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BOUNDED AND BLOW-UP SOLUTIONS OF
K-HESSIAN SYSTEM WITH AUGMENTED

TERMS∗
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Abstract The radial solutions of the k-Hessian system with augmented terms
are considered. We not only prove the existence of entire bounded radial so-
lutions, but also provide a necessary and sufficient condition for the existence
of blow-up radial solutions under some suitable growth conditions of nonlin-
earity by using the monotone iterative method. Two concrete examples are
presented to show an application of the main results.
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1. Introduction

In this paper, we consider the existence of radial solutions for the following k-Hessian
system with augmented terms{

Sk(λ(D
2u+ µ|∇u|I)) = p(|x|)φ(u, v), in Rn,

Sk(λ(D
2v + ν|∇v|I)) = q(|x|)ψ(u, v), in Rn,

(1.1)

where µ and ν are nonnegative constants, p(·) and q(·) are positive weight functions,
the nonlinear terms φ,ψ ∈ C([0,∞)×[0,∞), [0,∞)) are increasing in each variables,
Sk(λ(D

2u)) (k = 1, 2, · · · , n) is the k-Hessian operator of u. In general, the k-
Hessian operator is defined by

Sk(λ(D
2u)) = Pk(Λ) =

∑
1≤j1<···<jk≤n

λj1λj2 · · ·λjk , k = 1, 2, · · · , n,

where Pk(Λ) denotes the k-th elementary symmetric function of Λ, Λ = (λ1, λ2, · · · ,
λn) are the eigenvalues of Hessian matrix D2u. In addition, the k-Hessian operator
can also be written in the divergence form

Sk(λ(D
2u)) =

1

k

N∑
i,j=1

(Sij
k ui)j ,
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where Sij
k = ∂Sk(λ(D

2u))
∂uij

, see details in [2, 20] and the references cited therein.

Noticed that the k-Hessian operator is a generalization of both Laplace operator
and Monge-Ampère operator, that is, when k = 1, k-Hessian operator reduces to

Laplace operator S1(λ(D
2u)) =

n∑
i=1

λi = ∆u; when k = n, k-Hessian operator is

Monge-Ampère operator Sn(λ(D
2u)) =

n∏
i=1

λi =det(D2u). About Laplace problem

and Monge-Ampère problem, there are a lot of brilliant papers, we refer the readers
to [1, 6, 10,19,31–33].

In recent years, the k-Hessian equation has attracted the attention of a large
number of scholars due to its wide range of applications in many fields, including
fluid mechanics, geometric analysis and other disciplines. The scope of the study
includes singular solutions, regular solutions and the corresponding asymptotic be-
havior [3, 7, 9, 13–18, 22]. Many scholars have also investigated the existence of
blow-up solutions. In 2018, Zhang and Feng [28] studied the boundary blow-up
solutions for the k-Hessian equation

Sk(λ(D
2u)) = H(x)up in Ω, u = +∞ on ∂Ω,

where Ω is a smooth, bounded, strictly convex domain in Rn(n ≥ 2), and H(x) is
smooth positive function. The author obtained the existence, nonexistence, unique-
ness results, global estimates and estimates near the boundary for the solutions by
constructing suitable sub- and super- solutions. Furthermore, they considered the
existence and asymptotic behavior of k-convex solution to the boundary blow-up
k-Hessian problem

Sk(λ(D
2u)) = H(x)φ(u), in Ω,

where φ is a smooth positive function that satisfies the Keller-Osserman condi-
tion. Zhang [29] considered the existence of the entire radial large solution for the
following modified quasilinear Schrödinger elliptic system

△ u+ △ (|u|2γ)|u|2γ−2 = p(|x|)φ(v)χγ(u),

△ v+ △ (|v|2δ)|v|2δ−2 = q(|x|)ψ(v)χδ(v),

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = ∞ (i.e. u, v are large),

where x ∈ Rn(n ≥ 3), γ, δ > 1
2 , χi(s) =

√
1 + 2i|s|2(2i−1), i > 1

2 , and the non-
negative functions p and q are continuous on Rn, φ and ψ are also required to be
increasing. For the study of blow-up solutions, we can see [24–27].

