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THE EXISTENCE OF RESPONSE TORI FOR
HAMILTONIAN WITH NORMAL
DEGENERACY*

Lu Xu!, Wen Si*>' and Mengmeng Wu'

Abstract In this paper, we prove the existence of response tori for a general
Hamiltonian with normal degeneracy which will be shown as (1.1). When the
perturbation is independent of action varible y, it can be seen as the energy
function of several quasi-periodically forced oscillator equations (1.2). Most of
the previous results focus on a single oscillator equation and prove the exis-
tence of response solutions under certain non-degenerate assumptions. In the
present paper, we will consider high dimensional system (1.2) coupled by oscil-
lator equations in different degenerate types. We will prove that the response
solutions still exist around perturbed equilibria, which reveals the mechanics of
the existence of response solution for a system coupled by degenerate nonlinear
oscillator equations. For the sake of generality, we will actually consider a gen-
eral Hamiltonian normal form and prove the persistence of invariant tori with
fixed Diophantine frequency w by the methods of finding relative equilibria,
improving the order of perturbations, KAM iterations and measure estimates.
The result can be applied to prove the existence of response solutions of the
above system (1.2).

Keywords Normal degeneracy, KAM theory, response solutions.
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1. Introduction

In the present paper, we consider a general Hamiltonian normal form as follows

n 1; n 2
H:@,I>+ZAﬁ§—%+Z%+sP(9,z)7 (1.1)
i=1 v j=1
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where I € RY, 2 := (z,y)" € R?>", § € T? and w € R? is the Diophantine frequency.
The order numbers [; > 2 are fixed integers satisfying I; # [; for 1 < 4,5 < n.
The constants A\; # 0, i = 1,2,--- ,n, are fixed constants and 0 < ¢ < €, < 1
is a sufficiently small parameter. The function H is real analytic with respect to
(0,1, 2). Moreover, the Hamiltonian system is associated with standard symplectic
form df A dI + dz A dy.

When the perturbation P is independent of y, the Hamiltonian (1.1) can be seen
as an energy function of a system coupled by several oscillator equations forced by
small quasi-periodic functions, that is,

T+ Alxlllil + Efl(wt,x) =0,

(1.2)

Fn + Apzlr ™t e f, (wt, ) = 0,
where f; = %, i =1,2,--- ,n. We mention that a response solution of system
(1.2) is a quasi-periodic solution x(t) = (z1(wt,e), -+ ,z,(wt,€)) " with the same
frequency w as in the forcing functions f;, 1 = 1,2, -+ ,n. The existence of response

solutions play an important role in studying the harmonic responses and oscillatory
properties. In the present paper, we will obtain the existence of the response solu-
tions of equation (1.2) by the persistence of invariant tori with fixed Diophantine
frequency w of Hamiltonian (1.1).

Plenty results in the existence of the response solutions have been obtained with
respect to a single oscillator equation with a quasi-periodic forced function, that is,

i+ et +a’x 4+ Ml = ef (wt, x, @), (1.3)

where a, ¢, A\ are fixed constants, [ > 2 is a fixed integer, f is a real analytic
function with respect to (0, x,4) with 6 := wt, € is a small parameter. When
a # 0,c = 0, the system can be seen as a harmonic oscillator with nonlinear
term. We say the equation is in non-degenerate case since x = 0 is non-degenerate
equilibrium for the unforced equation. As an early application of normal form
reduction, Moser [19] firstly proved the existence of response solutions under the
assumption that f satisfying reversible condition, i.e., f(—wt,x,—2) = f(wt,z, ).
The result was generalized to the case ¢ # 0 but sufficiently small in [9]. Recently,
the existence of response solutions for (1.3) with forced function in Liouvillean type
frequency has been proved in [18,23] in the case that d = 2 and later generalized to
the case d > 2 in [3,28].

When a = ¢ = 0, x = 0 is a degenerate equilibrium of the unforced equation,
the existence of the response solutions as well as the persistence of invariant tori
become challenging. When equation (1.3) is independent of &, there exists a Hamil-
tonian function H : T? x R? x R? — R which is an integral of equation (1.3). In
the extended phrase space T? x R? x R? with standard symplectic structure, the
Hamiltonian H can be written as

l 2

H(O,I,x,y,a)z<w,I>+)\mT+%+5P(0,x). (1.4)

Hence, the existence of response solutions is equal to the persistence of the invariant
tori with fixed frequency w of Hamiltonian (1.4).
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The persistence results of Hamiltonian normal form with different non-degenerate
conditions were demonstrated [7,8,20,30] based on modified KAM iterations. Other
results related on the existence of quasi-periodical solutions were proved via varia-
tion method, see [10,14,15,31] for details. For instance, You [30] firstly considered
the case that [ is even and A < 0, it was proved that Hamiltonian (1.4) admits a
family of d-invariant tori with a frequency w, which slightly shifts from w. Note that
the assumption of the perturbation in [30] is only the smallness and real analyticity,
since (z,y) = (0,0) is a saddle-like critical point of the unperturbed system (1.4) for
A < 0. Otherwise, when (z,y) = (0,0) is a center-like critical point, the persistence
results only hold on certain cantor set due to the existence of small divisors.

As it was formulated in [21], the authors consider the following completely de-
generate Hamiltonian

l m

H,1,z,y,e) = (w, 1) + A% i % L eP(0,2,y), (1.5)

where A #£ 0, m, n > 2 are positive integers, P is real analytic with respect to
(6, x,y). Under certain non-degenerate assumptions, it was proved when A < 0, the
systems (1.5) admits a family of invariant response tori as long as € € (0, &) is suf-
ficiently small, otherwise, there exists a almost full measure Cantor set O C (0, ¢.)
such that the persistence result holds for € € O. Although adding an assumption to
perturbation P, the result proved the existence of response solution for the motion
equation with respect to Hamiltonian (1.5) for fixed Diophantine vector w.

A nature question is what will happen to the existence of response tori (solu-
tions) when several oscillator equations coupled together. A similar problem was
considered by L. Corsi and G. Gentilde in [6] but for the case that A = 0, that is,

& =cef(wt, x),

where z € T, d > 1, f is real analytic and ¢ is sufficiently small. The existence
of response solutions was proved for d > 1 in [6] under the assumption that f is
even with respect to wt, that is, f(—wt,z) = f(wt,z) and for d = 1 in [5] without
any further non-degenerate condition but only smallness on forced function f. As a
consequence, we aim to prove the persistence of response tori for Hamiltonian (1.1),
which leads to the existence of response solutions of equation (1.2).

Define the average of a function with respect to 6 as [f(-,2)] := [, f(0,2)d0

and denote that

pi = |:8x1:|7 i:1,2,"',n.

Then we formulate our main result under the following assumptions:

A1) Assume that w is a Diophantine vector, that is,

v
|<k’w>| ETATS

Ll

where v > 0, 7 > d — 1 are fixed constants.

A2) Fori=1,2,---,n, assume that p; # 0. Moreover, p;/\; < 0 when [; is odd.

As it is classified in [22] and [30], the d-dimensional tori of unperturbed Hamilto-
nian (1.4) is in hyperbolic type if A < 0. Hence, we say that the d-dimensional tori
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of unperturbed Hamiltonian (1.1) is in hyperbolic type if A; <0 fori =1,2,--- ,n.
Otherwise, we say the d-dimensional tori of unperturbed Hamiltonian is in mixed
type. Then we formulate our main result as follows.

Main Theorem. Consider Hamiltonian systems (1.1) and assume A1), A2) hold.
Then the followings hold.

(1) If A\; <0 fori =1,2,--- ,n, then there exists a sufficiently small parameter
0 < e, < 1 such that, as 0 < € < €4, the Hamiltonian systems admit a
CN smooth family of real analytic, hyperbolic response tori around a family
of hyperbolic type relative equilibria, where N > 1 is a fized integer.

(2) If there exits at least one \; > 0 for certain 1 < i < n, then there exists
a sufficiently small parameter 0 < e, < 1 and a Cantor set On C (0,&4)

with measure estimate |mea§70m| = 1— O(el=?) such that, as ¢ € O,

the Hamiltonian systems admit a CN Whitney smooth family of real ana-
lytic response tori around a family of mized type of relative equilibria, where
U::min{ll%l, ’ln%l} and N > 2n? —n.

As it is mentioned above, the Main Theorem can be applied to prove the
existence of response solutions for a couple of nonlinear oscillator equations. Hence
we consider equations (1.2) and assume the following conditions hold.

