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THE EXISTENCE OF RESPONSE TORI FOR
HAMILTONIAN WITH NORMAL

DEGENERACY∗

Lu Xu1, Wen Si2,† and Mengmeng Wu1

Abstract In this paper, we prove the existence of response tori for a general
Hamiltonian with normal degeneracy which will be shown as (1.1). When the
perturbation is independent of action varible y, it can be seen as the energy
function of several quasi-periodically forced oscillator equations (1.2). Most of
the previous results focus on a single oscillator equation and prove the exis-
tence of response solutions under certain non-degenerate assumptions. In the
present paper, we will consider high dimensional system (1.2) coupled by oscil-
lator equations in different degenerate types. We will prove that the response
solutions still exist around perturbed equilibria, which reveals the mechanics of
the existence of response solution for a system coupled by degenerate nonlinear
oscillator equations. For the sake of generality, we will actually consider a gen-
eral Hamiltonian normal form and prove the persistence of invariant tori with
fixed Diophantine frequency ω by the methods of finding relative equilibria,
improving the order of perturbations, KAM iterations and measure estimates.
The result can be applied to prove the existence of response solutions of the
above system (1.2).
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1. Introduction

In the present paper, we consider a general Hamiltonian normal form as follows

H = ⟨ω, I⟩+
n∑

i=1

λi
xli
i

li
+

n∑
j=1

y2j
2

+ εP (θ, z), (1.1)
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where I ∈ Rd, z := (x, y)⊤ ∈ R2n, θ ∈ Td and ω ∈ Rd is the Diophantine frequency.
The order numbers li > 2 are fixed integers satisfying li ̸= lj for 1 ≤ i, j ≤ n.
The constants λi ̸= 0, i = 1, 2, · · · , n, are fixed constants and 0 < ε < ε∗ ≪ 1
is a sufficiently small parameter. The function H is real analytic with respect to
(θ, I, z). Moreover, the Hamiltonian system is associated with standard symplectic
form dθ ∧ dI + dx ∧ dy.

When the perturbation P is independent of y, the Hamiltonian (1.1) can be seen
as an energy function of a system coupled by several oscillator equations forced by
small quasi-periodic functions, that is,

ẍ1 + λ1x
l1−1
1 + εf1(ωt, x) = 0,

...

ẍn + λnx
ln−1
n + εfn(ωt, x) = 0,

(1.2)

where fi = ∂P
∂xi

, i = 1, 2, · · · , n. We mention that a response solution of system

(1.2) is a quasi-periodic solution x(t) = (x1(ωt, ε), · · · , xn(ωt, ε))
⊤ with the same

frequency ω as in the forcing functions fi, i = 1, 2, · · · , n. The existence of response
solutions play an important role in studying the harmonic responses and oscillatory
properties. In the present paper, we will obtain the existence of the response solu-
tions of equation (1.2) by the persistence of invariant tori with fixed Diophantine
frequency ω of Hamiltonian (1.1).

Plenty results in the existence of the response solutions have been obtained with
respect to a single oscillator equation with a quasi-periodic forced function, that is,

ẍ+ cẋ+ a2x+ λxl−1 = εf(ωt, x, ẋ), (1.3)

where a, c, λ are fixed constants, l > 2 is a fixed integer, f is a real analytic
function with respect to (θ, x, ẋ) with θ := ωt, ε is a small parameter. When
a ̸= 0, c = 0, the system can be seen as a harmonic oscillator with nonlinear
term. We say the equation is in non-degenerate case since x = 0 is non-degenerate
equilibrium for the unforced equation. As an early application of normal form
reduction, Moser [19] firstly proved the existence of response solutions under the
assumption that f satisfying reversible condition, i.e., f(−ωt, x,−ẋ) = f(ωt, x, ẋ).
The result was generalized to the case c ̸= 0 but sufficiently small in [9]. Recently,
the existence of response solutions for (1.3) with forced function in Liouvillean type
frequency has been proved in [18,23] in the case that d = 2 and later generalized to
the case d > 2 in [3, 28].

When a = c = 0, x = 0 is a degenerate equilibrium of the unforced equation,
the existence of the response solutions as well as the persistence of invariant tori
become challenging. When equation (1.3) is independent of ẋ, there exists a Hamil-
tonian function H : Td × Rd × R2 → R which is an integral of equation (1.3). In
the extended phrase space Td × Rd × R2 with standard symplectic structure, the
Hamiltonian H can be written as

H(θ, I, x, y, ε) = ⟨ω, I⟩+ λ
xl

l
+

y2

2
+ εP (θ, x). (1.4)

Hence, the existence of response solutions is equal to the persistence of the invariant
tori with fixed frequency ω of Hamiltonian (1.4).
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The persistence results of Hamiltonian normal form with different non-degenerate
conditions were demonstrated [7,8,20,30] based on modified KAM iterations. Other
results related on the existence of quasi-periodical solutions were proved via varia-
tion method, see [10,14,15,31] for details. For instance, You [30] firstly considered
the case that l is even and λ < 0, it was proved that Hamiltonian (1.4) admits a
family of d-invariant tori with a frequency ω∗ which slightly shifts from ω. Note that
the assumption of the perturbation in [30] is only the smallness and real analyticity,
since (x, y) = (0, 0) is a saddle-like critical point of the unperturbed system (1.4) for
λ < 0. Otherwise, when (x, y) = (0, 0) is a center-like critical point, the persistence
results only hold on certain cantor set due to the existence of small divisors.

As it was formulated in [21], the authors consider the following completely de-
generate Hamiltonian

H(θ, I, x, y, ε) = ⟨ω, I⟩+ λ
xl

l
+

ym

m
+ εP (θ, x, y), (1.5)

where λ ̸= 0, m, n ≥ 2 are positive integers, P is real analytic with respect to
(θ, x, y). Under certain non-degenerate assumptions, it was proved when λ < 0, the
systems (1.5) admits a family of invariant response tori as long as ε ∈ (0, ε∗) is suf-
ficiently small, otherwise, there exists a almost full measure Cantor set O ⊂ (0, ε∗)
such that the persistence result holds for ε ∈ O. Although adding an assumption to
perturbation P , the result proved the existence of response solution for the motion
equation with respect to Hamiltonian (1.5) for fixed Diophantine vector ω.

A nature question is what will happen to the existence of response tori (solu-
tions) when several oscillator equations coupled together. A similar problem was
considered by L. Corsi and G. Gentilde in [6] but for the case that λ = 0, that is,

ẍ = εf(ωt, x),

where x ∈ Td, d ≥ 1, f is real analytic and ε is sufficiently small. The existence
of response solutions was proved for d > 1 in [6] under the assumption that f is
even with respect to ωt, that is, f(−ωt, x) = f(ωt, x) and for d = 1 in [5] without
any further non-degenerate condition but only smallness on forced function f . As a
consequence, we aim to prove the persistence of response tori for Hamiltonian (1.1),
which leads to the existence of response solutions of equation (1.2).

Define the average of a function with respect to θ as [f(·, z)] :=
∫
Td f(θ, z)dθ

and denote that

pi :=

[
∂P (·, 0)
∂xi

]
, i = 1, 2, · · · , n.

Then we formulate our main result under the following assumptions:

A1) Assume that ω is a Diophantine vector, that is,

|⟨k, ω⟩| > γ

|k|τ
,

where γ > 0, τ > d− 1 are fixed constants.

A2) For i = 1, 2, · · · , n, assume that pi ̸= 0. Moreover, pi/λi < 0 when li is odd.

As it is classified in [22] and [30], the d-dimensional tori of unperturbed Hamilto-
nian (1.4) is in hyperbolic type if λ < 0. Hence, we say that the d-dimensional tori
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of unperturbed Hamiltonian (1.1) is in hyperbolic type if λi < 0 for i = 1, 2, · · · , n.
Otherwise, we say the d-dimensional tori of unperturbed Hamiltonian is in mixed
type. Then we formulate our main result as follows.

Main Theorem. Consider Hamiltonian systems (1.1) and assume A1), A2) hold.
Then the followings hold.

(1) If λi < 0 for i = 1, 2, · · · , n, then there exists a sufficiently small parameter
0 < ε∗ ≪ 1 such that, as 0 < ε ≤ ε∗, the Hamiltonian systems admit a
CN smooth family of real analytic, hyperbolic response tori around a family
of hyperbolic type relative equilibria, where N ≥ 1 is a fixed integer.