In addition, not only the study of blow-up solutions , but also the entire k-convex
radial solutions have attracted the interests of many scholars. For µ = ν = 0, there
are several works that deals with the existence of radial solutions of (1.1), such as,
Zhang and Zhou [34] who obtained the existence of entire positive k-convex radial
solutions of the following k-Hessian by using the monotone iterative method{

Sk(λ(D
2u)) = p(|x|)φ(v), in Rn,

Sk(λ(D
2v)) = q(|x|)ψ(u), in Rn.

In 2018, Covei [4] established a necessary condition and a sufficient condition of the
existence of positive radial solution. It is notable that the monotonicity of φ and
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ψ are required in order to get the existence of radial solutions. In 2019, Feng [8]
applied a new fixed point theorem to investigate the existence and multiplicity of
nontrivial radial solutions of k-Hessian system. One point to note compared to
the previous two papers is that monotonicity of the nonlinear term is not required
anymore.

For µ ̸= 0 or ν ̸= 0, Cui [5] considered for the first time the existence of entire
k-convex radial solutions for a system of the form φ(u, v) = φ1(u)φ2(v). The author
obtained the existence and nonexistence of entire k-convex radial solutions. In 2022,
Ji [11] studied the single k-Hessian equation

S
1
k

k (λ(D2u+ µ|Du|I)) = φ(u), in Rn,

the author obtained a necessary and sufficient condition of φ on the existence
and nonexistence of entire admissible subsolutions under the generalized Keller-
Osserman condition. Zhang [30] analyzes the existence of entire subsolutions to the
p-k-Hessian equation

S
1
k

k (λ((Di(|Du|p−2Dju)) + α|Du|β(p−1)I)) = f(u), i, j ∈ {1, 2, · · · , n}, u ∈ Rn,

where β = 0 or 1, p ≥ 2, α is a nonnegative constant. The necessary and sufficient
conditions on f for the existence of entire subsolutions are established. In 2023,
Yang [21] deals with the k-Hessian type system with the gradients{

Sk(λ(D
2ui + α|▽ui|I)) = φi(|x|,−u1,−u2, · · · ,−un), in Ω,

ui = 0, on ∂Ω, i = 1, 2, . . . , n,

where α ≥ 0, n ≥ 2, 1 ≤ k ≤ N is a positive integer, I is the identity matrix and
Ω stands for the open unit ball in RN (N ≥ 2). Based on appropriate assumptions
about φi(i = 1, 2, . . . , n), some results regarding existence of negative k-convex
radial solution are established. In the same year, Zhang [23] applies the sub-super-
solution method to investigate the multiplicity of radial k-convex solutions of an
augmented Hessian problem{

Sk(λ(D
2u− µI)) = b(|x|)g(u), x ∈ Ω,

u = +∞, x ∈ ∂Ω,

where Ω ⊆ RN (N ≥ 2) is a ball, k ∈ {1, 2, · · · , N}, µ is a positive constant.
However, few papers studied the k-Hessian system with the form (1.1), for which

it is worthwhile to consider what kind of radial solutions properties of system (1.1)
exist. Inspired by the above works, in this paper we try to generalize and improve
some known results about k-Hessian equation, such as, [34] and [4], from three
aspects: 1) the k-Hessian operator with augmentation item is considered, that is,
Sk(λ(D

2u+µ|∇u|I)), here µ maybe not equal to zero; 2)both the existence of blow-
up solution and the existence of entire bounded radial solution of the system (1.1)
are studied; 3)the form of nonlinear term in (1.1) is more general. By applying the
monotone iterative method, the sufficient conditions of the existence of entire radial
solutions and a necessary and sufficient conditions of the existence of blow-up radial
solutions of the system (1.1) is obtained, respectively.In addition, the nonexistence
of blow-up radial solutions is also discussed as a direct result of the main theorem.
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The rest of this paper is organized as follows. In Section 2, we provide some
preliminary results, which are useful in the following proofs. In Section 3, the
existence of entire bounded solutions of (1.1) is discussed by using the monotone
iterative method. In Section 4, a necessary and sufficient conditions of the existence
of blow-up radial solutions of the system (1.1) is given. Finally, two examples are
given to verify our results in Section 5.