A3) There exists a real analytic function P : T¢ x R® — R such that

P
o 5:ci’

fi i=1,2,--- ,n.
A4) For i = 1,2,--- ,n, denote f; = [f(-,0)] and assume that f; # 0. Moreover,
fi/Xi <0 when [; is odd.

Corollary 1.1. Consider equations (1.2) and assume A1), A3), A4) hold. Then
the followings hold.

(1) If \i <0 fori=1,2,--- ,n, then there exists a sufficiently small parameter
0 < e, < 1 such that, as 0 < ¢ < ., the equations (1.2) admit a CN smooth
family of real analytic response solutions around a family of relative equilibria
in hyperbolic type, where N > 1 is a fized integer.

(2) If there exits at least one A; > 0 for certain 1 < i < n, then there exists a
sufficiently small parameter 0 < e, < 1 and a Cantor set Oy, C (0,e4) of

with measure estimate % =1—0(ecl79) such that, as € € O, the

equations (1.2) admit a CN Whitney smooth family of real analytic responsive
solutions around a family of relative equilibria in mized type, where o :=
min{ll$717 o, 7} and N > 2n* —n.

Remark 1.1. The Main Theorem will be proved via KAM iterations since we deal
with the hyperbolic type as well as the mixed type. We mention that the existence
of response tori in hyperbolic type can be proved simply via the uniform contraction
mapping principle, which requires no Diophantine condition on w. See e.g. [2,29]
for general situations.

Remark 1.2. Comparing to the previous results in the persistence of lower di-
mensional tori for a multi-scale Hamiltonian system, for instance, we consider the
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following Hamiltonian normal form in [27], that is
1
H = (o 1) + L (M(w,6)2,2) +2P(0.1,2¢),

where w varying in a closed region in R?. We have proved that under certain non-
degenerate assumption, most of the tori T,, = {w} x {I =0} x {z = 0} persist but
the tangent frequency shifts to @ with the estimate that |0 —w| = O(e). The main
difference in the present paper is we prove the persistence of the tori with fixed
frequency w, consequently, we take € as a parameter varying in a small interval.

We also mention that, the difference in measure estimate between hyperbolic
type and mixed type is due to the reason that there are no small divisors during
the KAM iterations in hyperbolic type. Hence, we could obtain the persistence of a
CN-smooth family of response tori for Hamiltonian (1.1), as well as a CV-smooth
family of response solutions for coupled equations (1.2) in hyperbolic type, for any
integer N > 1.

The rest sections are organized as follows. In section 2, we will solve the average
equation with respect to (1.1) to obtain a new Hamiltonian Hy with non-singular
normal frequency. In section 3, we will perform a finite steps of KAM iterations to
Hamiltonian Hy to obtain a new normal form H, with sufficiently small perturba-
tion. The smallness of the perturbation ensures the standard KAM iteration and
the measure estimate can be directly applied on Hamiltonian H,. Hence we will
prove the Main Theorem by applying standard KAM method to H, in section 4
such that we obtain the persistence of the invariant tori with fixed frequency w. In
section 5, we will prove the measure estimate. It is different from previous ones
since we take the € as a parameter instead of the frequency w.

2. Normalization

In this section, we will normalize the Hamiltonian normal form (1.1) based on
the conditions A1) - A2). The normalization procedure includes finding relative
equilibria and removing Hamiltonian (1.1) into the vicinity of relative equilibria.
As a result, the transformed Hamiltonian in the vicinity of relative equilibria is of
multi-scale in €, their order of perturbations also need to be improved in order to
perform infinite steps of KAM iterations.

2.1. Notations and weighted norms

We first introduce some notations and norms which will be used in the following
proof.
For each r,s > 0, we denote

D(r,s) = T? x By,

where
Bs = {Z: (xlv'” 7Inay17”'yn) GCQ’N : |Z| S 5}

is the ball of radius s in C2” and

T .= {0 = (01,...,04) € C/27Z)* : [Im 0;| <r, j=1,2,...,d}
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is the strip neighborhood of size s of the d-torus T¢ = R¢/(27Z)? in C¢. For given
>0, let D := (0,e,). We say the function

f(0,z,¢) = Z fr(e)zeV 1RO,

zezi", kezd

is real analytic in (6, z) € D(r,s) and CN-(Whitney) smooth in e € D for certain
fixed integer N > 1, if the norm || - || p(,s)xp defined as follows is finite, that is

Haéf”D(T,S)XD = Z Sup|82fk(€)|slz‘erlkl < +o0, Vi :Oa17"' aNa
k€Zd 1 €72 e

where 91 () = |fu(e)] -+ + =il L)) and K| = S, k] for b =y, ) €
74, Taking s = 0 in the above we can define the || - ||,,» norm for any function

f:T¢—>cC,
- 5 AT
kezd
which is analytic in # and CV-(Whitney) smooth in ¢ € D. The Banach algebra of

all such functions under the || - ||, 5 norm is denoted by

CN(T? x B) = {f(0,¢) : |01 £(0,¢) ,i=0,1,--- ,N}.

As mentioned above, for any function f(0,z) in D(r,s), we denote its average
with respect to 6 by

[f(-2,6)] = f(0,z,¢) do.
’]I‘d

(2m)?
Moreover, the notation D7 f(f, z,¢) denotes the partial derivatives of function f
with respect to z in the j-th order, that is,

D’ f(0,z,¢) = Z w

o0z
IELY™5=s|

Without loose of generality, we will frequently use c or ¢;, ¢ = 0,1,--+ ,6 to
denote the intermediate constants depending on domain constants r, s, n > 0,
Diophantine constants v,7 and the norms of known functions. We also use || - ||
to denote the weighted norms of (vector-valued) functions, as well as the norms of
matrix operators in the following proof.

2.2. Average equations and relative equilibria

The average equations are referred to the averaged part of the Hamiltonian vector
fields in the normal direction. We will find relative equilibria by solving such average
equations corresponding to (1.1). The result is formulated as follows.

Lemma 2.1. Consider the average equations corresponding to Hamiltonian (1.1)
and assume A2) holds. Then, there exits a family of nonzero solutions in form of
2. = (wc,y.) T, where

€. = (eﬁxi + O(Ell%lﬂr), e, ettt 4 O(em TN T,
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Ye = (eyf + O('7), -+, ey + O )T,
where 0 < e < 1, U::min{ll%l,-u ,ﬁ} and zf #0 fori=1,2,--- ,n.

Proof. The corresponding average equations in normal direction with respect to
Hamiltonian (1.1) are as follows,

OH v
e /\ixé%_l +epi + O(p|2|) + O(e?) = 0, Vi=1,2,---,n,
6% (2.1)
8—y::yi+€qi+0(s|z|)+0(52):O, Vi=1,2,---,n,
where,
oP(-,0) oP(-,0) )
i = | T | i = ) :1a2a"'7 .
P { Ox; ] K [ yi ' K
Introduce the re-scale transformations
Z; —>€l7ﬁ%1xi, Y =&Y, =12 n. (2.2)

By substituting the transformations into (2.1) and dividing the equations by ¢, we
obtain that

Hi(z,y,¢e) := )\iw?—l +pi + O0(e%z]) + O(e) = 0, i=1,2,---,n,

Hppi(z,y,6) =y + ¢ + O("2)) + O(e) =0, i=1,--,n, =
where o := min{ll#i17 e ’ln%l} Define that
x; = (—ai/)\i)li#—l7 yr=—=b;, i=1,2,---,n. (2.4)
Based on A2), =¥, i = 1,2,---,n, are well defined and z} # 0. Denote z, =
(@3, -, 2) T ye = (5, -+ ,y), it yields that H;(w.,y.,0) =0 fori=1,2,---,2n
and

3H1($*,y*,0) 5H1($*,y*,0)
0, OYn

DH (2., ys,0) = det : : :
aHQn(I*vy*aO) 8H2n(l'*,y*,0)
01 OYn

Xi(ls = 1) (ap)l 2

Il

1

N
S

By the Implicit Function Theorem, we obtain a family of nonzero solutions for
equations (2.3) in form of

Tie = ; +O0(7), Yie = y; +0(€7) i=1,---,n,

where (x.,y.)" are defined as in (2.4). By tracing back to the re-scaling transfor-
mation, the average equation (2.1) admits a family of solutions in form of

=T T T
Ze = (5 17 T1,e, 7El"71xn,€a EYl,e, aEyn,E)
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Since that H; are CN-smoothly depending on ¢, it follows from the Implicit Function
Theorem that the relative equilibria z. form a CV-smooth family with respect to
€ € D for any fixed positive integer N. O
Now we remove Hamiltonian (1.1) in the vicinity of the relative equilibria ob-
tained in the Lemma 2.1, we obtain the new Hamiltonian normal form as follows.