(2) If there exits at least one λi > 0 for certain 1 ≤ i ≤ n, then there exists
a sufficiently small parameter 0 < ε∗ ≪ 1 and a Cantor set O∞ ⊂ (0, ε∗)

with measure estimate |meas O∞|
ε∗

= 1 − O(ε1−σ
∗ ) such that, as ε ∈ O∞,

the Hamiltonian systems admit a CN Whitney smooth family of real ana-
lytic response tori around a family of mixed type of relative equilibria, where
σ := min{ 1

l1−1 , · · · , 1
ln−1} and N ≥ 2n2 − n.

As it is mentioned above, the Main Theorem can be applied to prove the
existence of response solutions for a couple of nonlinear oscillator equations. Hence
we consider equations (1.2) and assume the following conditions hold.

A3) There exists a real analytic function P : Td × Rn → R such that

fi =
∂P

∂xi
, i = 1, 2, · · · , n.

A4) For i = 1, 2, · · · , n, denote fi = [f(·, 0)] and assume that fi ̸= 0. Moreover,
fi/λi < 0 when li is odd.

Corollary 1.1. Consider equations (1.2) and assume A1), A3), A4) hold. Then
the followings hold.

(1) If λi < 0 for i = 1, 2, · · · , n, then there exists a sufficiently small parameter
0 < ε∗ ≪ 1 such that, as 0 < ε ≤ ε∗, the equations (1.2) admit a CN smooth
family of real analytic response solutions around a family of relative equilibria
in hyperbolic type, where N ≥ 1 is a fixed integer.

(2) If there exits at least one λi > 0 for certain 1 ≤ i ≤ n, then there exists a
sufficiently small parameter 0 < ε∗ ≪ 1 and a Cantor set O∞ ⊂ (0, ε∗) of

with measure estimate |meas O∞|
ε∗

= 1 − O(ε1−σ
∗ ) such that, as ε ∈ O∞, the

equations (1.2) admit a CN Whitney smooth family of real analytic responsive
solutions around a family of relative equilibria in mixed type, where σ :=
min{ 1

l1−1 , · · · , 1
ln−1} and N ≥ 2n2 − n.

Remark 1.1. The Main Theorem will be proved via KAM iterations since we deal
with the hyperbolic type as well as the mixed type. We mention that the existence
of response tori in hyperbolic type can be proved simply via the uniform contraction
mapping principle, which requires no Diophantine condition on ω. See e.g. [2, 29]
for general situations.

Remark 1.2. Comparing to the previous results in the persistence of lower di-
mensional tori for a multi-scale Hamiltonian system, for instance, we consider the
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following Hamiltonian normal form in [27], that is

H = ⟨ω, I⟩+ 1

2
⟨M(ω, ε)z, z⟩+ εP (θ, I, z, ε),

where ω varying in a closed region in Rd. We have proved that under certain non-
degenerate assumption, most of the tori Tω = {ω} × {I = 0} × {z = 0} persist but
the tangent frequency shifts to ω̃ with the estimate that |ω̃− ω| = O(ε). The main
difference in the present paper is we prove the persistence of the tori with fixed
frequency ω, consequently, we take ε as a parameter varying in a small interval.

We also mention that, the difference in measure estimate between hyperbolic
type and mixed type is due to the reason that there are no small divisors during
the KAM iterations in hyperbolic type. Hence, we could obtain the persistence of a
CN -smooth family of response tori for Hamiltonian (1.1), as well as a CN -smooth
family of response solutions for coupled equations (1.2) in hyperbolic type, for any
integer N ≥ 1.

The rest sections are organized as follows. In section 2, we will solve the average
equation with respect to (1.1) to obtain a new Hamiltonian H0 with non-singular
normal frequency. In section 3, we will perform a finite steps of KAM iterations to
Hamiltonian H0 to obtain a new normal form H∗ with sufficiently small perturba-
tion. The smallness of the perturbation ensures the standard KAM iteration and
the measure estimate can be directly applied on Hamiltonian H∗. Hence we will
prove the Main Theorem by applying standard KAM method to H∗ in section 4
such that we obtain the persistence of the invariant tori with fixed frequency ω. In
section 5, we will prove the measure estimate. It is different from previous ones
since we take the ε as a parameter instead of the frequency ω.

2. Normalization

In this section, we will normalize the Hamiltonian normal form (1.1) based on
the conditions A1) - A2). The normalization procedure includes finding relative
equilibria and removing Hamiltonian (1.1) into the vicinity of relative equilibria.
As a result, the transformed Hamiltonian in the vicinity of relative equilibria is of
multi-scale in ε, their order of perturbations also need to be improved in order to
perform infinite steps of KAM iterations.

2.1. Notations and weighted norms

We first introduce some notations and norms which will be used in the following
proof.

For each r, s > 0, we denote

D(r, s) = Td
r ×Bs,

where
Bs := {z = (x1, · · · , xn, y1, · · · yn) ∈ C2n : |z| ≤ s}

is the ball of radius s in C2n and

Td
r := {θ = (θ1, . . . , θd) ∈ Cd/(2πZ)d : |Im θj | ≤ r, j = 1, 2, . . . , d}
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is the strip neighborhood of size s of the d-torus Td = Rd/(2πZ)d in Cd. For given
ε∗ > 0, let D := (0, ε∗). We say the function

f(θ, z, ε) :=
∑

ı∈Z2n
+ , k∈Zd

fk(ε)z
ıe

√
−1⟨k,θ⟩,

is real analytic in (θ, z) ∈ D(r, s) and CN -(Whitney) smooth in ε ∈ D for certain
fixed integer N ≥ 1, if the norm ∥ · ∥D(r,s)×D defined as follows is finite, that is

∥∂i
εf∥D(r,s)×D =

∑
k∈Zd,ı∈Z2

+

sup
ε∈D

|∂i
εfk(ε)|s|ı|er|k| < +∞, ∀ i = 0, 1, · · · , N,

where ∂i
εfk(ε) = |fk(ε)|+ · · ·+ εi|d

ifk(ε)
dεi | and |k| =

∑d
l=1 |kl| for k = (k1, · · · , kd) ∈

Zd. Taking s = 0 in the above, we can define the ∥ · ∥r,D norm for any function
f : Td

r → C,
f(θ, ε) =

∑
k∈Zd

fk(ε)e
√
−1⟨k,θ⟩,

which is analytic in θ and CN -(Whitney) smooth in ε ∈ D. The Banach algebra of
all such functions under the ∥ · ∥r,B norm is denoted by

CN (Td
r ×B) = {f(θ, ε) : ∥∂i

εf(θ, ε)∥r,B < +∞, i = 0, 1, · · · , N}.

As mentioned above, for any function f(θ, z) in D(r, s), we denote its average
with respect to θ by

[f(·, z, ε)] = 1

(2π)d

∫
Td

f(θ, z, ε) dθ.

Moreover, the notation Djf(θ, z, ε) denotes the partial derivatives of function f
with respect to z in the j-th order, that is,

Djf(θ, z, ε) =
∑

ȷ∈Z2n
+ ,j=|ȷ|

∂ȷf(θ, z, ε)

∂zȷ
.

Without loose of generality, we will frequently use c or ci, i = 0, 1, · · · , 6 to
denote the intermediate constants depending on domain constants r, s, η > 0,
Diophantine constants γ, τ and the norms of known functions. We also use ∥ · ∥
to denote the weighted norms of (vector-valued) functions, as well as the norms of
matrix operators in the following proof.

2.2. Average equations and relative equilibria

The average equations are referred to the averaged part of the Hamiltonian vector
fields in the normal direction. We will find relative equilibria by solving such average
equations corresponding to (1.1). The result is formulated as follows.

Lemma 2.1. Consider the average equations corresponding to Hamiltonian (1.1)
and assume A2) holds. Then, there exits a family of nonzero solutions in form of
zε = (xε, yε)

⊤, where

xε = (ε
1

l1−1x∗
1 +O(ε

1
l1−1+σ), · · · , ε

1
ln−1x∗

n +O(ε
1

ln−1+σ))⊤,
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yε = (εy∗1 +O(ε1+σ), · · · , εy∗n +O(ε1+σ))⊤,

where 0 < ε ≪ 1, σ := min{ 1
l1−1 , · · · ,

1
ln−1} and x∗

i ̸= 0 for i = 1, 2, · · · , n.