2. Preliminaries

Throughout the paper, we assume
(H1) φ,ψ ∈ C([0,∞) × [0,∞), [0,∞)) are increasing in each variables and

φ(u, v) > 0, ψ(u, v) > 0 for all u and v satisfying u2 + v2 > 0.
(H2) p, q : [0,∞) → [0,∞) are continuous functions.

Lemma 2.1. [12] Assume z(·) ∈ C2[0,∞) with z′(0) = 0. Then for u(x) = z(r),
we have that u(x) ∈ C2(Rn) and the eigenvalues of the operator D2u+ µ|∇u|I are

λ(D2u+ µ|∇u|I) =


(
z′′(r) + µz′(r),

1 + µr

r
z′(r), · · · , 1 + µr

r
z′(r)

)
, r > 0,

(z′′(0), z′′(0), · · · , z′′(0)) , r = 0,

where µ > 0.

Lemma 2.2. If (z(x), w(x)) = (u(r), v(r)) is a radial solution of the k-Hessian
system(1.1), then, for any initial values u(0) = γ, v(0) = δ, the radial solution
(u(r), v(r)) can be expressed by the integral form

u(r) = γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

dt,

v(r) = δ +

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ψ(u(s), v(s))ds

) 1
k

dt.

Proof. By Lemma 2.1 and the definition of Sk, we can get the expression of
k-Hessian operator Sk

Sk(λ(D
2u+ µ|∇u|I))

=Ck−1
n−1 (u

′′(r) + µu′(r))

(
1 + µr

r
u′(r)

)k−1

+ Ck
n−1

(
1 + µr

r
u′(r)

)k

=
Ck

n

n

(
1 + µr

r

)k−1 [
ku′′(r)(u′(r))k−1 +

(
nµ+

n− k

r

)
(u′(r))k

]
.

Then, the first equation in (1.1) can be written as

Ck
n

n

(
1 + µr

r

)k−1[
ku′′(r)(u′(r))k−1 +

(
nµ+

n− k

r

)
(u′(r))k

]
= p(r)φ(u(r), v(r)),

which means

ku′′(r)(u′(r))k−1 +

(
nµ+

n− k

r

)
(u′(r))k =

n

Ck
n

(
r

1 + µr

)k−1

p(r)φ(u(r), v(r)).

(2.1)
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Let σ(r) = nµr + (n− k) ln r. Multiplying both sides of (2.1) by eσ(r), we get

ku′′(r)(u′(r))k−1eσ(r) +

(
nµ+

n− k

r

)
(u′(r))keσ(r)

=
n

Ck
n

(
r

1 + µr

)k−1

p(r)φ(u(r), v(r))eσ(r),

that is, {
enµr

rk−n
(u′(r))k

}′

=
n

Ck
n

enµrrn−1

(1 + µr)k−1
p(r)φ(u(r), v(r)),

u′(r) =

(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

. (2.2)

Similarly, from the second equation of (1.1),we can deduce the expression of v′(r)

v′(r) =

(
rk−n

enνr

∫ r

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ψ(u(s), v(s))ds

) 1
k

. (2.3)

For any given initial value u(0) = γ, v(0) = δ, we can transform (1.1) into the
integral equations

u(r) = γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

dt,

v(r) = δ +

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ψ(u(s), v(s))ds

) 1
k

dt,

by integrating both sides of equation (2.2) and (2.3) from zero to r, respectively.
This completes the proof.

3. Existence of bounded radial solutions

In order to make the form of our main results concise, we first give some notations.
Denote

A(r) =

∫ r

γ+δ

dt

φ(t, t) + ψ(t, t) + 1
, r ≥ γ + δ > 0, A(∞) := lim

r→∞
A(r), (3.1)

P (r) =

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt, r ≥ 0, P (∞) := lim
r→∞

P (r),

(3.2)

Q(r) =

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt, r ≥ 0, Q(∞) := lim
r→∞

Q(r).