Lemma 2.2. Consider Hamiltonian (1.1) and assume A2) holds. Then, introduc-
ing the linear transformation L : z — z + z., such that the Hamiltonian (1.1) can
be reduced into the following form

H=HoL=¢é+ (wI)+ (Mzz)+h(z,e) +eG(0,z,¢) + cE(0, z,¢), (2.5)

where, € is a constant term depending on €, the normal frequency M is a 2n X 2n
non-singular symmetric matriz in form of

M = A(e) + €A(e),

A(e) = diag{e™*mq(g), -+, e"my(e), 1,---, 1}. (2.6)

The order numbers a; = f =2 my =Nl — D) ()24 0(e%), i =1,2,--- ,n. The

functions h = O(|z]3) é O(|z|) and the perturbation is in the following form

E=Y E0.9, [B(,e)]=0 [=01.2 (27)
2] <2

Moreover, the Hamiltonian H is real analytic with respect to (I,6, z) € D(r—n,s—n)
and CN smoothly depending on € € D := (0,¢,), where 0 < n < min{r,s}/8 and ¢.
1s sufficiently small.

Proof. Replacing z by z 4 2., we obtain that the following calculation results:

H=HolL

- 1,—2%; a3 932 y

=1 Jj=1
O°P(: 2, € LSOy Ok i b

re| P2 o SEDM I

OP(0, z, 9*P(0, z,
+e(P — P(0,2:,¢) — (87; 8),2 —( (8222 8)z,z>)

n - n 3P( %, )

ot S o)

j=1

+Zl +Zyj€+aP(9,zE, £)

PO,z >,Z> ([t

PPO.20) <[32P<Za=)} % 2).

+e(

e 072 0z2
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Since z. solves average equations (2.1), we have

n n aP -
> hsalzta+ Y v+l 52 ) o
=1

j=1
The lemma is proved by denoting that a;, m;, ¢ =1,2,--- ,n as in above, and

~ aZP( Ze, ) 5 n—1 1I; )\i -~

Ae) = {c’)z?s} o h(ze) =)0 Okl al,

i=1 k=3 "
g oP(6
G(0,2,e) = P(0,2+ 2.,6) — P(0,2,¢) — <%,z>
82]3(9725’5)
*<Tz,z>,

Eo(0,2,¢) = P8, 2e,¢) — [P(-, 22, €)],
Fa(0,2,6) = <6P(9,za,a)7z> B <[8P(~,ze,e)} ),

0z 0z
- O?P(0, 2., € O%P(-, 2., €
Bal0,,0) = (L0 ([P0,

n

n )\ y2€
=Y e+

O

Since the family of relative equilibria z. solves the average equations, it yields

that the average of the perturbation E equals zero. By performing one step of

average process, we can improve the order of the perturbation in (2.5) into at least
the order of O(g2%), where a := max{ai, - ,a,}.

Lemma 2.3. Consider the Hamiltonian (2.5) on domain D(r —n,s —n) x D. As
€. is sufficiently small, then for any ¢ € (0,¢.), there exists a C™-smooth family
of transformations ®¢. : D(r —2n, s —2n) — D(r —n, s —n), under which the
Hamiltonian (2.5) can be transformed into the following form:

HO =Ho @075
= (w,I) + (2, Myz)
+h0(z,€) + 5aG0(07 Z,g) + 6QGPO(Qa 276) + 60(5)'

where My is a nonsingular matriz with |My '] = O(e™?) , ho, Go := O(|z|?), and
||82DjPO||D(r—2n,s—2n)><'D < 6152_2a; i= 07 13 T 7N7 .7 =0, ]-7 23

where ¢y is a positive constant depending on n,d, s,r,n and independent of €.

Proof. For fixed ¢ € D, define that
1 2
K = ([log g] +1)°, (2.8)

where [-] denotes the maximum integer less than a. We will truncate the Fourier
series of E up to order K-th term, i.e., we write the perturbation into its Fourier
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series and the truncated form E;, i = 0, 1,2 are of the following forms

EO = Z Ekoe\/juk’e), El = Z <Ek1, Z>€\/j1<k’0>,

0<|k|<K 0<|k|<K

E, = Z (Ejaz, z)e 100 Ey = Z EyoeY 1RO
0<k<K k]| > K

El = Z <Eklaz>e\/jl<k’9>v E2 = Z <Ek2fzaz>e\/jl<k}9>‘
|k|>K k>K

It follows from the definition of K that for ¢ =0,1,--- ;N and j = 0, 1,2, we have

o0

||82DjE||D(T—Sn/4,s—5n/4)><D <c Z 67% < C/ et dr <ce, (29)
k> K K

||82DjE||D(r—n,s—n)xD S C,
where E := E‘O + El + Eg, E := Ey+ E; + E5. Now we seek for a canonical

transformation as the time-1 map ¢} of the flow ¢4 which is generated by the
following function,

F = Fy(0,¢e) + F1(0, z,¢) + F»(0, z,¢)
= Z fkoe\/fﬂkﬁ) + Z (fr1, Z>e\/jl<k,0>

0<|k|<K 0<|k|<K
2 : v —1(k,0
+ <fk22,2§>e { >7
0<|k|I<K

where fr;, 7 =0,1,2, 0 < |k| < K, are (vector-valued or matrix-valued) coefficients
which will be determined later. Since that

2 2
Ho¢p=Nogp+hoopp+e(G+Y Ej)odp+ (e Ej)oop

:N+B+EG+{B24,F1}+{B)F2}+({N,F}—I—E Ej
7=0

1 2
+wﬁfm+am/kc+2ﬁmmo@w+MMo@
0 s

1 ~
ﬁ/Hﬂme+MEhﬂo%M,
0

where N := (w, I} + (Mz, 2), {-,} denotes the Poisson bracket, the function hg :=
Z?Zl hi)3l‘? denotes the third order terms in i and h>4 denotes the terms in the
fourth order or high than the fourth order. Firstly, we solve the following quasi-
homological equation

{NaFO}—’_EEO :Oa (210)

{N,F\} +cE, =0, (2.11)
{N,F2}+EE2+{B:3,F1} =0. (212)
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Substitute N, F, Ej;, j =0,1,2, into equations (2.10)-(2.12), we obtain that

V—=1{k,w) fro — €Eyo = 0, (2.13)
V=1{k,w) I, — M(€)J fx1 — €Ex1 = 0, (2.14)
\/j1<k,W>fk2 + M(E)Jfkg — kaJM(€) —eEky — Eis =0, (2.15)

where
Eyz := diag{3h1 3 fr1n+1," " s 3hn3fr1,20,0,- -, 0},

fr1,4, 3 =1,---,2n, denotes the j-th components of fr1, J is the 2n x 2n standard
symplectic matrix and M is defined as in (2.6). Denote that

LkO =V —1<k,w>,
Ly =V —1{k,w)Ip, — M(e)J,
Liyg := V—=1{k,w) 12 — M(€)J @ I, — Ipp, @ M(e)J,

where ® denotes the Tensor product.
Define a positive constant to simplify the notations in the following estimates,
that is
Cy = Z ef%|k||k‘(N+1)(4n2‘r+4n71) < +o0.
0<|k|<K

Consider homological equation (2.13), we have for any 0 < |k| < K,i=0,1,--- ,N
that

. , k|T
fro = €Ly Bro, |0 fro| < €|0%Eyol | 7' < celk|me~ IkIr=m), (2.16)
It follows that
||3§F0(975)\|D(r—5n/4)x17 <e Z |L,:01||Eko|e|k|(r_5”/4) (2.17)
0<|k|<K
< ce Z |k|Te_%
0<|k|<K
< ecCy.
Let
e /2KT = o(y), (2.18)
where a,, = min{aj,---,a,}. Now we prove operators Ly1, Lo are invertible.

Denote that

LYy = V—1{k,w) 5, — A(e)J,
L22 =/ —1<I€,w>14n2 — A(E)J ® Is,, — 1o, ® A(E)J,

where A(e) is defined as in (2.6). It is easy to calculate

jdet LY, | = [T IK? — e®mi(e)],
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where £ = /—1(k,w). Based on (2.18), we have that for any 0 < |k| < K,
i=1,---,n

K2 et

2
a; T ’y
> K21 = % mil k[>T /77| > Ak

It follows that
o ,YZn
|deth1| Z Cw.