Proof. The corresponding average equations in normal direction with respect to
Hamiltonian (1.1) are as follows,

∂H

∂xi
:= λix

li−1
i + εpi +O(φ|z|) +O(ε2) = 0, ∀ i = 1, 2, · · · , n,

∂H

∂yi
:= yi + εqi +O(ε|z|) +O(ε2) = 0, ∀ i = 1, 2, · · · , n,

(2.1)

where,

pi :=

[
∂P (·, 0)
∂xi

]
, qi :=

[
∂P (·, 0)
∂yi

]
, i = 1, 2, · · · , n.

Introduce the re-scale transformations

xi → ε
1

li−1xi, yj → εyi, i = 1, 2, · · · , n. (2.2)

By substituting the transformations into (2.1) and dividing the equations by ε, we
obtain thatHi(x, y, ε) := λix

li−1
i + pi +O(εa|z|) +O(ε) = 0, i = 1, 2, · · · , n,

Hn+i(x, y, ε) := yj + qj +O(εa|z|) +O(ε) = 0, i = 1, · · · , n,
(2.3)

where σ := min{ 1
l1−1 , · · · ,

1
ln−1}. Define that

x∗
i = (−ai/λi)

1
li−1 , y∗i = −bi, i = 1, 2, · · · , n. (2.4)

Based on A2), x∗
i , i = 1, 2, · · · , n, are well defined and x∗

i ̸= 0. Denote x∗ =
(x∗

1, · · · , x∗
n)

⊤, y∗ = (y∗1 , · · · , y∗n), it yields that Hi(x∗, y∗, 0) = 0 for i = 1, 2, · · · , 2n
and

DH(x∗, y∗, 0) = det


∂H1(x∗, y∗, 0)

∂x1
· · · ∂H1(x∗, y∗, 0)

∂yn
...

...
...

∂H2n(x∗, y∗, 0)

∂x1
· · · ∂H2n(x∗, y∗, 0)

∂yn


=

n∏
i=1

λi(li − 1)(x∗
i )

li−2

̸= 0.

By the Implicit Function Theorem, we obtain a family of nonzero solutions for
equations (2.3) in form of

xi,ε = x∗
i +O(εσ), yi,ε = y∗i +O(εσ) i = 1, · · · , n,

where (x∗, y∗)
⊤ are defined as in (2.4). By tracing back to the re-scaling transfor-

mation, the average equation (2.1) admits a family of solutions in form of

zε = (ε
1

l1−1x1,ε, · · · , ε
1

ln−1xn,ε, εy1,ε, · · · , εyn,ε)⊤.
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Since thatHi are C
N -smoothly depending on ε, it follows from the Implicit Function

Theorem that the relative equilibria zε form a CN -smooth family with respect to
ε ∈ D for any fixed positive integer N .

Now we remove Hamiltonian (1.1) in the vicinity of the relative equilibria ob-
tained in the Lemma 2.1, we obtain the new Hamiltonian normal form as follows.

Lemma 2.2. Consider Hamiltonian (1.1) and assume A2) holds. Then, introduc-
ing the linear transformation L : z → z + zε, such that the Hamiltonian (1.1) can
be reduced into the following form

H̃ = H ◦ L = ẽ+ ⟨ω, I⟩+ ⟨M̃z, z⟩+ h̃(z, ε) + εG̃(θ, z, ε) + εẼ(θ, z, ε), (2.5)

where, ẽ is a constant term depending on ε, the normal frequency M is a 2n × 2n
non-singular symmetric matrix in form of

M̃ = A(ε) + εÃ(ε),

A(ε) = diag{εa1m1(ε), · · · , εanmn(ε), 1, · · · , 1}. (2.6)

The order numbers ai =
li−2
li−1 , mi = λi(li − 1)(x∗

i )
li−2 +O(εσ), i = 1, 2, · · · , n. The

functions h̃ := O(|z|3), G̃ := O(|z|3) and the perturbation is in the following form

Ẽ :=
∑
|ı|≤2

Ẽı(θ, ε)z
ı, [Ẽı(·, ε)] = 0, |ı| = 0, 1, 2. (2.7)

Moreover, the Hamiltonian H̃ is real analytic with respect to (I, θ, z) ∈ D(r−η, s−η)
and CN smoothly depending on ε ∈ D := (0, ε∗), where 0 < η < min{r, s}/8 and ε∗
is sufficiently small.

Proof. Replacing z by z + zε, we obtain that the following calculation results:

H̃ = H ◦ L

= ⟨ω, y⟩+
n−1∑
i=1

λi(li − 1)xli−2
i,ε

x2
i

2
+ λn

x2

2
+

n∑
j=1

y2j
2

+ε⟨
[
∂2P (·, zε, ε)

∂z2

]
z, z⟩+

n−1∑
i=1

li∑
k=3

λi

li
Ck

lix
li−k
i,ε xk

+ε(P − P (θ, zε, ε)− ⟨∂P (θ, zε, ε)

∂z
, z⟩ − ⟨∂

2P (θ, zε, ε)

∂z2
z, z⟩)

+

n∑
i=1

λix
l−1
i,ε xi +

n∑
j=1

yj,εyj + ε⟨
[
∂P (·, zε, ε)

∂z

]
, z⟩

+

n∑
i=1

λi

li
xl
i,ε +

n∑
j=1

y2j,ε
2

+ εP (θ, zε, ε)

+ε⟨∂P (θ, zε, ε)

∂z
, z⟩ − ⟨

[
∂P (·, zε, ε)

∂z

]
, z⟩

+ε⟨∂
2P (θ, zε, ε)

∂z2
z, z⟩ − ⟨

[
∂2P (·, zε, ε)

∂z2

]
z, z⟩.
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Since zε solves average equations (2.1), we have

n∑
i=1

λix
l−1
i,ε xi +

n∑
j=1

yj,εyj + ε⟨
[
∂P (·, zε, ε)

∂z

]
, z⟩ = 0.

The lemma is proved by denoting that ai, mi, i = 1, 2, · · · , n as in above, and

Ã(ε) =

[
∂2P (·, zε, ε)

∂z2

]
, h̃(z, ε) =

n−1∑
i=1

li∑
k=3

λi

li
Ck

lix
li−k
i,ε xk

i ,

G̃(θ, z, ε) = P (θ, z + zε, ε)− P (θ, zε, ε)− ⟨∂P (θ, zε, ε)

∂z
, z⟩

−⟨∂
2P (θ, zε, ε)

∂z2
z, z⟩,

Ẽ0(θ, z, ε) = P (θ, zε, ε)− [P (·, zε, ε)],

Ẽ1(θ, z, ε) = ⟨∂P (θ, zε, ε)

∂z
, z⟩ − ⟨

[
∂P (·, zε, ε)

∂z

]
, z⟩,

Ẽ2(θ, z, ε) = ⟨∂
2P (θ, zε, ε)

∂z2
z, z⟩ − ⟨

[
∂2P (·, zε, ε)

∂z2

]
z, z⟩,

ẽ =

n∑
i=1

λi

li
xl
i,ε +

n∑
j=1

y2j,ε
2

+ ε[P (·, zε, ε)].

Since the family of relative equilibria zε solves the average equations, it yields
that the average of the perturbation E equals zero. By performing one step of
average process, we can improve the order of the perturbation in (2.5) into at least
the order of O(ε2a), where a := max{a1, · · · , an}.

Lemma 2.3. Consider the Hamiltonian (2.5) on domain D(r − η, s− η)×D. As
ε∗ is sufficiently small, then for any ε ∈ (0, ε∗), there exists a CN -smooth family
of transformations Φ0,ε : D(r − 2η, s − 2η) → D(r − η, s − η), under which the
Hamiltonian (2.5) can be transformed into the following form:

H0 = H ◦ Φ0,ε

= ⟨ω, I⟩+ ⟨z,M0z⟩
+h0(z, ε) + εaG0(θ, z, ε) + ε2aP0(θ, z, ε) + e0(ε).

where M0 is a nonsingular matrix with |M−1
0 | = O(ε−a) , h0, G0 := O(|z|3), and

∥∂i
εD

jP0∥D(r−2η,s−2η)×D ≤ c1ε
2−2a, i = 0, 1, · · · , N, j = 0, 1, 2,

where c1 is a positive constant depending on n, d, s, r, η and independent of ε.

