) = κ2,

p1 : Θ1(κ, ς) = KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

Θ0(κ, ς) +H0(Θ)

−G0(Θ) + J0(Θ)

 ,

p2 : Θ2(κ, ς) = KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

Θ1(κ, ς) +H1(Θ)

−G1(Θ) + J1(Θ)

 ,

p3 : Θ3(κ, ς) = KH−1

(sα − α (sα − γαηα)

sαAB(α)

)
KH

Θ2(κ, ς) +H2(Θ)

−G2(Θ) + J2(Θ)

 ,

...

By the above algorithm we get

Θ0(κ, ς) = κ2,



3190 A. Khalouta

Θ1(κ, ς) =
κ2

AB(α)

(
(1− α) + α

ςα

Γ (α+ 1)

)
,

Θ2(κ, ς) =
κ2

AB2(α)

(
(1− α)2 + 2α(1− α)

ςα

Γ (α+ 1)
+ α2 ς2α

Γ (2α+ 1)

)
Θ3(κ, ς) =

κ2

AB3(α)

(
(1− α)3 + 3α(1− α)2

ςα

Γ (α+ 1)
+ 3α2(1− α)

ς2α

Γ (2α+ 1)

+α3 ς3α

Γ (3α+ 1)

)
,

...

Finally, our KHHPM-solution Θ(κ, ς) in series form is given by

Θ(κ, ς) = κ2

(
1 +

(1− α)AB2(α) + (1− α)2AB(α) + (1− α)3

AB3(α)

+

(
αAB2(α) + 2α(1− α)AB(α) + 3α(1− α)2

AB(α)

)
ςα

Γ (α+ 1)
(5.4)

+

(
α2AB(α) + 3α2(1− α)

AB2(α)

)
ς2α

Γ (2α+ 1)
+

α3

AB3(α)

ς3α

Γ (3α+ 1)
+ ...

)
.

Assuming AB(α) = 1 and taking α = 1 in equation (5.4), then the KHHPM-
solution reduced as

Θ(κ, ς) = κ2

(
1 + ς +

ς2

2!
+

ς3

3!
+ ...

)
.

This result converges to the exact solution in a closed form

Θ(κ, ς) = κ2 exp (ς) .

5.2. KHVIM-solution

Applying the KHVIM presented in the subsection 4.2 to equations (5.1)-(5.2), we
get

Θm+1(κ, ς)

=κ2 +KH−1


(
sα − α (sα − γαηα)

sαAB(α)

)
KH



Θm(κ, ς)

+
12

κ2
Θ2

m(κ, ς)

−12

κ
Θm(κ, ς)

∂

∂κ
Θm(κ, ς)

+
∂2

∂κ2
Θ2

m(κ, ς)




.

Now we find the successive approximate solutions as follows

Θ0(κ, ς) = κ2,
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Θ1(κ, ς) = κ2 +KH−1


(
sα − α (sα − γαηα)

sαAB(α)

)
KH


Θ0(κ, ς)

+ 12
κ2Θ

2
0(κ, ς)

− 12
κ Θ0(κ, ς) ∂

∂κΘ0(κ, ς)

+ ∂2

∂κ2Θ
2
0(κ, ς)




= κ2

(
1 +

(1− α)

AB(α)
+

α

AB(α)
ςα

Γ (α+ 1)

)
,

Θ2(κ, ς) = κ2 +KH−1


(
sα − α (sα − γαηα)

sαAB(α)

)
KH


Θ1(κ, ς)

+ 12
κ2Θ

2
1(κ, ς)

− 12
κ Θ1(κ, ς) ∂

∂κΘ1(κ, ς)

+ ∂2

∂κ2Θ
2
1(κ, ς)




= κ2

(
1 +

(1− α)AB(α) + (1− α)
2

AB2(α)
+

(
αAB(α) + 2α(1− α)

AB2(α)

)
ςα

Γ (α+ 1)

+
α2

AB2(α)

ς2α

Γ (2α+ 1)

)
,

Θ3(κ, ς) = κ2 +KH−1

(
sα − α (sα − γαηα)

sαAB(α)

)
KH


Θ2(κ, ς)

+ 12
κ2Θ

2
2(κ, ς)

− 12
κ Θ2(κ, ς) ∂

∂κΘ2(κ, ς)

+ ∂2

∂κ2Θ
2
2(κ, ς)


= κ2

(
1 +

(1− α)AB2(α) + (1− α)2AB(α) + (1− α)
3

AB3(α)

+

(
αAB2(α) + 2α (1− α)AB(α) + 3α(1− α)2

AB3(α)

)
ςα

Γ (α+ 1)

+

(
α2AB(α) + 3α2(1− α)

AB3(α)

)
ς2α

Γ (2α+ 1)
+

α3

AB3(α)

ς3α

Γ (3α+ 1)

)
,

...

Finally, our KHVIM-solution Θ(κ, ς) is given by

Θ(κ, ς) = κ2

(
1 +

(1− α)AB2(α) + (1− α)2AB(α) + (1− α)
3

AB3(α)

+

(
αAB2(α) + 2α (1− α)AB(α) + 3α(1− α)2

AB3(α)

)
ςα

Γ (α+ 1)
(5.5)

+

(
α2AB(α) + 3α2(1− α)

AB3(α)

)
ς2α

Γ (2α+ 1)
+

α3

AB3(α)

ς3α

Γ (3α+ 1)
+ ...

)
.