Since that Ly = L9, + £A(e), it follows from (2.18) that

2n
[detLiap 2 |det LY (1 — c(e®/2|k|™ /) — - — e(e®/2[k|" /7)*") = et

C|k|2n'r'

Similarly, we have that

n 4n?
- ) Y
det Ly, = ig1 K2 £ Vesmi(e) F \[emm;(e)| > c|k‘4n27.
It follows that
[detLialp > [detLiy|(1 — ce@n=t/2[k|™ oy — - — c(e=2/2 k|7 /7))
4n?
Y
= Trfor
Since that ]
—1_ adjLiq
ka det qu’

where adjLy, denotes the adjoint matrix of Ly, ¢ = 1,2. Then we have that

1 |k‘2n7+2n—1
|Lk1 |D S c 2n )
|k‘4n27+4n2—1

|Lis|p <c —

Together with the following formula,

QL == ClO L} 0 Lig) Ly, i=0,1,--- N, ¢=1,2,

ir=1
there exists a positive constant ¢ such that for ¢ =1,2,7=0,1,--- , N, we have
|| D (2n)7(20) 1= 1)

ir—1
0Ly lp < ¢ A+ En)

(2.19)

The estimate (2.19) yields that equations (2.11), (2.12) are uniquely solvable
for any ¢ € D, 0 < |k|] < K and there exists a positive constant ¢y such that the
following estimates hold for ¢ =0,1,--- N, 7 =0,1,2,

||8§D3F(97 Z7€)||D(7‘7377/2,57377/2)><D S ECO(CT] + 072’), (220)
10:D(8% — id)| p(r—3n/2.5-3n/2)xD < £0(C + C7), £ €[0,1].
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By taking e, sufficiently small such that
e "% (Cy + 072,) <n,

it yields from standard arguments in the proof of KAM-type theorems that the
transformation

Qg :=¢p: D(r—2n,5—2n) xD —= D(r —n,s —n) x D
is well defined. As a consequence, we obtain the new Hamiltonian as follows
Hy:=Ho®, (2.21)
= (w,I) + (Mo(e)z, 2) + ho(2,€) + £ Go(2,€,0) + 2" Py (2,¢,0) + eo(e),
where Mo := M, hg:=h, ey:= e[Fo] + € and
Go=e "G+ e h, Fo} + e {hs4, F1}, (2.22)

1 2
Py =gt / {G+> Ej FYoghdt+ (> Ey) o ¢, (2.23)
0 i=o

+e2a /1{{(1 —1)(N 4+ h), F}, F} o ¢'dt.
0

Based on estimates (2.9), (2.18) and (2.20), we obtain that there exists a pos-
itive constant ¢; depending on constants n, d, <, s, r, n such that for i =
0,1,--- ,N, j=0,1,2, the following estimates hold:

HaéDjGOHD(T72n, s—2n)xD < C(Cﬁ + 0727)5170‘ < Clgliaa
HaéDjPOHD(T—QT], s—2n)xD < C(Cn + 072])2527&1 < C15272a~

Since that ¢ is sufficiently small, we also have

‘Aill < e’ < cie
1—e|A1JA] = 1-0() =

—a

My < |(A+eA(e) ! <

3. Improve the order of perturbation

Consider Hamiltonian (2.21) on a new domain (6,z) € D(rg,s), € € D, where
o = r—2mn, So := £ < s—2n for fixed 0 < ¢ < 2—2a. Let po := 5%, Yo 1=
A4 (N+1) \where + is the Diophantine constant. The estimate of the perturbation

Py can be rewritten as
HaéDjPOHD(TO,SO)X'D S 705(2)/107 1= 07 17 e aN7 .] = 07 172

Note that the gap parameter v and iterative parameter g are much bigger than £®.
It means that the perturbation is not small enough for the convergence of measure
estimate. As a consequence, we apply a finite number of averaging process to further
improve the order of perturbation till it is high enough for usual KAM iteration step
can be directly conducted. Since we do not average out the first degree terms in
Py, the perturbation can not be push up to the order of O(g*®) directly. Instead of
that, we sharply shrink the domain z to ensure the new perturbation become much
smaller at each iterative step.
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3.1. One circle of KAM step

Suppose that we have arrived at the v-th step and obtained the following real
analytic Hamiltonian,

H = (w,I)+ (2, Mz) + h(z,e) + £G(0, z,¢) + e**P(0, z,¢), (3.1)

which is defined on a phase domain (0,2) € D(r,s) and depending smoothly on
¢ € D. Since that the Hamiltonian vector field Xy is corresponding to (0,1, z), we
omit the constant term during the KAM process. In addition, we have that M is
nonsingular and symmetry for each ¢ € D and satisfies

|0X(M — My)|lp < ept,  i=0,1,---,N. (3.2)
The functions h(z,¢), G(0,z,¢) = O(]z|?) and
|0:D7 Pl p(rsyxp < V057w,  i=0,1,--- N, j=0,1,2

for some 0 < p < po, 0 < s < so. We try to find a canonical transformation
O, : D(ry,s4) x D — D(r,s) x D, which transforms the Hamiltonian (3.1) into
the following form

Hy=Ho® = (w,I)+ (2, My2) + hi(z,6) +°G1(0, 2,€) + 2Py (6, 2,¢),

where the matrix M, the functions hy ,G4 are in the same forms as M, h, G,
respectively. The new perturbation P, is much smaller than P on some smaller
domains, that is,

||82Djp+||D('r+,s+)><D < "YOS?Q-,U'+; t=0,1,-- aNa J=0,1,2,

for some rp <r, s; < s, gy < p. The normal form reduction Proposition states
as follows.

Proposition 3.1. Consider the Hamiltonian (2.21) in D(rg, so) x D and assume
e« 15 sufficiently small. Then there exists a CN-smooth family of real analytic
transformations ®. : D(r., si) x D — D(rg, So) X D, where r., s. are positive
constant depending on 1o, sog that will be specific later. Under this transformation,
Hamiltonian (2.21) can be transformed as follows

H,=Hyo®, = (w,I)+ (2, M.2) + hi(z,6) + Gi(0, 2z,¢) + Pu(0,2,¢), (3.3)

where M, is a nonsingular symmetric matriz with | M ||p = O(¢%), the function
he, Gi = O(|2]®) and the following estimates hold

. 3
||a;(M*_MO)||'D§EaM67 Z:Oa17 7N7
||82DjP*||D(N’S*)><D S 73(N+1)S$,U/i7 1= Oa 1a e 7N7 .7 = 07 1a 2a

2n%—n

where v, = € , My = g2e,

We mention that, for simplicity, we have omitted the subscript v and use ‘4’ to
denote subscript v + 1 in (3.1) and in the following proof. We will also use ¢;, ¢ to
denote any positive intermediate constants which are independent of €, u, v during
the iteration process. Define

T To
eyt
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1 — b

S+ = 4(18, Q= [,
py = pS,

1
Ky = (llog =]+ 1)°,

i

1—1 ) .

Dia:D(r++ (7‘77"_._)77045), i1=1,2,3,4,

4
D(s)={z€C?:|z|<s, s>0},

P(r—ry)= 3[RV FDORTHIn Dol =
0<|k|<K4

Firstly, we write P in the Taylor-Fourier series and let R be the truncation, that is

Pe Y pure o,
kEZd,zeZi”

R= Z (Pro + (Pr1, 2) + (2, praz))eY TR0, (3.4)
k<K

where K is defined as above.

Lemma 3.1. Assume that

r—

o dt < .

o0
H1) et
Ky

Then, there is a constant c; depending on n, d, r such that

10:(P = R)|| Dy xp < c1Cy05° 12,
||6;R||D4a><’D < 67082,u.