Proof. For fixed ε ∈ D, define that

K = ([log
1

ε
] + 1)2, (2.8)

where [·] denotes the maximum integer less than a. We will truncate the Fourier
series of Ẽ up to order K-th term, i.e., we write the perturbation into its Fourier
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series and the truncated form Ēi, i = 0, 1, 2 are of the following forms

Ē0 =
∑

0<|k|≤K

Ek0e
√
−1⟨k,θ⟩, Ē1 =

∑
0<|k|≤K

⟨Ek1, z⟩e
√
−1⟨k,θ⟩,

Ē2 =
∑

0<k≤K

⟨Ek2z, z⟩e
√
−1⟨k,θ⟩, Ê0 =

∑
|k|>K

Ek0e
√
−1⟨k,θ⟩,

Ê1 =
∑

|k|>K

⟨Ek1, z⟩e
√
−1⟨k,θ⟩, Ê2 =

∑
k>K

⟨Ek2z, z⟩e
√
−1⟨k,θ⟩.

It follows from the definition of K that for i = 0, 1, · · · , N and j = 0, 1, 2, we have

∥∂i
εD

jÊ∥D(r−5η/4,s−5η/4)×D ≤ c
∑

|k|>K

e−
η|k|
4 ≤ c

∫ ∞

K

td+1e−
η
4 dt ≤ cε, (2.9)

∥∂i
εD

jĒ∥D(r−η,s−η)×D ≤ c,

where Ê := Ê0 + Ê1 + Ê2, Ē := Ē0 + Ē1 + Ē2. Now we seek for a canonical
transformation as the time-1 map ϕ1

F of the flow ϕt
F which is generated by the

following function,

F = F0(θ, ε) + F1(θ, z, ε) + F2(θ, z, ε)

=
∑

0<|k|≤K

fk0e
√
−1⟨k,θ⟩ +

∑
0<|k|≤K

⟨fk1, z⟩e
√
−1⟨k,θ⟩

+
∑

0<|k|≤K

⟨fk2z, z⟩e
√
−1⟨k,θ⟩,

where fkj , j = 0, 1, 2, 0 < |k| ≤ K, are (vector-valued or matrix-valued) coefficients
which will be determined later. Since that

H ◦ ϕ1
F = N ◦ ϕ1

F + h ◦ ϕ1
F + ε(G+

2∑
j=0

Ēj) ◦ ϕ1
F + (ε

2∑
j=0

Êj) ◦ ϕ1
F

= N + h̃+ εG̃+ {h̃≥4, F1}+ {h̃,F2}+ ({N,F}+ ε

2∑
j=0

Ēj

+{h̃=3, F1}) + ẽ+ ε

∫ 1

0

{G̃+

2∑
j=0

Ēj , F} ◦ ϕt
Fdt+ (εÊ2) ◦ ϕ1

F

+

∫ 1

0

{{(1− t)(N + h̃), F}, F} ◦ ϕt
Fdt,

where N := ⟨ω, I⟩+ ⟨M̃z, z⟩, {·, ·} denotes the Poisson bracket, the function h̃=3 :=∑n
i=1 hi,3x

3
i denotes the third order terms in h̃ and h̃≥4 denotes the terms in the

fourth order or high than the fourth order. Firstly, we solve the following quasi-
homological equation

{N,F0}+ εĒ0 = 0, (2.10)

{N,F1}+ εĒ1 = 0, (2.11)

{N,F2}+ εĒ2 + {h̃=3, F1} = 0. (2.12)



Response tori for Hamiltonian with normal degeneracy 3237

Substitute N, F, Ēj , j = 0, 1, 2, into equations (2.10)-(2.12), we obtain that

√
−1⟨k, ω⟩fk0 − εEk0 = 0, (2.13)√
−1⟨k, ω⟩I2n − M̃(ε)Jfk1 − εEk1 = 0, (2.14)√
−1⟨k, ω⟩fk2 + M̃(ε)Jfk2 − fk2JM̃(ε)− εEk2 − Ek3 = 0, (2.15)

where

Ek3 := diag{3h1,3fk1,n+1, · · · , 3hn,3fk1,2n, 0, · · · , 0},

fk1,j , j = 1, · · · , 2n, denotes the j-th components of fk1, J is the 2n× 2n standard

symplectic matrix and M̃ is defined as in (2.6). Denote that

Lk0 :=
√
−1⟨k, ω⟩,

Lk1 :=
√
−1⟨k, ω⟩I2n − M̃(ε)J,

Lk2 :=
√
−1⟨k, ω⟩I4n2 − M̃(ε)J ⊗ I2n − I2n ⊗ M̃(ε)J,

where ⊗ denotes the Tensor product.

Define a positive constant to simplify the notations in the following estimates,
that is

Cη =
∑

0<|k|≤K

e−
η
4 |k||k|(N+1)(4n2τ+4n−1) < +∞.

Consider homological equation (2.13), we have for any 0 < |k| ≤ K, i = 0, 1, · · · , N
that

fk0 = εL−1
k0 Ek0, |∂i

εfk0| ≤ ε|∂i
εEk0|

|k|τ

γ
≤ cε|k|τe−|k|(r−η). (2.16)

It follows that

∥∂i
εF0(θ, ε)∥D(r−5η/4)×D ≤ ε

∑
0<|k|≤K

|L−1
k0 ||Ek0|e|k|(r−5η/4) (2.17)

≤ cε
∑

0<|k|≤K

|k|τe−
η|k|
4

≤ εcCη.

Let

εam/2Kτ = o(γ), (2.18)

where am = min{a1, · · · , an}. Now we prove operators Lk1, Lk2 are invertible.
Denote that

L0
k1 :=

√
−1⟨k, ω⟩I2n −A(ε)J,

L0
k2 :=

√
−1⟨k, ω⟩I4n2 −A(ε)J ⊗ I2n − I2n ⊗A(ε)J,

where A(ε) is defined as in (2.6). It is easy to calculate

|detL0
k1| =

n∏
i

|K2 − εaimi(ε)|,
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where K =
√
−1⟨k, ω⟩. Based on (2.18), we have that for any 0 < |k| ≤ K,

i = 1, · · · , n

|K2 − εai
mi

| ≥ |K2||1− εaimi|k|2τ/γ2| ≥ γ2

2|k|2τ
.

It follows that

|detL0
k1| ≥ c

γ2n

|k|2τ
.

Since that L1k = L0
1k + εÃ(ε), it follows from (2.18) that

|detLk1|D ≥ |detL0
k1|(1− c(εαm/2|k|τ/γ)− · · · − c(εαm/2|k|τ/γ)2n) ≥ c

γ2n

|k|2nτ
.

Similarly, we have that

detL0
k2 =

n∏
i,j=1

|K2 ±
√
εaimi(ε)∓

√
εajmj(ε)| ≥ c

γ4n2

|k|4n2τ
.

It follows that

|detLk2|D ≥ |detL0
k2|(1− cεαn−1/2|k|τ/γ − · · · − c(εαn−1/2|k|τ/γ)4n

2

)

≥ c
γ4n2

|k|4n2τ
.

Since that

L−1
kq =

adjLkq

detLkq
,

where adjLkq denotes the adjoint matrix of Lkq, q = 1, 2. Then we have that

|L−1
k1 |D ≤ c

|k|2nτ+2n−1

γ2n
,

|L−1
k2 |D ≤ c

|k|4n2τ+4n2−1

γ4n2 .

Together with the following formula,

∂i
εL

−1
kq = −

i∑
i′=1

Ci′

i (∂
i−i′

ε L−1
kq ∂

i′

ε Lkq)L
−1
kq , i = 0, 1, · · · , N, q = 1, 2,

there exists a positive constant c such that for q = 1, 2, i = 0, 1, · · · , N , we have

|∂i
εL

−1
kq |D ≤ c

|k|(i+1)((2n)qτ+(2n)q−1)

γ(i+1)(2n)q
. (2.19)

The estimate (2.19) yields that equations (2.11), (2.12) are uniquely solvable
for any ε ∈ D, 0 < |k| ≤ K and there exists a positive constant c0 such that the
following estimates hold for i = 0, 1, · · · , N , j = 0, 1, 2,

∥∂i
εD

jF (θ, z, ε)∥D(r−3η/2,s−3η/2)×D ≤ εc0(Cη + C2
η), (2.20)

|∂i
εD(ϕt

F − id)|D(r−3η/2,s−3η/2)×D ≤ εc0(Cη + C2
η), t ∈ [0, 1].
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By taking ε∗ sufficiently small such that

ε1−ac0(Cη + C2
η) ≤ η,

it yields from standard arguments in the proof of KAM-type theorems that the
transformation

Φ0,ε := ϕ1
F : D(r − 2η, s− 2η)×D → D(r − η, s− η)×D

is well defined. As a consequence, we obtain the new Hamiltonian as follows

H0 := H ◦ Φ0,ε (2.21)

= ⟨ω, I⟩+ ⟨M0(ε)z, z⟩+ h0(z, ε) + εaG0(z, ε, θ) + ε2aP0(z, ε, θ) + e0(ε),

where M0 := M̃ , h0 := h̃, e0 := ε[E0] + ẽ and

G0 = ε−a+1G̃+ ε−a{h, F2}+ ε−a{h≥4, F1}, (2.22)

P0 = ε−2a+1

∫ 1

0

{G̃+

2∑
j=0

Ēj , F} ◦ ϕt
Fdt+ (ε−2a+1Ê2) ◦ ϕ1

F (2.23)

+ε−2a

∫ 1

0

{{(1− t)(N + h̃), F}, F} ◦ ϕt
Fdt.