(3.3)

Theorem 3.1. Assume (H1) and (H2) hold, A(∞) = ∞, P (∞) <∞ and Q(∞) <
∞. For every given initial value, system (1.1) exists positive bounded radial solu-
tions in space C2[0,∞)× C2[0,∞).
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Proof. For any r ≥ 0, we construct sequences {um(r)}m≥0 and {vm(r)}m≥0 in
the following format

um(r) = γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um−1(s), vm−1(s))ds

) 1
k

dt,

vm(r) = δ +

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ψ(um−1(s), vm−1(s))ds

) 1
k

dt,

u0(r) ≡ γ, v0(r) ≡ δ.
(3.4)

Firstly, we can conclude that {um(r)}m≥0 and {vm(r)}m≥0 are non-decreasing
sequences, respectively. To this end, we introduce a semi-ordering ⪯ in C[0,∞) ×
C[0,∞) by

(um, vm) ⪯ (um+1, vm+1) ⇔ um(r) ≤ um+1(r), vm(r) ≤ vm+1(r), r ≥ 0, m ∈ N.

From (H1),(H2) and (3.4), it is easy to see that u0(r) ≤ u1(r), v0(r) ≤ v1(r) for
any r ≥ 0, that is, (u0, v0) ⪯ (u1, v1). Assume that (ul−1, vl−1) ⪯ (ul, vl) hold, then
ul−1(r) ≤ ul−1(r) and vl−1(r) ≤ vl−1(r) for any r ≥ 0. From the monotonicity of
φ and the first equation of (3.4), we have

ul(r) = γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(ul−1(s), vl−1(s))ds

) 1
k

dt

≤ γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(ul(s), vl(s))ds

) 1
k

dt

= ul+1(r), r ≥ 0.

Similarly, the monotonicity of ψ and the second equation of (3.4) indicate vl(r) ≤
vl+1(r) for any r ≥ 0. thus, (ul, vl) ⪯ (ul+1, vl+1). By mathematical induction we
can obtain

(um, vm) ⪯ (um+1, vm+1), m ∈ N,
which means that {um(r)}m≥0 and {vm(r)}m≥0 are non-decreasing sequences, re-
spectively.

Secondly, the sequences {um(r)}m≥0 and {vm(r)}m≥0 are convergent.
i) The sequences {um(r)}m≥0 and {vm(r)}m≥0 are uniformly bounded. In fact,

u′m(r) =

(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um−1(s), vm−1(s))ds

) 1
k

≤
(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um(s), vm(s))ds

) 1
k

≤
(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)

(
Φ(r, r) + 1

)
ds

) 1
k

≤
(
Φ(r, r) + 1

)(rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

,

(3.5)

by (H1) and (H2), where Φ(r, r) = φ(um(r) + vm(r), um(r) + vm(r)). Similarly,

v′m(r) ≤
(
Ψ(r, r) + 1

)(rk−n

enνr

∫ r

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

, (3.6)
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where Ψ(r, r) = ψ(um(r) + vm(r), um(r) + vm(r)). Adding (3.5) and (3.6), we have

u′m(r) + v′m(r)

≤
(
Φ(r, r) + Ψ(r, r) + 1

)
×

{(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

+

(
rk−n

enνr

∫ r

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

}
,

furthermore,

u′m(r) + v′m(r)

Φ(r, r) + Ψ(r, r) + 1
≤
(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

+

(
rk−n

enνr

∫ r

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

.

Integrating the above inequality from zero to r(r ≥ 0), we can get∫ r

0

u′m(t) + v′m(t)

Φ(t, t) + Ψ(t, t) + 1
dt ≤ P (r) +Q(r),

where P and Q are defined by (3.2) and (3.3),respectively. Furthermore,∫ um(r)+vm(r)

γ+δ

dt

φ(t, t) + ψ(t, t) + 1
≤ P (r) +Q(r),

that is,

A(um(r) + vm(r)) ≤ P (r) +Q(r),

where A is defined by (3.1). Due to the continuity and monotonicity of φ and ψ, A
is bijective and the inverse mapping A−1 is strictly increasing on [0, A(∞)), thus,
from the above inequality, we get

um(r) + vm(r) ≤ A−1(P (r) +Q(r)), r ∈ [0,∞).