Proof. See [16] for the proof. O
Now we rewrite R := Rg + R + Rs, where

Ry = Z proeY TRy = Z (pr1, 2)e¥ 1RO,
I<F s k<K,

Ry = Z (2, praz)e¥ TR0,
|k| <K+

We aim to eliminate R by introducing a canonical transformation ¢} which is the
time-1 map of the Hamiltonian flow generated by a function F := Fy + F; + F5 of
the following form,

Fy = Z froeV 1O
O<[|k|<K 4

Fo= Y (fuz)eV 100,
0<|k|<K 4

F, = Z (2, fraz)eY 10,
O<[|k|<K 4
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Since that
Ho¢p = N+ e*[Ry] + h+eG + q+e*[Ro) + {N,F} + £**(R — [Ro] — [R2))

1
+{h, F1 + F>} +/ (1=t){{N +h,F},F}o¢pdt
0
1
—l—/ {e°G + €** R, F} o ¢hdt + £2*(P — R) 0 ¢},
0

where N := (w,I) + (z, Mz). We determine F' by solving homological equation
{N,F} + (R —[Ro] — [R2]) = 0. (3.5)

Substitute N, F, R into equation (3.5), we obtain the following equations by com-
paring the coefficients

V—=1{k,w) fro = pro, 0< k| < Ky, (3.6)
(\/—1</€,w>12n — MJ)fkl = Dk1, 0< |k| < K+, (37)
\/—1</€,w>fk2+MJfk2—kaJM:ka, 0< |/€| < Ky, (3.8)
M for = —po1- (3.9)
Denote that
Lkl =V —1<k,w>I2n - MJ,
Lo = V—1{k,w)Iunz — MJ @ Loy — Iy @ MJ,
we have the following lemma.
Lemma 3.2. Assume that
H2) /K] = o(3),
where a, = min{ay, - ,a,}, v is the Diophantine constant. Then for 0 < |k| <

Ky, ¢ € (0,e4), the operators L1, Lo and matriz M are invertible. Moreover,
there exists a positive constant co such that following estimate holds,

‘k|(i+1)((2n)q+(2n)q—1)
~ (1) (2n)¢ ’

|aéL];q1|D < ’L:O,l, aNa q= 172 (310)

Proof. The proof of estimates (3.10) are the same as the proof of (2.19). Moreover,
we have that that

M~ p = [[(1+ (M — My +e4) A p (3.11)
lay
T L= [JAGHIIM = Mo + €Al
<ece
O

It follows from Lemma 3.2 that equations (3.7)-(3.9) are uniquely solvable for
|k] < K4 and € € D and there exists a positive constant cs such that

|02 for|p < e3e™o05p, (3.12)



Response tori for Hamiltonian with normal degeneracy 3243

08 figlp < eaz2ny FUCM 2 dpem g 20,
0D [F1][| Dy xD < c38%05° 7 1,
10iDI (Fy + Fy — [F1] + Fo) | b xp < e3eyg CHO™ 23,0 (e — 1)),

. . —(i n2 o
10D7 F || py D < €3(e%y08% I + 209 HI 270D (e — 1y ),

where i =0,--- N, 7=0,1,2 and 0 < |k| < K.
Lemma 3.3. Suppose that the following assumptions hold,

H3) c3ul'(r —ry) + e < 5(r —r4);
H4) c3spl'(r —ry) + cssp < s4.

Let ¢% be the flow generated by F. We have that

1) For all0 <t <1, ¢% : Do — Dyo are well defined for e € D.
2) Let &, = ¢}.. Then for alle € D,

q)+ : D+ — D.
3) There is a constant cs such that

|¢F — id|p,xD < ca(e™Yosp + e sl (r —ry)),
ID®,. — Id|p,xp < e3(e™yop + &2 ul(r —r4)),

forall0 <t <1.

Omitting the constant term, we arrived at the new Hamiltonian in the following
form

Hy:=Hodk = (w,I) + (2, M12) + hy +€°Gy + 2Py,

where
?{h_s, F
M, =M+ % +£2°[Ry), (3.13)
hi = h+{h>4, [F1]},
G+ = (;’7

1
P = s’2a{h,F1—[F1]+F2}+/ (1= O){{N + h, F}, F} o ¢lodt (3.14)
0
1
+a/ {e7°G + R, F} o ¢lxdt + £**(P — R) 0 ¢,
0

where h_3z is the three degree term in h and h>4 := h — hs. It is obvious that there
exists ¢4 depending on ¢y, c3 such that

||8;(M+ _M)”D < C4Ea708/j/§€/’[’ia 220717 7N7 (315)
||8;(h+7h)||D §C4€aryos.u§€:u%’ 7’:0717 aNa

by assuming that p is sufficiently small. For the new perturbation P, we have the
following estimate.
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Lemma 3.4. There exists a constant cs such that
|02D7 Py || oy xp < es(s°ul(r = ry) + s°u°T2(r — 1y (3.16)
+708° 1T (r = ry) +708°1%),
fori=0,1,--- /N, 7=0,1,2. Consequently, if
H5) c5(s*pl(r —ry) + 82 pPT2(r = ry) + 308> 1?0 (r — 74) +708°1%) < Y057 ot
then
||8§-Djp+||D+ xD < VoSiqu- (3.17)

Proof. The proof follows easily from the expression of Py as (3.14) and the es-
timates of F' as in (3.12). Moreover, Lemma 3.1-Lemma 3.4 complete one cycle of
KAM iteration. O

3.2. Proof of Theorem 3.1

Recursively applying the definitions of quantities at the very beginning of subsec-
tion 3.1, we have the following iterative sequences

v

1
r, =ro(l — )
i+

=1
L ;
Sy = Zauflsufh Qy = Uy,
z

:ul/ = M3717

K, = ([log(——)] +1)°
Hy—1

for v =1,2,---. It is easy to deduce that
To Zyv l—a—b\/7\v 1-b 7\v
ru_rlﬂrl:m’ MV:M((JG) =50 <ed ) v=12---, (318)

from which the hypotheses H1), H3)-H5) can be verified for all v = 1,2,--- as u
is sufficiently small. However, H2) only holds for a finite number of v’s. More
precisely, we define

In(9(2n? — n)(N + 1) + 18a) — In(2 — 2a)
In7/6

+1, (3.19)

Vy =

where [-] denotes the maximum integer less than x. As long as

clllog 2)()" + 1 < 7,

the assumption H2) holds for all v = 1,2, - - - | v,. By repeating the iterative process
inductively, we have obtained a sequence of Hamiltonian

H" = H" o ®” = (w,I) + (z, M, (w)2) + h, +&°G, +**P,(0, 2,¢)
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defined on D(r,,s,) x D for all v = 1,2, - ,v,. Define that ®, := ®go--- 0P, _q,
we obtain the following Hamiltonian

H.,=Ho®, = (w,I)+ (2, M.2) + hi(2,¢) + Gi(0, z,€) + P.(0, 2,¢)

defined on D(ry,ss) X D, where 1o = 1,,_, Sx = Sy, My = M, ,h. = hy,,, G, =
eG,,, P. = €?*P,,. Based on (3.15), we have that for i = 0,1,--- , N

[00(M. — Mo)llp < oy, 1 + iy 2 + -+ pio) < i/
which guarantees that ||M.||™* = O(¢~%). Moreover, it follows form (3.18) and

(3.19) that

1, = M(()%)” < £3(2n° —n)(N+1)+6a_

It yields for ¢ = 0,1,--- , N, that

3@n®—n)(N+1)+6a 3N+ 2,3 (3 o)

0LP*|| pr, 5.y xD < €205, i, < S2¢€ X Sy s

— 6277,2 -n . 2a

by denoting . : , M = E7Y, Sy 1= Sy, .

4. Infinite steps of KAM iterations

Since we have pushed the perturbation to a sufficiently high order such that we
can take ¢ € D as a normal parameter and directly apply an infinite steps of
classical KAM theorem to prove the persistence of the d-tori for most of ¢ € D.
In order to make the iteration processes simpler, we consider the following re-scale
transformation,

H,
I — 32020, 2 — vepez, H, — 3
Vi
to the normal form (3.3). Then the re-scaled Hamiltonian reads

H,
HY .= V2 = {w, I) + (2, M°(e)2) + P°(0, z,¢) (4.1)

defined on new region D(rg, sg) x Op, where 79 := 7y, g := Sx, Og = D = (0, ),
MY := M, being non-singular matrix with |(M°)~!| = O(¢=?). Moreover,

po_ P, +h, + G,
T
Tt follows from (3.20) that
i PO |0P:lpuxD _ N41.2
‘8€P ’D(ro,so)XOo = eiy22 <% ' Soko
2n%—n

Where*yO::*y*:g 7”0::M*:Eza7i20717"',N.