Based on estimates (2.9), (2.18) and (2.20), we obtain that there exists a pos-
itive constant c1 depending on constants n, d, γ, s, r, η such that for i =
0, 1, · · · , N, j = 0, 1, 2, the following estimates hold:

∥∂i
εD

jG0∥D(r−2η, s−2η)×D ≤ c(Cη + C2
η)ε

1−a ≤ c1ε
1−a,

∥∂i
εD

jP0∥D(r−2η, s−2η)×D ≤ c(Cη + C2
η)

2ε2−2a ≤ c1ε
2−2a.

Since that ε is sufficiently small, we also have

|M−1
0 | ≤ |(A+ εÃ(ε))−1| ≤ |Ã−1|

1− ε|Ã−1||Ã|
≤ ε−a

1−O(ε∗)
≤ c1ε

−a.

3. Improve the order of perturbation

Consider Hamiltonian (2.21) on a new domain (θ, z) ∈ D(r0, s0), ε ∈ D, where

r0 := r−2η, s0 := ε
2−2a−ι

3 ≪ s−2η for fixed 0 < ι < 2−2a. Let µ0 := ε
2−2a

3 , γ0 :=
γ4n2(N+1), where γ is the Diophantine constant. The estimate of the perturbation
P0 can be rewritten as

∥∂i
εD

jP0∥D(r0,s0)×D ≤ γ0s
2
0µ0, i = 0, 1, · · · , N, j = 0, 1, 2.

Note that the gap parameter γ0 and iterative parameter µ0 are much bigger than εa.
It means that the perturbation is not small enough for the convergence of measure
estimate. As a consequence, we apply a finite number of averaging process to further
improve the order of perturbation till it is high enough for usual KAM iteration step
can be directly conducted. Since we do not average out the first degree terms in
P0, the perturbation can not be push up to the order of O(ε4a) directly. Instead of
that, we sharply shrink the domain z to ensure the new perturbation become much
smaller at each iterative step.
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3.1. One circle of KAM step

Suppose that we have arrived at the ν-th step and obtained the following real
analytic Hamiltonian,

H = ⟨ω, I⟩+ ⟨z,Mz⟩+ h(z, ε) + εG(θ, z, ε) + ε2aP (θ, z, ε), (3.1)

which is defined on a phase domain (θ, z) ∈ D(r, s) and depending smoothly on
ε ∈ D. Since that the Hamiltonian vector field XH is corresponding to (θ, I, z), we
omit the constant term during the KAM process. In addition, we have that M is
nonsingular and symmetry for each ε ∈ D and satisfies

∥∂i
ε(M −M0)∥D ≤ εµ

1
4 , i = 0, 1, · · · , N. (3.2)

The functions h(z, ε), G(θ, z, ε) = O(|z|3) and

∥∂i
εD

jP∥D(r,s)×D ≤ γ0s
2µ, i = 0, 1, · · · , N, j = 0, 1, 2

for some 0 < µ ≪ µ0, 0 < s ≪ s0. We try to find a canonical transformation
Φ+ : D(r+, s+) × D → D(r, s) × D, which transforms the Hamiltonian (3.1) into
the following form

H+ := H ◦ Φ+ = ⟨ω, I⟩+ ⟨z,M+z⟩+ h+(z, ε) + εaG+(θ, z, ε) + ε2aP+(θ, z, ε),

where the matrix M+, the functions h+ , G+ are in the same forms as M, h, G,
respectively. The new perturbation P+ is much smaller than P on some smaller
domains, that is,

∥∂i
εD

jP+∥D(r+,s+)×D ≤ γ0s
2
+µ+, i = 0, 1, · · · , N, j = 0, 1, 2,

for some r+ ≤ r, s+ ≪ s, µ+ ≪ µ. The normal form reduction Proposition states
as follows.

Proposition 3.1. Consider the Hamiltonian (2.21) in D(r0, s0) × D and assume
ε∗ is sufficiently small. Then there exists a CN -smooth family of real analytic
transformations Φ∗ : D(r∗, s∗) × D → D(r0, s0) × D, where r∗, s∗ are positive
constant depending on r0, s0 that will be specific later. Under this transformation,
Hamiltonian (2.21) can be transformed as follows

H∗ = H0 ◦ Φ∗ = ⟨ω, I⟩+ ⟨z,M∗z⟩+ h∗(z, ε) +G∗(θ, z, ε) + P∗(θ, z, ε), (3.3)

where M∗ is a nonsingular symmetric matrix with ∥M−1
∗ ∥D = O(ε−a), the function

h∗, G∗ = O(|z|3) and the following estimates hold

∥∂i
ε(M∗ −M0)∥D ≤ εaµ

3
4
0 , i = 0, 1, · · · , N,

∥∂i
εD

jP∗∥D(r∗,s∗)×D ≤ γ
3(N+1)
∗ s2∗µ

3
∗, i = 0, 1, · · · , N, j = 0, 1, 2,

where γ∗ = ε2n
2−n, µ∗ = ε2a.

We mention that, for simplicity, we have omitted the subscript ν and use ‘+’ to
denote subscript ν + 1 in (3.1) and in the following proof. We will also use ci, c to
denote any positive intermediate constants which are independent of ε, µ, ν during
the iteration process. Define

r+ =
r

2
+

r0
4
,
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s+ =
1

4
αs, α = µ

1
3 ,

µ+ = µ7/6,

K+ = ([log
1

µ
] + 1)3,

Diα = D(r+ +
i− 1

4
(r − r+),

i

4
αs), i = 1, 2, 3, 4,

D(s) = {z ∈ C2n : |z| < s, s > 0},

Γ(r − r+) =
∑

0<|k|≤K+

|k|(N+1)(4n2τ+4n−1)e−|k| r−r+
4 .

Firstly, we write P in the Taylor-Fourier series and let R be the truncation, that is

P =
∑

k∈Zd,ı∈Z2n
+

pkız
ıe

√
−1⟨k,θ⟩,

R =
∑

|k|≤K+

(pk0 + ⟨pk1, z⟩+ ⟨z, pk2z⟩)e
√
−1⟨k,θ⟩, (3.4)

where K+ is defined as above.

Lemma 3.1. Assume that

H1)

∫ ∞

K+

td+1e−t
r−r+

16 dt ≤ µ.

Then, there is a constant c1 depending on n, d, r such that

∥∂i
ε(P −R)∥D4α×D ≤ c1Cγ0s2µ2,

∥∂i
εR∥D4α×D ≤ Cγ0s2µ.

Proof. See [16] for the proof.
Now we rewrite R := R0 +R1 +R2, where

R0 =
∑

|k|≤K+

pk0e
√
−1⟨k,θ⟩, R1 =

∑
|k|≤K+

⟨pk1, z⟩e
√
−1⟨k,θ⟩,

R2 =
∑

|k|≤K+

⟨z, pk2z⟩e
√
−1⟨k,θ⟩.