Assuming AB(α) = 1 and taking α = 1 in equation (5.5), then the KHVIM-
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solution reduced as

Θ(κ, ς) = κ2

(
1 + ς +

ς2

2!
+

ς3

3!
+ ...

)
.

This result converges to the exact solution in a closed form

Θ(κ, ς) = κ2 exp (ς) .

6. Results and discussion

In this section, we study the behavior of the nonlinear Atangana-Baleanu-Caputo
fractional partial differential equation using KHHPM and KHVIM. Additionally,
MATLAB software was used to produce 2D and 3D graphs representing the solu-
tions of equations (5.1)-(5.2) for different values of α.

The 3D graphs of the KHHPM-solution and exact solution are shown in Figure
1. Figure 2 shows the 3D graphs of the KHVIM-solution and exact solution. Figure
3 shows a comparison of the KHHPM, KHVIM and exact solutions in 2D graphs
for different values of α. Tables 1 and 2 evaluate the values of the approximate
KHHPM-solution, approximate KHVIM-solution and exact solutions of Θ(κ, ς) at
different values of κ, ς and α, and compares the absolute error between KHHPM,
KHVIM and the exact solution with α = 1.

It should be noted that we obtained a good approximation with the exact solu-
tion of the our problem and that we used four order approximate solutions during
the calculations. If we had increased the order of approximation, which would have
increased the number of terms in the solution, there would have been better ap-
proximation solutions. Additionally, the graphs and tables demonstrate that the
approximate solution to the nonlinear Atangana-Baleanu-Caputo fractional partial
differential equation described by (5.1) which is obtained by KHHPM and KHVIM,
converges to the precise solution when the value of α approaches the classical value
1 of the problem, this indicates a good agreement between the exact solution and
the proposed methods. It is confirmed that the KHHPM and KHVIM are the best
tool for solving nonlinear Atangana-Baleanu-Caputo fractional partial differential
equations.

7. Conclusions

The present paper was devoted to studying nonlinear fractional partial differential
equations via the Khalouta-Atangana-Baleanu operator. Banach’s fixed point the-
orem was used to determine sufficient conditions of the existence and uniqueness
results of this problem. In addition, KHHPM and KHVIM are used in this paper to
solve nonlinear fractional partial differential equations using the Atangana-Baleanu-
Caputo sense. We investigated the convergence and absolute error of the methods.
The given example shows a high degree of agreement between the KHHPM and
KHVIM results and the remarkable results show how simple and effective these ap-
proaches are and how they can be applied to nonlinear fractional problems. Finally,
in the future, we plan to apply the Khalouta transform to explore solutions of other
fractional partial differential equations with variable-order fractional derivatives.
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Figure 1. 3D plots of the approximate KHHPM-solutions for different values of α : (a) α = 0.8, (b)
α = 0.9, (c) α = 1, (d) Exact solution
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Figure 2. 3D plots of the approximate KHVIM-solutions for different values of α : (a) α = 0.8, (b)
α = 0.9, (c) α = 1, (d) Exact solution
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Table 1. The values of of the approximate KHHPM-solutions and exact solution and at different values
of κ, ς and α

κ ς α = 0.7 α = 0.8 α = 0.9 α = 1 Θexact |Θexact −ΘKHHPM |
0.1 0.1 0.017355 0.014736 0.012662 0.011052 0.011052 4.2514× 10−8

0.2 0.2 0.07872 0.066657 0.056733 0.048856 0.048856 1.1033× 10−7

0.3 0.3 0.19697 0.16742 0.14213 0.12149 0.12149 1.9177× 10−6

0.4 0.4 0.38498 0.32954 0.28016 0.23868 0.23869 1.4618× 10−5

0.5 0.5 0.65605 0.56667 0.48377 0.41211 0.41218 7.0943× 10−5

0.6 0.6 1.0240 0.89364 0.76761 0.65570 0.65596 2.5877× 10−4

0.7 0.7 1.5033 1.3265 1.1482 0.98596 0.98674 7.7512× 10−4

0.8 0.8 2.1090 1.8828 1.6439 1.4223 1.4243 2.0102× 10−3

0.9 0.9 2.8569 2.5811 2.2753 1.9876 1.9923 4.6701× 10−3

1 1 3.7632 3.4416 3.0649 2.7083 2.7183 9.9485× 10−3

Table 2. The values of of the approximate KHVIM-solutions and exact solution at different values of
κ, ς and α

κ ς α = 0.7 α = 0.8 α = 0.9 α = 1 Θexact |Θexact −ΘKHV IM |
0.1 0.1 0.017355 0.014736 0.012662 0.011052 0.011052 4.2514× 10−8

0.2 0.2 0.07872 0.066657 0.056733 0.048856 0.048856 1.1033× 10−7

0.3 0.3 0.19697 0.16742 0.14213 0.12149 0.12149 1.9177× 10−6

0.4 0.4 0.38498 0.32954 0.28016 0.23868 0.23869 1.4618× 10−5

0.5 0.5 0.65605 0.56667 0.48377 0.41211 0.41218 7.0943× 10−5

0.6 0.6 1.0240 0.89364 0.76761 0.65570 0.65596 2.5877× 10−4

0.7 0.7 1.5033 1.3265 1.1482 0.98596 0.98674 7.7512× 10−4

0.8 0.8 2.1090 1.8828 1.6439 1.4223 1.4243 2.0102× 10−3

0.9 0.9 2.8569 2.5811 2.2753 1.9876 1.9923 4.6701× 10−3

1 1 3.7632 3.4416 3.0649 2.7083 2.7183 9.9485× 10−3
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