Remark 4.1. Without great loose of generality, we still use g, so to denote the
domain parameters, 7y, po to denote the gap parameter and iterative parameter,
respectively. These four parameters and the corresponding sequences are not related
to the ones in Section 3. We also mention that, after re-normalization by finite steps
of averaging process, the gap parameter vy becomes much smaller that the constant
~ in Diophantine condition A1).
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4.1. Iteration and convergence

Consider the following sequences

v

1
rv=ro(1=)_ 57):

=1
1
Sy = 50y —_1Sv—1,
8
1
— 3
Qy = Uy,

6
— 5
Hv = Colby_q,
v

1
=200 57);
i=1
1 3

Ky = ([log(——)] + 1)*",

Hy—1
L1k7y_1 = \/—1<k,w>12n - M, 1J, 0< |k| <K,,
Loky—1=V-UEk,w) 2 — (M, 1J) @ Iy

*IQn ® (Ml/—lj)a 0 < |k| S Kl/7

Tv—1
Oy = {,f S Ol,,l : |det le’,,71| > |k‘T2nT’
Yv—1
|det L2k:,u—1| > |k_|1:1n27_a 0< |k‘ S KV}7
v=1,2,---,wheren > mglg%lzogs is a fixed constant. The following iteration lemma

and convergence result are special cases of those iteration lemma in [4,24].

Lemma 4.1. Let ug, as well as €4, be sufficiently small. Then the followings hold
forallv=1,2---.

1) There is a sequence of Whitney smooth family of symplectic, real analytic,
near identity transformations

D : D(ry,8,) = D(ry—1,80-1), €€0,
such that
HY = H" ' o ®” =: (w, ) + (2, M"2) + P"(0, z,¢),
where
, , 1
[02MY = 9:MPlo, <7 Hug, (4.2)
102D7 P¥|p, x0, <7 s
foralli=0,1,--- ,N.
2) 0, = {6 €0,_1: |det le,u—l‘ > %%, |det Lgk,y_1| >
k| < K, }.
3) The Whitney extensions of

Yv—1

W) Ky,1 <

\I/”::CI)}UO(I)iou-OCI)Z
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converge C1 uniformly to a smooth family of symplectic maps, that is, ¥*°,

on D(%, %) X Ou, where

Ooo: mOuv

v>0
such that

HY =Ho 0" ' 5 H® = HY 0 U™ = (w,I) + (2, M*°2) + P>(0, z,¢)
with M = lim,_,,, MY, P>® =lim,_,,, P”, and
ID? P pre 20yx0., =0, 1d] < 2.

Now we suppose that O is not empty. Remind the transformations ®¢ . and
®, in Lemma 2.3 and Proposition 3.1, respectively. Define ®> := ®p . 0P, 0 0>,
it follows that
7 © PP paygen = P 0 ¢§LIOC|deR2n

where ¢!, and ¢%;.. are the flow of H defined in (3.1) and H* is defined as above.
Define 740 = {w} x {I =0} x {z =0}, for any e, it yields that

By © B2 (T0) = 8 o (gl (T0)) = 3(T),

which means the embedding tori ®°°(7%9) is invariant under the flow @Y |1ayr2n
with the fixed frequency w, that is, for ¢ € Oy, ®°(T%°) forms a CV (Whitney)
smooth family of invariant tori with fixed frequency w for Hamiltonian normal form
(1.1).

Remark 4.2. Based on assumption A3), there exists an energy function in form
of Hamiltonian (1.1) such that the lower-dimensional, response invariant tori of
Hamiltonian (1.1) also form the quasi-periodic response solutions of the motion
equation (1.2), which prove the Main Theorem as well as Corollary 1.1.

5. Measure estimate
For each v =0,1,--- and k € Z™\{0}, denote

R = RS RS
where

Ryt ={c €0, |det Ly, < ﬁ K, < |k| < K41},

Ryt ={e €O, |det Loy, | < IkIZﬁ K, < |k| < Ky41}.

By Lemma 4.1, we obtain that
o0
00\ O = J U Ry (5.1)
v=0K,<|k|<K,q1

In the following, we will prove that the O, is almost full with respect to Og in the
mixed type and it is equal to O in the hyperbolic type. Before measure estimate,
we introduce the following lemmas.



3248 L. Xu, W. 8i & M. Wu

Lemma 5.1. ( [24, Lemma 2.1]) Suppose that g(x) is a differentiable function on
the closure I C I, where I is a finite open interval. Let I, = {z : |g(z)| <h, z €

I}, h>0.Ifzxel, |d%—(;)| > D >0, where D is a constant, then |Ij| < 2hD~1L.
Lemma 5.2. Assume that M is a 2n X 2n symmetric matriz, then

det(Aloy, — MJ) = Ps,,
det(Myn2 — Iz @ (MJ) — (MJ) @ Ia,) = A" Pypo_op,

where P; is a j-degree, even polynomial function with respect to variable .

Proof. Since that M is a symmetric matrix and J is a standard symplectic matrix,
it yields that

det(Xa, — MJ) = det[J(Ay, — (MJ))J ] = det(\a, — JM)
and

det(—\a, — MJ) = (=1)*"det(\lo, + M.J)
= det(Aa, — MJT)
= det[(Ma, — MJ")T]
=det(Mo, —JM ")
= det(\y, — JMT).
It shows that det(Ala, — MJ) = det(—Ala, — MJ), that is, det(Aa, — MJ) is a

2n-degree even polynomial function with respect to A\. By the following properties
of Kronecker product of matrices A, B, C, D in the same size and constant c,

(cA)® B=c¢(A®B), (A®B)=A"®B'", (AB)®(CD)=(A®C)(B® D),

it is easy to prove det(Aly,2 — I, ® (MJ) — (MJ) ® I3,) is an even polynomial
function with respect to variable A.

Moreover, the eigenvalues of matrix A ® I + 1 ® A can be formulated as p;; =
Ai + Aj, where \; are eigenvalues of A. Since det(Al, — M J) is an even function
with respect to A, the eigenvalues of MJ can be expressed as £y, ---,+\,. It
follows that matrix Is, ® (MJ)+ (M J)® I, has at least 2n zero eigenvalues, hence
we have that

det( M2 — Iop @ (MJ) — (MJ) @ Iop) = A" Pyp2_op,.
O

Remark 5.1. Denote K = v/—1(k,w). Since that M" is a symmetric matrix for
v=1,2,---, it directly implies that

det le,y = Py, det L2k,v = ]C2nP4n2—2n7 (52)

where P; denotes a j-degree polynomial function with respect to K.

5.1. Measure estimate for mixed type

Lemma 5.3. In the mized type, the remaining set O is almost full Lebesgue

measure satisfying that
lmeas Ouo|

1—0(l
- (e.77),
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where 0 < e, < 1 is defined as in Lemma 2.3, Proposition 3.1 and Lemma 4.1,
o= min{z%v cee —lnil},
Proof. Remind the estimates (3.15) and (4.2), it follows that

MY = Allo, < [Mo — Allo, + [|M. = Mollo, + |[M" = M°|o, <e,
where

A(e) = diag{e®*m(g), -, e*my, 1,---, 1},
and a;, m;, i =1,2,--- ,n, are defined as in (2.6).
For fixed v and K, < |k| < K, 11, we obtain that
det L1y, = Pap, = Kot ofl)lCQ"*2 + aglC2”*4 + -+ ag_llCQ + ag,

where
al = Ze‘”mi + O(e),

ay = E et %mum; 4+ O(e' ),
,J
ozg . E :Eai+aj+akmimjmk + 0(514-:17171-1-%)7

4,5,k
(5.3)
ag = gal"'”‘""a"ml coemy, + O(z—:l+“2+"'+an).

Hereafter, we use d.f(e) to denote d];(;) for simplicity, where f(e) is a function

only depending on €. Then we define the polynomial functions with respect to K
as follows:

d. P n n— n— n—

Pap_s = (1;(1) =2 4l K el
dEP n— n— n— n—

P2n74 = (16#(1%2 = ’C2 4 + a%’C2 6 + OC%IC2 8 + - 0472173’(:2 + 01721727
dEP n— ] — . . . .

P2n72j — 2n—2(j—1) — ’C2n—2] + ajllc2n—2]—2 NI aZl_ja

1
d-oy

o dsP2n—2(n—2) .