Since A(∞) = ∞ and A is bijective, we can know A−1(∞) = ∞. Therefore the
sequences {um(r)}m≥0 and {vm(r)}m≥0 are uniformly bounded by the conditions
P (∞) <∞ and Q(∞) <∞.

ii) The sequences {um(r)}m≥0 and {vm(r)}m≥0 are equicontinuous.

Since the sequences {um(r)}m≥0 and {vm(r)}m≥0 are uniformly bounded, there
exist positive constants M11 and M12, such that

um(r) ≤M11, vm(r) ≤M12, r ≥ 0, m ∈ N,

then, we have, by the monotonicity of φ,

φ(um(r), vm(r)) ≤ φ(M11,M12) ≜M1.
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For any ε > 0, choosing δ = ε
k
√
M1M2

, such that for t1, t2 ∈ [0, c0] and |t1 − t2| < δ,

we have

|um(t1)− um(t2)|

=

∣∣∣∣∣
∫ t2

t1

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um−1(s), vm−1(s))ds

) 1
k

dt

∣∣∣∣∣
≤ k
√
M1

∣∣∣∣∣
∫ t2

t1

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

∣∣∣∣∣
≤ k
√
M1M2|t2 − t1|

<ε,

where

M2 = max
t∈[0,c0]

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

)
.

Therefore, for any c0 > 0, the sequences {um(r)}m≥0 is equicontinuous on [0, c0].
There are similar results for the sequences {vm(r)}m≥0.

Combining i) and ii), {um(r)}m≥0 and {vm(r)}m≥0 contain convergent subse-
quences, without loss of generality, still denoted by {um(r)}m≥0 and {vm(r)}m≥0,
which convergent uniformly to u(r) and v(r) on [0, c0] by using Arzela-Ascoli theo-
rem, respectively.

It follows from the arbitrariness of c0 that (u(r), v(r)) is a positive radial solution
of the system (1.1). Then, according to the arbitrariness of the initial values γ, δ ∈
(0,∞), we can know that the system (1.1) has many positive radial solutions.

Moreover, it follows from P (∞) <∞, Q(∞) <∞ that

um(r) + vm(r) ≤ A−1(P (r) +Q(r)) ≤ A−1(P (∞) +Q(∞)),

which means that the radial solutions of (1.1) are bounded.

Finally, we show that u, v ∈ C2[0,∞). It is easy to see that u, v ∈ C2(0,∞).
We only need to prove that u′(r), v′(r), u′′(r) and v′′(r) are continuous at r = 0.
In fact, we have, by the definition of derivative

u′(0) = lim
r→0

u(r)− u(0)

r

= lim
r→0

∫ r

0

(
tk−n

enµt

∫ t

0
n
Ck

n

enµssn−1

(1+µs)k−1 p(s)φ(u(s), v(s))ds
) 1

k

dt

r

= lim
r→0

(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

= 0

and

lim
r→0

u′(r) = lim
r→0

(
rk−n

enµr

∫ r

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

= 0.
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Therefore, lim
r→0

u′(r) = 0 = u′(0), which indicates u′(r) is continuous at r = 0.

Furthermore,

u′′(r) =
1

k

(
n

Ck
n

) 1
k

[(
k − n

r
− nµ

)(
rk−n

enµr

∫ r

0

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

+

(
r

1 + µr

)k−1

p(r)φ(u(r), v(r))

×
(
rk−n

enµr

∫ r

0

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k−1

]
.

(3.7)
On the one hand, taking limit of (3.7) as r → 0

lim
r→0

u′′(r)

= lim
r→0

1

k

(
n

Ck
n

) 1
k

[(
k − n

r
− nµ

)(
rk−n

enµr

∫ r

0

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

+

(
r

1 + µr

)k−1

p(r)φ(u(r), v(r))

×
(
rk−n

enµr

∫ r

0

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k−1

]

= lim
r→0

k − n

k

(
n

Ck
n

) 1
k

∫ r

0
enµssn−1

(1+µs)k−1 p(s)φ(u(s), v(s))ds

rn

 1
k

+ lim
r→0

1

k

(
n

Ck
n

) 1
k

p(r)φ(u(r), v(r))

∫ r

0
enµssn−1

(1+µs)k−1 p(s)φ(u(s), v(s))ds

rn

 1
k−1

=
k − n

k

(
n

Ck
n

) 1
k
(
p(0)φ(u(0), v(0))

n

) 1
k

+
n

k

(
n

Ck
n

) 1
k

p(0)φ(u(0), v(0))

(
p(0)φ(u(0), v(0))

n

) 1
k−1

=
(p(0)φ(u(0), v(0)))

1
k

(Ck
n)

1
k

.