We aim to eliminate R by introducing a canonical transformation ϕ1
F which is the

time-1 map of the Hamiltonian flow generated by a function F := F0 + F1 + F2 of
the following form,

F0 =
∑

0<|k|≤K+

fk0e
√
−1⟨k,θ⟩,

F1 =
∑

0≤|k|≤K+

⟨fk1, z⟩e
√
−1⟨k,θ⟩,

F2 =
∑

0<|k|≤K+

⟨z, fk2z⟩e
√
−1⟨k,θ⟩.
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Since that

H ◦ ϕ1
F = N + ε2a[R2] + h+ εaG+ q + ε2a[R0] + {N,F}+ ε2a(R− [R0]− [R2])

+{h, F1 + F2}+
∫ 1

0

(1− t){{N + h, F}, F} ◦ ϕt
Fdt

+

∫ 1

0

{εaG+ ε2aR,F} ◦ ϕt
Fdt+ ε2a(P −R) ◦ ϕ1

F ,

where N := ⟨ω, I⟩+ ⟨z,Mz⟩. We determine F by solving homological equation

{N,F}+ ε2a(R− [R0]− [R2]) = 0. (3.5)

Substitute N, F, R into equation (3.5), we obtain the following equations by com-
paring the coefficients

√
−1⟨k, ω⟩fk0 = pk0, 0 < |k| ≤ K+, (3.6)

(
√
−1⟨k, ω⟩I2n −MJ)fk1 = pk1, 0 < |k| ≤ K+, (3.7)√
−1⟨k, ω⟩fk2 +MJfk2 − fk2JM = pk2, 0 < |k| ≤ K+, (3.8)

Mf01 = −p01. (3.9)

Denote that

Lk1 :=
√
−1⟨k, ω⟩I2n −MJ,

Lk2 :=
√
−1⟨k, ω⟩I4n2 −MJ ⊗ I2n − I2n ⊗MJ,

we have the following lemma.

Lemma 3.2. Assume that

H2) εam/2Kτ
+ = o(γ),

where am = min{a1, · · · , an}, γ is the Diophantine constant. Then for 0 < |k| ≤
K+, ε ∈ (0, ε∗), the operators Lk1, Lk2 and matrix M are invertible. Moreover,
there exists a positive constant c2 such that following estimate holds,

|∂i
εL

−1
kq |D ≤ c2

|k|(i+1)((2n)q+(2n)q−1)

γ(i+1)(2n)q
, i = 0, 1, · · · , N, q = 1, 2. (3.10)

Proof. The proof of estimates (3.10) are the same as the proof of (2.19). Moreover,
we have that that

∥M−1∥D = ∥(I + (M −M0 + εÃ))−1A−1∥D (3.11)

≤ ∥A−1∥
1− ∥A−1

0 ∥∥M −M0 + εÃ∥
≤ cε−a.

It follows from Lemma 3.2 that equations (3.7)-(3.9) are uniquely solvable for
|k| < K+ and ε ∈ D and there exists a positive constant c3 such that

|∂i
εf01|D ≤ c3ε

aγ0sµ, (3.12)
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|∂i
εfkj |D ≤ c3ε

2aγ
−(i+1)(2n)j

0 s2−jµe−
r−r+

4 , k ̸= 0,

∥∂i
εD

j [F1]∥D3α×D ≤ c3ε
aγ0s

2−jµ,

∥∂i
εD

j(F0 + F1 − [F1] + F2)∥D3α×D ≤ c3ε
2aγ

−(i+1)4n2

0 s2−jµΓ(r − r+),

∥∂i
εD

jF∥D3α×D ≤ c3(ε
aγ0s

2−jµ+ ε2aγ
−(i+1)4n2

0 s2−jµΓ(r − r+),

where i = 0, · · · , N , j = 0, 1, 2 and 0 < |k| ≤ K+.

Lemma 3.3. Suppose that the following assumptions hold,

H3) c3µΓ(r − r+) + c3µ < 1
4 (r − r+);

H4) c3sµΓ(r − r+) + c3sµ < s+.

Let ϕt
F be the flow generated by F . We have that

1) For all 0 ≤ t ≤ 1, ϕt
F : Dα → D4α are well defined for ε ∈ D.

2) Let Φ+ = ϕ1
F . Then for all ε ∈ D,

Φ+ : D+ → D.

3) There is a constant c3 such that

|ϕ1
F − id|Dα×D ≤ c3(ε

aγ0sµ+ ε2asµΓ(r − r+)),

|DΦ+ − Id|Dα×D ≤ c3(ε
aγ0µ+ ε2aµΓ(r − r+)),

for all 0 ≤ t ≤ 1.

Omitting the constant term, we arrived at the new Hamiltonian in the following
form

H+ := H ◦ ϕ1
F = ⟨ω, I⟩+ ⟨z,M+z⟩+ h+ + εaG+ + ε2aP+,

where

M+ := M +
∂2{h=3, F̄1}

∂z2
+ ε2a[R2], (3.13)

h+ := h+ {h≥4, [F1]},
G+ := G,

P+ := ε−2a{h, F1 − [F1] + F2}+
∫ 1

0

(1− t){{N + h, F}, F} ◦ ϕt
Fdt (3.14)

+ε

∫ 1

0

{ε−aG+R,F} ◦ ϕt
Fdt+ ε2a(P −R) ◦ ϕ1

F ,

where h=3 is the three degree term in h and h≥4 := h− h3. It is obvious that there
exists c4 depending on c1, c3 such that

∥∂i
ε(M+ −M)∥D ≤ c4ε

aγ0sµ ≤ εµ
1
4 , i = 0, 1, · · · , N, (3.15)

∥∂i
ε(h+ − h)∥D ≤ c4ε

aγ0sµ ≤ εµ
1
4 , i = 0, 1, · · · , N,

by assuming that µ is sufficiently small. For the new perturbation P+, we have the
following estimate.
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Lemma 3.4. There exists a constant c5 such that

∥∂i
εD

jP+∥D+×D ≤ c5(s
3µΓ(r − r+) + s3µ2Γ2(r − r+) (3.16)

+γ0s
2µ2Γ(r − r+) + γ0s

2µ2),

for i = 0, 1, · · · , N , j = 0, 1, 2. Consequently, if

H5) c5(s
3µΓ(r − r+) + s3µ2Γ2(r − r+) + γ0s

2µ2Γ(r − r+) + γ0s
2µ2) ≤ γ0s

2
+µ+,

then

∥∂i
εD

jP+∥D+×D ≤ γ0s
2
+µ+. (3.17)

Proof. The proof follows easily from the expression of P+ as (3.14) and the es-
timates of F as in (3.12). Moreover, Lemma 3.1-Lemma 3.4 complete one cycle of
KAM iteration.

3.2. Proof of Theorem 3.1

Recursively applying the definitions of quantities at the very beginning of subsec-
tion 3.1, we have the following iterative sequences

rν = r0(1−
ν∑

i=1

1

2i+1
),

sν =
1

4
αν−1sν−1, αν = µ

1
3
ν ,

µν = µ
7
6
ν−1,

Kν = ([log(
1

µν−1
)] + 1)3

for ν = 1, 2, · · · . It is easy to deduce that

rν − rν+1 =
r0

2ν+2
, µν = µ

( 7
6 )

ν

0 = ε(
1−a−b̄

3 )( 7
6 )

ν

≤ ε
1−b
3 ( 7

6 )
ν

ν = 1, 2, · · · , (3.18)

from which the hypotheses H1), H3)-H5) can be verified for all ν = 1, 2, · · · as µ
is sufficiently small. However, H2) only holds for a finite number of ν’s. More
precisely, we define

ν∗ =

[
ln(9(2n2 − n)(N + 1) + 18a)− ln(2− 2a)

ln 7/6

]
+ 1, (3.19)

where [·] denotes the maximum integer less than x. As long as

ε[(log
1

ε
)(
7

6
)ν∗ + 1]3 ≪ γ,

the assumption H2) holds for all ν = 1, 2, · · · , ν∗. By repeating the iterative process
inductively, we have obtained a sequence of Hamiltonian

Hν = Hν−1 ◦ Φν = ⟨ω, I⟩+ ⟨z,Mν(ω)z⟩+ hν + εaGν + ε2aPν(θ, z, ε)



Response tori for Hamiltonian with normal degeneracy 3245

defined on D(rν , sν)×D for all ν = 1, 2, · · · , ν∗. Define that Φ∗ := Φ0 ◦ · · · ◦Φν∗−1,
we obtain the following Hamiltonian

H∗ = H ◦ Φ∗ = ⟨ω, I⟩+ ⟨z,M∗z⟩+ h∗(z, ε) +G∗(θ, z, ε) + P∗(θ, z, ε)

defined on D(r∗, s∗) × D, where r∗ = rν∗ , s∗ = sν∗ ,M∗ = Mν∗ , h∗ = hν∗ , G∗ =
εaGν∗ , P∗ = ε2aPν∗ . Based on (3.15), we have that for i = 0, 1, · · · , N

∥∂0
ε (M∗ −M0)∥D ≤ c0ε

a(µν∗−1 + µν∗−2 + · · ·+ µ0) ≤ εaµ
3/4
0 ,

which guarantees that ∥M∗∥−1 = O(ε−a). Moreover, it follows form (3.18) and
(3.19) that

µν∗ = µ
( 7
6 )

ν

0 ≤ ε3(2n
2−n)(N+1)+6a.