Py Tan? K2 +aft,
e
where, for fixed j = 1,2,--- ,n — 1, the coeflicients of polynomial function Pa,_2;
satisfy the following inductive formula
j—1
j . deaip

(3 j—1
deoy

Based on the discussion in Appendix, for any € € (0,e,], there exists a positive
constant ¢, depending on a; and the norm of |m;|, ¢ =1,2,--- n, such that

|dead| > e m,_j| > et j=0,1,---,n—1. (5.4)



3250 L. Xu, W. 8i & M. Wu

Define that
€

Ry = O,: |P| < ,
yi={e€ |Py| < e

KV < ‘k| S KV+1}7

based on Lemma 5.1, we have that

2—0
€ 1
|meas Ry| < p g

*
Ky <|k|<Ky41

|k|27”

where | - | denote the measure of the set. Now we define the following sets for
ji=12-- n-1

K, < |k| < K,41}.

Assume that for fixed 1 < jo < n — 1, we have obtained the measure estimate of
R;,, that is

IN

ol

2—ay 2—aj
5 - £ J 1
|meas R; R - Z

|k|2‘l’
K, <|k|I<K, 41

U S
|k|2‘r :

K, <|k|I<K,4+1

IN

Then we define a new set

glo+1

Rojor2 ={e € 0L\ Rj, ¢ |Pajos2| < K, <l|k| < K,41}.

k| Ciot2)T

Since that for € € O, \ R;,, we have

[de Pajo 2] = deay ™| Py | > cemon =10 |k|;jm—’
it follows from Lemma 5.1 that
|meas Rgj, o] < [meas Ryj, o] + [meas Ryj,|
g2 %o+ 1
- Cx Ku<kz<:Ku+1 |k|2T
£2-a1 4 ... g g2, 1
+ - > THE

K, <|k|<Ky41

. 2—0o

c* EEa
K, <|k|<K, 41

By the Mathematical inductive method, we have that

—1)e2-o 1
|Rop_s| < (n—1)e"" 3

c. |k‘\277
K, <|k|<Ky41
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where

nfl

RZn—Z = {5 S O |P2n 2‘ Ku < |k| < Kl/+1}-

- |k|(2n )7’
Since that for € € O, \ Rg,—2, we have

1

P = el Pan 2] > cncn 40

Remind
V+1 = {E € O |P2n‘

|k|2n7.7 K < |k| < KV+1}3

2n

where v, < v < 52"2_”7 , v is the Diophantine constant. It follows that

[meas UpZo Uk, <|k|<k, ., B kl |< E B |2 < cae?™?, (5.5)
*
kezd

o 1
where Cy1 = i ZkeZd W > 0.
Based on the same discussion for Pj,2_s,, we obtain that

0o 2—0
meas Upg Uk, <[kl<i, 4, Ry s | < ceog? 7,

where c,o depending on a;, n . As all above, we prove that

|meas Ou| 1 [meas ;2 UKV<|k|§K,,+1 RZ+1|

e* €

5.2. Measure estimate for hyperbolic type

Lemma 5.4. In the hyperbolic type, the remaining set O = (0,€4), where 0 <
€s« < 1 is defined as in Lemma 2.8 and Proposition 3.1 and Lemma 4.1.

Proof. Remind that
det Lyp,, = K" 4+ af K" 2 4 a4+ a1 K +af,
where o are defined as in (5.3) and

A(e) = diag{e®*my, -+, €*my, 1,---, 1},
mi = Ni(ls — 1)(@)2+0(%), i=1,2,---,n

Firstly, A; < 0 guarantees m; < 0. Actually, when [; is even, [; — 2 is even so
that m; and \; are in the same sign. When [; is odd, I; — 1 is even, which implies
(—ai/ N )ﬁ > 0. Since that ¢ is sufficiently small so that z; . > 0 and m; < 0. Now
we prove that R”'H R”Jr1 = for fixed v =1,2,--- and \; < 0,:=1,2,--- ,n
For the case that n is even, it is easy to see that 2" > 0 and agl@"_% > 0,
k = 1,2,---,n. More specifically, a > 0, K2"72* > 0 when k is even and
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a? <0, K22k < 0 when k is odd. Otherwise, n is odd, it follow that K?" < 0

and aglCQ”_Qk <0,k=1,2,--- ,n. As all above, we obtain that for all € € O,,
2 72n Tv
| det Lig,, | > [K="] > e[ 2 > k[

since v, < v < 7?". Based on the same discussion, we also have that for all
e € 0,,

2
A Yo

|k|4n27 > |k‘4n2’r '

| det Log,| > [K*7°| >

It follows that for all v = 1,2,---, O, = Ox = (0,&,) holds. We mention that,
for hyperbolic case, one can directly apply classical KAM iterations to Hamiltonian
(2.21) to prove the Main theorem. Furthermore, it is obvious that measure estimate
for hyperbolic type does not involve any derivatives of det L, ¢ = 1,2, with
respect to e, hence one can choose any integer N > 1 in all of the KAM iterations
mentioned above which leads that the persisted tori form a CV-smoothly family for
any integer N > 1. O

6. Appendix

In this subsection, we prove estimate (5.4), which is the key point for measure
estimate. Hereafter, we also use ¢ to denote the constant independent of parameter
€. Based on Lemma 5.2. we obtain that det Liy , is a 2n-th degree polynomial
function with respect to K in the following form

det Ly, i= Pop = K" + oK 2 £ oK 4 402 K2+, (6.1)
where
= ZE‘“mi + O(e),
i

aly = E et %mum; 4+ O(e' ),
i,J
aOB = § s“"JrajJra’“mimjmk + O(€1+an,1+an),

4,3,k

0 . n 1 n
al = €a1+ +a my - My +O(€ +az+---+a )

Denote § := min{|a; — a;|, |a;| : 1 <14, < n} and rewrite the coefficients of P,
as follows:

A =% m, + 0wl (e),

0

aly = 8“”‘*1+a”mn,1mn + gan71+a7l+5mg(5)

)

0 ._ _apn—2tan—1+an, ap—2+an-—1+an+38,50
o’y = g2 T oMy 1My, + €472 1 ms(e),

(6.2)
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0 ._ ~an—gt1++an p— i1+ Fan+8 50
Q' = ghn—ktl Mpy_ga1 - My + nFtl my(e),

a% = Ea1+~~+anm1 A 5@1+a2+'~~+an+6m2(5)’
where
mg = § : Ea'il"r-..-'raik—an—k+1—-..—anmii Cemy, + O(€1+an,k+2—an,k+l)7

(i1,-in) €l

and I := {(i1, - ,ix): 1 <ip <mn, (i1, -,ix) #(m—k+1,--- ,n)}. Based on

Lemma 2.2, we obtain the following estimates for p =1,2,--- N, k=1,2,--- ,n,
that is
I Zimnp)l <c,  Imie)] <,
. 5 -
e, )l < e, [lPazind(e)]] <.

As above, we define the polynomial functions with respect to K as follows:

d. P

PZn—2 — 58a2(1)n = ’CQTL—Q +OZ?[’C2”_4 +Ol%lc2n_6 R +Oz;,17
de Po,

P4 = %:%2 — 24 +a§l€2"_6 +a§,c2n—8 +_._a72%3]€2 +a272’
dePop_oi— . , ) .

P2n72j — el 2n 2§] 1) - ’C2n—2] +ajllc2n—2]—2+._.+a£l_j’

J
d-oy

o dsP2n—2(n—2) .

. _ k2 n—1
P2 . n—2 = ’C +Oél s
d-of

where, for fixed j = 1,2,--- ,n — 1, the coefficients

-1
B decv;

= —,
deoy

J .
Q;

Now we calculate the coefficients. Firstly, we have

|d.al| = |ane®™ " tmy, + e demy, + e R0 (e) + e T0doml(e)|  (6.4)
|edemny | _ 5 1m3 ()] _ 5‘5d€m?(5)|‘

> ane® Hmy||1 -
a'n|mn| an‘mn| an|mn|

e~ m,|

2

Denote 1 := (edemy,)/a, and m° := (m§ + edi.m?)/an, we simply rewrite d.af
as

d.a? == a,e® " (my, +1m°(e) + 2m0(e)).