On the other hand, by the definition of the second derivative, we have

u′′(0) = lim
r→0

u′(r)− u′(0)

r

= lim
r→0

(
rk−n

enµr

∫ r

0
n
Ck

n

enµssn−1

(1+µs)k−1 p(s)φ(u(s), v(s))ds
) 1

k

r

=

(
n

Ck
n

) 1
k

 lim
r→0

∫ r

0
enµs sn−1

(1+µs)k−1 p(s)φ(u(s), v(s))ds

enµrrn

 1
k
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=

(
n

Ck
n

) 1
k
(
lim
r→0

p(r)φ(u(r), v(r))

(n+ nµr)(1 + µr)k−1

) 1
k

=

(
n

Ck
n

) 1
k (p(0)φ(u(0), v(0)))

1
k

n
1
k

=
(p(0)φ(u(0), v(0)))

1
k

(Ck
n)

1
k

.

Thus lim
r→0

u′′(r) = u′′(0), which shows that u′′ is continuous at r = 0. thus, u(r) ∈
C2[0,∞). Similarly, we can prove that v(r) are in C2[0,∞).

Based on the above discussion, we can conclude that the k-Hessian system (1.1)
has many positive bounded radial solutions (u, v) in space C2[0,∞)× C2[0,∞).

4. Existence of blow-up radial solutions

In order to obtain the blow-up solutions of (1.1), we need to make further assump-
tions about functions φ and ψ.

(H3) there exists a constant α ∈ (0, 12 ) such that

φ(c1u, c2v) ≥ (c1c2)
αφ(u, v), ψ(c1u, c2v) ≥ (c1c2)

αψ(u, v), c1, c2 ∈ (0, 1].

Remark 4.1. We easily obtain the equivalent condition of (H3), that is, there
exists a constant α ∈ (0, 12 ) such that

φ(c1u, c2v) ≤ (c1c2)
αφ(u, v), ψ(c1u, c2v) ≤ (c1c2)

αψ(u, v), c1, c2 ≥ 1.

Theorem 4.1. Assume (H1) ,(H2) and (H3) hold. For every given initial value,
system (1.1) exists positive blow-up radial solutions in space C2[0,∞)×C2[0,∞) if
and only if P (∞) = ∞ and Q(∞) = ∞ hold.

Proof. Firstly, we prove the sufficiency of the Theorem 4.1. Define the same
iterative sequence {um(r)}m≥0 and {vm(r)}m≥0 as in Theorem 3.1. For fixed R >
0, r ∈ [0, R], we can get

um(r) ≤ γ +

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um−1(s), vm−1(s))ds

) 1
k

dt <∞,

(4.1)
and

vm(r) ≤ δ +

∫ R

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ψ(um−1(s), vm−1(s))ds

) 1
k

dt <∞,

(4.2)
then, the iterative sequence {um(r)}m≥0 and {vm(r)}m≥0 bounded on interval
[0, R], according to (H1) and (H3), we know

um(R) = γ +

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um−1(s), vm−1(s))ds

) 1
k

dt

≤ γ +

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(um(R), vm(R))ds

) 1
k

dt
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≤ γ +

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
MRp(s)φ(1, 1)ds

) 1
k

dt

≤ γ +

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
MRp(s)

(
φ(1, 1) + ψ(1, 1)

)
ds

) 1
k

dt

≤ γ +
[
MR

(
φ(1, 1) + ψ(1, 1)

)] 1
k

∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt,

where MR = (um(R) + 1)α(vm(R) + 1)α. Similarly, we can obtain

vm(R) ≤δ +
[
MR

(
φ(1, 1) + ψ(1, 1)

)] 1
k

×
∫ R

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt.