It yields for i = 0, 1, · · · , N, that

∥∂i
εP

∗∥D(r∗,s∗)×D ≤ ε2aγ0s
2
ν∗
µν∗ ≤ s2∗ε

3(2n2−n)(N+1)+6a ≤ γ
3(N+1)
∗ s2∗µ

3
∗, (3.20)

by denoting γ∗ := ε2n
2−n, µ∗ := ε2a, s∗ := sν∗ .

4. Infinite steps of KAM iterations

Since we have pushed the perturbation to a sufficiently high order such that we
can take ε ∈ D as a normal parameter and directly apply an infinite steps of
classical KAM theorem to prove the persistence of the d-tori for most of ε ∈ D.
In order to make the iteration processes simpler, we consider the following re-scale
transformation,

I → γ2
∗µ

2
∗I, z → γ∗µ∗z, H∗ → H∗

γ2
∗µ

2
∗

to the normal form (3.3). Then the re-scaled Hamiltonian reads

H0 :=
H∗

γ2
∗µ

2
∗
:= ⟨ω, I⟩+ ⟨z,M0(ε)z⟩+ P 0(θ, z, ε) (4.1)

defined on new region D(r0, s0) × O0, where r0 := r∗, s0 := s∗, O0 = D = (0, ε∗),
M0 := M∗ being non-singular matrix with |(M0)−1| = O(ε−a). Moreover,

P 0 =
P∗ + h∗ +G∗

ε2γ2
∗µ

2
∗

.

It follows from (3.20) that∣∣∂i
εP

0
∣∣
D(r0,s0)×O0

≤ ∥∂i
εP∗∥D∗×D

ε4γ2
∗µ

2
∗

≤ γN+1
0 s20µ0,

where γ0 := γ∗ = ε2n
2−n, µ0 := µ∗ = ε2a, i = 0, 1, · · · , N .

Remark 4.1. Without great loose of generality, we still use r0, s0 to denote the
domain parameters, γ0, µ0 to denote the gap parameter and iterative parameter,
respectively. These four parameters and the corresponding sequences are not related
to the ones in Section 3. We also mention that, after re-normalization by finite steps
of averaging process, the gap parameter γ0 becomes much smaller that the constant
γ in Diophantine condition A1).
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4.1. Iteration and convergence

Consider the following sequences

rν = r0(1−
ν∑

i=1

1

2i+1
),

sν =
1

8
αν−1sν−1,

αν = µ
1
3
ν ,

µν = c0µ
6
5
ν−1,

γν = γ0(1−
ν∑

i=1

1

2i+1
),

Kν = ([log(
1

µν−1
)] + 1)3η,

L1k,ν−1 =
√
−1⟨k, ω⟩I2n −Mν−1J, 0 < |k| ≤ Kν ,

L2k,ν−1 =
√
−1⟨k, ω⟩I4n2 − (Mν−1J)⊗ I2n

−I2n ⊗ (Mν−1J), 0 < |k| ≤ Kν ,

Oν = {ξ ∈ Oν−1 : |detL1k,ν−1| >
γν−1

|k|2nτ
,

|detL2k,ν−1| >
γν−1

|k|4n2τ
, 0 < |k| ≤ Kν},

ν = 1, 2, · · · , where η ≥ log 2
log 6−log 5 is a fixed constant. The following iteration lemma

and convergence result are special cases of those iteration lemma in [4, 24].

Lemma 4.1. Let µ0, as well as ε∗, be sufficiently small. Then the followings hold
for all ν = 1, 2, · · · .

1) There is a sequence of Whitney smooth family of symplectic, real analytic,
near identity transformations

Φν : D(rν , sν) → D(rν−1, sν−1), ε ∈ Oν

such that

Hν = Hν−1 ◦ Φν =: ⟨ω, I⟩+ ⟨z,Mνz⟩+ P ν(θ, z, ε),

where

∥∂i
εM

ν − ∂i
εM

0∥Oν ≤ γN+1
0 µ

1
2
0 , (4.2)

∥∂i
εD

jP ν∥Dν×Oν ≤ γN+1
ν s2νµν

for all i = 0, 1, · · · , N .

2) Oν = {ε ∈ Oν−1 : |detL1k,ν−1| >
γν−1

|k|2nτ
, |detL2k,ν−1| >

γν−1

|k|4n2τ
, Kν−1 <

|k| ≤ Kν}.
3) The Whitney extensions of

Ψν =: Φ1
ω ◦ Φ2

ω ◦ · · · ◦ Φν
ω
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converge C1 uniformly to a smooth family of symplectic maps, that is, Ψ∞,
on D( r02 ,

s0
2 )×O∞, where

O∞ =
⋂
ν≥0

Oν ,

such that

Hν = H0 ◦Ψν−1 → H∞ =: H0 ◦Ψ∞ = ⟨ω, I⟩+ ⟨z,M∞z⟩+ P∞(θ, z, ε)

with M∞ = limν→∞ Mν , P∞ = limν→∞ P ν , and

∥DjP∞∥D(
r0
2 ,

s0
2 )×O∞

= 0, |j| ≤ 2.

Now we suppose that O∞ is not empty. Remind the transformations Φ0,ε and
Φ∗ in Lemma 2.3 and Proposition 3.1, respectively. Define Φ̄∞ := Φ0,ε ◦ Φ∗ ◦ Φ∞,
it follows that

ϕt
H ◦ Φ̄∞|Td×R2n = Φ̄∞ ◦ ϕt

H∞
|Td×R2n

where ϕt
H and ϕt

H∞ are the flow of H defined in (3.1) and H∞ is defined as above.
Define T d,0 = {ω} × {I = 0} × {z = 0}, for any ε∞, it yields that

ϕt
H ◦ Φ̄∞(T d,0) = Φ̄∞ ◦ (ϕt

H∞(T d,0)) = Φ̄∞(T d,0),

which means the embedding tori Φ∞(T d,0) is invariant under the flow ϕt
H |Td×R2n

with the fixed frequency ω, that is, for ε ∈ O∞, Φ∞(T d,0) forms a CN (Whitney)
smooth family of invariant tori with fixed frequency ω for Hamiltonian normal form
(1.1).

Remark 4.2. Based on assumption A3), there exists an energy function in form
of Hamiltonian (1.1) such that the lower-dimensional, response invariant tori of
Hamiltonian (1.1) also form the quasi-periodic response solutions of the motion
equation (1.2), which prove the Main Theorem as well as Corollary 1.1.

5. Measure estimate

For each ν = 0, 1, · · · and k ∈ Zn\{0}, denote

Rν+1
k = Rν+1

k,1

⋃
Rν+1

k,2 ,

where

Rν+1
k,1 = {ε ∈ Oν : |detL1k,ν | ≤

γν
|k|2nτ

, Kν < |k| ≤ Kν+1},

Rν+1
k,2 = {ε ∈ Oν : |detL2k,ν | ≤

γν
|k|4n2τ

, Kν < |k| ≤ Kν+1}.

By Lemma 4.1, we obtain that

O0 \O∞ =

∞⋃
ν=0

⋃
Kν<|k|≤Kν+1

Rν+1
k . (5.1)

In the following, we will prove that the O∞ is almost full with respect to O0 in the
mixed type and it is equal to O0 in the hyperbolic type. Before measure estimate,
we introduce the following lemmas.
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Lemma 5.1. ( [24, Lemma 2.1]) Suppose that g(x) is a differentiable function on
the closure Ī ⊂ I, where I is a finite open interval. Let Ih = {x : |g(x)| ≤ h, x ∈
I}, h > 0. If x ∈ I, |dg(x)dx | ≥ D > 0, where D is a constant, then |Ih| ≤ 2hD−1.

Lemma 5.2. Assume that M is a 2n× 2n symmetric matrix, then

det(λI2n −MJ) = P2n,

det(λI4n2 − I2n ⊗ (MJ)− (MJ)⊗ I2n) = λ2nP4n2−2n,

where Pj is a j-degree, even polynomial function with respect to variable λ.