It follows that for p =0,1--- N — 1,

lePd,m?|| < ce®, le?d,m?|| < c. (6.5)



3254 L. Xu, W. 8i & M. Wu

By the inductive formula (6.3), we obtain the coefficients of Py, _o as follows:

L dea  cle®rtmy, ymy, + g%t 4 gtn1 ol
-

a7 = = = =
d.af My, + MO + e9m0 ’
al ~ deag _ C%Ea” 2+an— Ly — oMy 1My + £97— 2Fan—1y +€an 2+an—1+0 *%
2 d.af my, + 1m0 + e5m0 ’
0
ol — dgozk_|r1
k d.of
k—1
1 o Qp_1— k—1 a,, an +6 ~1
_ cpeXr=0 Lo (I gmy - e R o AN
my, + 1m0 + edmO ’
0
Oél _ dEan
n—1 dga(l)
cl e Zoa"lp((H” m ymy, +ml_ +edml )
_ tn—1 =0"""n—1—p)!tn n—1 1
My, + 100 + e9mP ’
where
a _k _|_ . + a
1._"n n ~1
= — My, = ede(My_g -+ - My). (6.6)
n

Since that |m,, +edem,, +e’mi(g)| > 0, the coefficients o are well defined. More-
over, we have that for p=20,1,--- N — 1,

lePdZrin|| < ce®, lePdZrmg ()] < c.
Then, we calculate the derivative of a1, that is

Cian—16% 1" (mp_ymg, + 1! (€) + '’ (e))

deat = , 6.7
Eal (mn +ﬁl0 +€5ﬁ?,0) ( )
where
mt = my_1mum® + (edemg,—1mp)my fan_1 + (€dmy,_1mp ) fan 1
+inym® /e + (e(demp_1my) + €2(d2m,,_1my,)) (my, +m°)/cl
—My_ 1y (edemy) /an—1 + Mim, Je} — my_1my, (edemy,) /(an—1an)
—mn,lmn(szdgmn)/(an,lan) — fn%edgmn — m%(edsmo),
mt = my,_1mum® 4+ edemp_1mam® fa,_1 + mim®/cl

—t(m° 4 edom®) + (eder! + (an_1 + 8))(my, +m° 4+ 9m°) /ctan_y

—Mp—1my (M° + (ede®)) fan—1
<1 20 8,20 0413 =0
—my (e0emy, + eden” +€%m° 4+ %7 dom”).

It is obvious that for p =0,1,--- , N — 2, we have

lePdZint| < c2’, ledzm’ (o) < c.
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It follows that
|dead| > ctan_1€* " m,_1|/2 > 0. (6.8)

Based on (6.7) and inductive formula (6.3), we obtain the following calculation
results:

o dead e rmy,_omy,_1m?2 4 e 2 (e) + e 2 0mi (e)
dead My_1m2 + 1l + edml

9

1 2 an_ _ 2 A2 852
o deay 3t (my,_gmy,_omy,_1m + 13 + %m3)
deatd Mp_1m2 + m! + edm!

)

1 E Qp— k—1
az_dsakH_CE =0 2P(H CoMn—2—pMp_1M2 +1Mi + € mk)
2 = =

d.ad My _1m2 + 1l + gdml ’
n—3
2 0 Gn—2— k—1 5, 1
ol = deajy Cp_pe =0 “n 2 (I T imp g pmn_1my + 15y + "m),_y)
n—2 d.af My_1m2 + m! + 9mnl ’
where, for k=1,2,--- ,n — 2, we have
|ePdPii| < ceb,  |ePdPmi| <e¢, p=0,1,---,N —2,
and
1 k
2 Crt1 Zp:o An—1-p
cp = 7 > 0.
C10n—1
Now assume that we have calculated out the coefficients of P>, _o; for j =1,2,--- ,v
and obtain the estimate
J j n—j—1 -1
|deaq| > can—je* 7 mp—j|/2 > ce777, (6.9)

i it An—j » . . .
where ¢ = = ?"1 0TI for j =1,2,--- ,v — 1, c} is defined in (6.6). Write

Cy  Gn—jt1
the coefficients of polynomial function P, _(,_1) as follows

_ v—1—
c{s“"—"mn_yﬂ” 1mQ_ U gty (g) + gt tomy

au _ n—p
1 — — ~ )
I im2 )" + =t + edmr =1
an—y—1t+an—v ov—1-p % SV
O/’ . C g (mn v—1Mp— l/]-_-[p (]mn—p +m2 +e€ m2)
2= —1,,2v=1-p v—1 Spyr—1 ’
Hp:Omnfp +mr—l +e0m
v Ap—y— k— S,V
o — cre o P(H “omp Pz ma_, "y eOmy)
k — 1— )
H 2" P + my— 1 + gémv 1
n—v—1 1
v — Ap—p— n—r—1 v—1, .2 P ~v S,V
o _ Cp—0v€ p=0 p(HpZO m’ﬂ*l’*pnpzomnfp + Mp_y +e mnfu)
n—v v—1, 2ov—-1-p Hr—1 S v—1 ’
I —omy,—, ~+m~t+em
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where, the terms "1, m”~1, mY, mY satisfy that

ePdomn” | < e®,  |lePde” Y| <e¢, p=0,1,2,--- ,N —v,
lePdony|| < e€®,  |lePdemk|| <e, p=0,1,2,---,N—v, k=1,2,---,n—u,
and

D D)
k1 oYn—v+l-p
L e i , k=12, ,n—ur.

-1
Cl Un—py+1

Since that [T Z; ! 2”_; " edmP 1 > 0, the coefficients o, k = 1,2, ,n—

v, are well deﬁned For the next step, we calculate the derivative of o} as follows:
e =" (my IV ZEm2 ) + ¥ (€) + em” (¢))

daal == (HV 1 2:/ —p +ml/ 1_|_€5mv 1)2 5 (610)

where, A := H;;ém%":pl " and
m” = edemy_, A"~ + Y (A + 1) /e + edamnd (A +m” 1) /ey
—My_y A(edc A + edon” ™) — ¥ (edo A + edoin” 1Y) /¥,
mY = (MY 4+ ed.m?) (A +m?’ "t +mr 1) /ey
—mY (edo A + edon? ™t 4 Oy L 4+ M0 mr L) fey .

It is obvious that for p=0,1,--- ,n—v —1

|ePdPin || < ee®, lePdm” || < c.
It follows that
|dea| > Han e m,_,|/2 > ce” 7, (6.11)
where ¢, depends on a; and the norm of m;, i = 1,2,--- ,n. When v = n — 1, the

process ends; when v < n — 1, by the inductive formula (6.3), the coefficients for
polynomial function P, _5(,41) are as follows

c‘1’+15“"—u—1mn_y_1(ﬂp 0m2 g m ( )+ % V'H)

v+l n—p
a1 - v v SV ’
H _ n s Py 4+ edm
v+1 gtn—vtan—y_1 v+1 v+1
L cs (mn v —y—1 ) 0m +m +&° my )
2 - v 9
Iy _ym %_; + v +s5m”
v—p ~
i eyt £ 50 an—v-1- P(Hk oMn—v—1-pll_om2_, + T+ Oyt
« =
k v— )
[1_, mZ" )+ + edmy
where

y k
c —0 Qn—v—
CZH = kil z:f_o PS>0
C10n—v
fork=1,2,--- n—v—1land v =1,2,--- ,n— 2. Together with (6.4) and (6.8),
by the Mathematical Inductive method, we obtain that estimate (6.11) holds for
v=0,1,2,--- ,n—1.
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Remind that
det L2k,y = K:QnP4n272n>

where

an?—2 04-4n—2n—2 04-4n?—2n—4
P2 o, =K 72" 4 o] K5 774 4 g T8

0 2 0
+eee a2n2—n—1’C + Qgp2_p-

By simple calculation, we obtain the coefficients of P,,2_s,, as follows:

a? =% m,, 4 TR,
af = e2nm?2 4 g2antimg

0 . ~(4n—=3)an,,4n—3 (4n—3)an,+46,+0
Q3 =€ m, " +e€ Myp—3

(A4n—3)an+(@An—T")an—1 4n73m4n—7 + 6(4n73)an+(4n77)an,1+5 ~ 0

0 o
Qgp_10 ‘=€ my, n—1 Mgn—10>

0 "y (dn—3—4 . —1, 4n—3—4 "y (4n—3—4p)as,_p 50
Ayp2_op = 521’:0( n p)an pHZ:O mn—p b + ‘C:ZPZO( " Py pm2n2—n7
where, for fixed k = 1,2, ,2n% —n, the reminder terms satisfy that|e?d.m?| < c.
Observing the main terms in the coefficients, they are nonzero terms and the order
of ¢ is increasing. By the same discussion as above, we prove that there exists a

positive constant ¢ depending on a; and the norm of m;, i = 1,2,--- ,n, that is
lad| > e, j=0,1,--,20% —n—1.
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