Let
M1(R) := lim

m→∞
um(R), M2(R) := lim

m→∞
vm(R),

according to (4.1) and (4.2), we can get M1(R) < ∞, M2(R) < ∞. Otherwise,
then there is equation M1(R) +M2(R) = ∞, it’s impossible for M1(R),M2(R) not
to exist here, thus, for any 0 < α < 1

2 , we have

um(R) + vm(R) ≤γ + δ +
[
MR

(
φ(1, 1) + ψ(1, 1)

)] 1
k

×

[∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ R

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]
.

Furthermore,

1 ≤
γ + δ +

[
MR

(
φ(1, 1) + ψ(1, 1)

)] 1
k

um(R) + vm(R)

×

[∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ R

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]

≤
γ + δ +

[
(um(R) + vm(R) + 2)2α

(
φ(1, 1) + ψ(1, 1)

)] 1
k

um(R) + vm(R)

×

[∫ R

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ R

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]
,

(4.3)
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the right side of the inequality (4.3) tends to zero asm→ ∞. This is a contradiction,
which means M1(R) and M2(R) are not finite. It is worthy that Mi : (0,∞) →
(0,∞), (i = 1, 2) is a increasing mapping due to the increasing of the sequence
{um(r)}m≥0 and {vm(r)}m≥0. Moreover, for any r ∈ [0, R] and m ≥ 0, we have

um(r) ≤ um(R) ≤M1(R), vm(r) ≤ vm(R) ≤M2(R),

it is implied that {um(r)}m≥0 and {vm(r)}m≥0 bounded on interval [0, R].
Let

u(r) = lim
m→∞

um(r), v(r) = lim
m→∞

vm(r), r ≥ 0,

combining conditions (H1)and(H2) , we can obtain (u(r), v(r)) is a positive radial
solution.

Next, we prove (u(r), v(r)) is a blow-up solution

u(r) = γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(u(s), v(s))ds

) 1
k

dt

≥ γ +

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)φ(γ, δ)ds

) 1
k

dt

≥ γ + φ(γ, δ)
1
k

∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt,

it easy to know u(r) → ∞ as r → ∞ by the condition P (∞) = ∞. Similarly, we
have

v(r) ≥ δ + ψ(γ, δ)
1
k

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

when r → ∞, we get v(r) → ∞. it is implied that (u(r), v(r)) is blow-up solution
of k-Hessian system (1.1). For the arbitrariness of γ, δ > 0, the k-Hessian system
(1.1) has many positive blow-up radial solutions.

In the following, we will prove the necessity of Theorem 4.1. Assume that (1.1)
has many blow-up radical solutions, we will prove that P (∞) = ∞ and Q(∞) = ∞.
On the contrary, if P (∞) <∞ and Q(∞) <∞, that is∫ ∞

0

(
tk−n

enµr

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt <∞

and ∫ ∞

0

(
tk−n

enνr

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt <∞,

thus lim
r→∞

u(r) = ∞ and lim
r→∞

v(r) = ∞. We know from the expression of u′(r) and

v′(r) that u(r) and v(r) are increasing function, so we can get that

u(r) + v(r) ≤γ + δ +
[
(u(r) + 1)α(v(r) + 1)α

(
φ(1, 1) + ψ(1, 1)

)] 1
k

×

[∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]
.
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Furthermore, we have

1 ≤
γ + δ +

[
(u(r) + 1)α(v(r) + 1)α

(
φ(1, 1) + ψ(1, 1)

)] 1
k

u(r) + v(r)

×

[∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]

≤
γ + δ +

[
(u(r) + v(r) + 2)2α

(
φ(1, 1) + ψ(1, 1)

)] 1
k

u(r) + v(r)

×

[∫ r

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

+

∫ r

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

]
,

(4.4)

the right hand of inequality (4.4) tends to zero as r → ∞, which is a contradiction.
This completes the proof.

Remark 4.2. Assume (H1), (H2) and (H3) hold. Then the k-Hessian system (1.1)
has no blow-up radial solutions (u, v) in space C2[0,∞) × C2[0,∞) if P (∞) < ∞
and Q(∞) <∞ .

The argument is analogous to that in Theorem 4.1, so it is omitted.

5. Examples

Example 5.1. Consider the following 3-Hessian system
S3(λ(D

2u+ 2|∇u|I)) = (8|x|3 − 5|x|2 + 8|x|+ 1)(1 + 2|x|2)
|x|3(1 + |x|2)4

(
u2 + v2

) 1
3 , x ∈ R4,

S3(λ(D
2v+3|∇v|I)) = (12|x|3 − 5|x|2 + 12|x|+ 1)(1 + 3|x|)2

|x|3(1 + |x|2)4
(
u

1
3 +v

1
3

)
, x ∈ R4,

(5.1)

where φ(u, v) =
(
u2 + v2

) 1
3 , ψ(u, v) = u

1
3 + v

1
3 and

p(r) =
(8r3 − 5r2 + 8r + 1)(1 + 2r)2

r3(1 + r2)4
, q(r) =

(12r3 − 5r2 + 12r + 1)(1 + 3r)2

r3 (1 + r2)
4 .

It is not difficult to check that φ and ψ are increasing for each variables.
Now we check A(∞), P (∞) and Q(∞) satisfying the conditions of Theorem 3.1.

A(∞) =

∫ ∞

γ+δ

dt

φ(t, t) + ψ(t, t) + 1

=

∫ ∞

γ+δ

dt

(t2 + t2)
1
3 + t

1
3 + t

1
3 + 1
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≥
∫ ∞

γ+δ

1

4t+ 1
dt

= ∞,

P (∞) =

∫ ∞

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

=

∫ ∞

0

(
t3−4

e8t

∫ t

0

4

C3
4

e8ss3

(1 + 2s)2
(8s3 − 5s2 + 8s+ 1)(1 + 2s)4

s3(1 + s2)2
ds

) 1
3

dt

=

∫ ∞

0

1

1 + t2
dt

<∞,

Q(∞) =

∫ ∞

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

=

∫ ∞

0

(
t3−4

e12t

∫ t

0

4

C3
4

e12ss3

(1 + 3s)2
(12s3 − 5s2 + 12s+ 1)(1 + 3s)2

(1 + s2)4s3
ds

) 1
3

dt

=

∫ ∞

0

1

1 + t2
dt

<∞.

Therefore, all the conditions of Theorem 3.1 are satisfied, the conclusion follows,
that is, the system (5.1) has many bounded radial solutions.

Example 5.2. Consider the following 3-Hessian system
S3(λ(D

2u+ 2|∇u|I)) = (1 + 2|x|2)
(
u

1
3 + v

1
3

)
, x in R4,

S3(λ(D
2v + 3|∇v|I)) = (1 + 3|x|)2

(
u

2
5 + v

2
5

)
, x in R4,

(5.2)

where φ(u, v) = u
1
3 + v

1
3 , ψ(u, v) = u

2
5 + v

2
5 and

p(r) = (1 + 2r)2, q(r) = (1 + 3r)2.

When α = 1
4 , it is not difficult to check that (H3) hold and φ,ψ are increasing in

each variables which satisfied (H1). Now we check P (∞) and Q(∞)satisfying the
conditions of Theorem 4.1.

P (∞) =

∫ ∞

0

(
tk−n

enµt

∫ t

0

n

Ck
n

enµssn−1

(1 + µs)k−1
p(s)ds

) 1
k

dt

=

∫ ∞

0

(
t3−4

e8t

∫ t

0

4

C3
4

e8ss3ds

) 1
3

dt

= ∞,

Q(∞) =

∫ ∞

0

(
tk−n

enνt

∫ t

0

n

Ck
n

enνssn−1

(1 + νs)k−1
q(s)ds

) 1
k

dt

=

∫ ∞

0

(
t3−4

e12t

∫ t

0

4

C3
4

e12ss3ds

) 1
3

dt

= ∞.
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Therefore, all the conditions of Theorem 4.1 are satisfied, therefore, the system (5.2)
has many positive blow-up radial solutions.
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