Proof. Since thatM is a symmetric matrix and J is a standard symplectic matrix,
it yields that

det(λI2n −MJ) = det[J(λI2n − (MJ))J−1] = det(λI2n − JM)

and

det(−λI2n −MJ) = (−1)2n det(λI2n +MJ)

= det(λI2n −MJ⊤)

= det[(λI2n −MJ⊤)⊤]

= det(λI2n − JM⊤)

= det(λI2n − JM⊤).

It shows that det(λI2n − MJ) = det(−λI2n − MJ), that is, det(λI2n − MJ) is a
2n-degree even polynomial function with respect to λ. By the following properties
of Kronecker product of matrices A, B, C, D in the same size and constant c,

(cA)⊗B = c(A⊗B), (A⊗B) = A⊤ ⊗B⊤, (AB)⊗ (CD) = (A⊗ C)(B ⊗D),

it is easy to prove det(λI4n2 − I2n ⊗ (MJ) − (MJ) ⊗ I2n) is an even polynomial
function with respect to variable λ.

Moreover, the eigenvalues of matrix A ⊗ I + I ⊗ A can be formulated as µij =
λi + λj , where λi are eigenvalues of A. Since det(λI2n −MJ) is an even function
with respect to λ, the eigenvalues of MJ can be expressed as ±λ1, · · · ,±λn. It
follows that matrix I2n⊗ (MJ)+(MJ)⊗I2n has at least 2n zero eigenvalues, hence
we have that

det(λI4n2 − I2n ⊗ (MJ)− (MJ)⊗ I2n) = λ2nP4n2−2n.

Remark 5.1. Denote K =
√
−1⟨k, ω⟩. Since that Mν is a symmetric matrix for

ν = 1, 2, · · · , it directly implies that

detL1k,ν := P2n, detL2k,ν = K2nP4n2−2n, (5.2)

where Pj denotes a j-degree polynomial function with respect to K.

5.1. Measure estimate for mixed type

Lemma 5.3. In the mixed type, the remaining set O∞ is almost full Lebesgue
measure satisfying that

|meas O∞|
ε∗

= 1−O(ε1−σ
∗ ),
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where 0 < ε∗ ≪ 1 is defined as in Lemma 2.3, Proposition 3.1 and Lemma 4.1,
σ := min{ 1

l1−1 , · · · , 1
ln−1}.

Proof. Remind the estimates (3.15) and (4.2), it follows that

∥Mν −A∥Oν
≤ ∥M0 −A∥Oν

+ ∥M∗ −M0∥Oν
+ ∥Mν −M0∥Oν

≤ ε,

where
A(ε) = diag{εa1m1(ε), · · · , εanmn, 1, · · · , 1},

and ai, mi, i = 1, 2, · · · , n, are defined as in (2.6).
For fixed ν and Kν < |k| ≤ Kν+1, we obtain that

detL1k,ν := P2n = K2n + α0
1K2n−2 + α0

2K2n−4 + · · ·+ α0
n−1K2 + α0

n,

where

α0
1 :=

∑
i

εaimi +O(ε),

α0
2 :=

∑
i,j

εai+ajmimj +O(ε1+an),

α0
3 :=

∑
i,j,k

εai+aj+akmimjmk +O(ε1+an−1+an),

... (5.3)

α0
n := εa1+···+anm1 · · ·mn +O(ε1+a2+···+an).

Hereafter, we use dεf(ε) to denote df(ε)
dε for simplicity, where f(ε) is a function

only depending on ε. Then we define the polynomial functions with respect to K
as follows:

P2n−2 :=
dεP2n

dεa01
:= K2n−2 + α1

1K2n−4 + α1
2K2n−6 + · · ·+ α1

n−1,

P2n−4 :=
dεP2n−2

dεa11
:= K2n−4 + α2

1K2n−6 + α2
2K2n−8 + · · ·α2

n−3K2 + α2
n−2,

...

P2n−2j :=
dεP2n−2(j−1)

dεα
j−1
1

:= K2n−2j + αj
1K2n−2j−2 + · · ·+ αj

n−j ,

...

P2 :=
dεP2n−2(n−2)

dεα
n−2
1

:= K2 + αn−1
1 ,

where, for fixed j = 1, 2, · · · , n − 1, the coefficients of polynomial function P2n−2j

satisfy the following inductive formula

αj
i :=

dεα
j−1
i+1

dεα
j−1
1

, i = 1, 2, · · · , n− j.

Based on the discussion in Appendix, for any ε ∈ (0, ε∗], there exists a positive
constant c∗ depending on ai and the norm of |mi|, i = 1, 2, · · · , n, such that

|dεαj
1| ≥ cεan−j−1|mn−j | ≥ c∗ε

σ−1, j = 0, 1, · · · , n− 1. (5.4)
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Define that

R2 := {ε ∈ Oν : |P2| ≤
ε

|k|2τ
, Kν < |k| ≤ Kν+1},

based on Lemma 5.1, we have that

|meas R2| ≤
ε2−σ

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ
,

where | · | denote the measure of the set. Now we define the following sets for
j = 1, 2, · · · , n− 1

R2j = {ε ∈ Oν : |P2j | ≤
εj

|k|2τj
, Kν < |k| ≤ Kν+1}.

Assume that for fixed 1 ≤ j0 < n − 1, we have obtained the measure estimate of
Rj0 , that is

|meas Rj0 | ≤
ε2−a1 + · · ·+ ε2−aj0

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ

≤ j0ε
2−σ

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ
.

Then we define a new set

R̃2j0+2 = {ε ∈ Oν \Rj0 : |P2j0+2| ≤
εj0+1

|k|(2j0+2)τ
Kν < |k| ≤ Kν+1}.

Since that for ε ∈ Oν \Rj0 , we have

|dεP2j0+2| = |dεαn−(j0+1)
1 ||P2j0 | ≥ c∗ε

aj0+1−1+j0
1

|k|2j0τ
,

it follows from Lemma 5.1 that

|meas R2j0+2| ≤ |meas R̃2j0+2|+ |meas R2j0 |

≤ ε2−aj0+1

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ

+
ε2−a1 + · · ·+ ε2−aj0

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ

≤ (j0 + 1)ε2−σ

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ
.

By the Mathematical inductive method, we have that

|R2n−2| ≤
(n− 1)ε2−σ

c∗

∑
Kν<|k|≤Kν+1

1

|k|2τ
,
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where

R2n−2 = {ε ∈ Oν : |P2n−2| ≤
εn−1

|k|(2n−2)τ
, Kν < |k| ≤ Kν+1}.

Since that for ε ∈ Oν \R2n−2, we have

|dεP2n| = |dεα0
1||P2n−2| ≥ c∗ε

an−1+n−1 1

|k|(2n−2)τ
.

Remind

Rν+1
k,1 = {ε ∈ Oν : |P2n| ≤

γν
|k|2nτ

, Kν < |k| ≤ Kν+1},

where γν < γ0 < ε2n
2−nγ2n, γ is the Diophantine constant. It follows that

|meas ∪∞
ν=0 ∪Kν<|k|≤Kν+1

Rν+1
k,1 | ≤ nε2−a1

c∗

∑
k∈Zd

1

|k|2τ
≤ c∗1ε

2−σ
∗ , (5.5)

where c∗1 := n
c∗

∑
k∈Zd

1
|k|2τ > 0.

Based on the same discussion for P4n2−2n, we obtain that

|meas ∪∞
ν=0 ∪Kν<|k|≤Kν+1

Rν+1
k,2 | ≤ c∗2ε

2−σ
∗ ,

where c∗2 depending on ai, n . As all above, we prove that

|meas O∞|
ε∗

= 1−
|meas

⋃∞
ν=0

⋃
Kν<|k|≤Kν+1

Rν+1
k |

ε
= 1−O(ε1−σ

∗ ).

5.2. Measure estimate for hyperbolic type

Lemma 5.4. In the hyperbolic type, the remaining set O∞ = (0, ε∗), where 0 <
ε∗ ≪ 1 is defined as in Lemma 2.3 and Proposition 3.1 and Lemma 4.1.

Proof. Remind that

detL1k,ν := K2n + α0
1K2n−2 + α0

2K2n−4 + · · ·+ α0
n−1K2 + α0

n,

where α0
i are defined as in (5.3) and

A(ε) = diag{εa1m1, · · · , εanmn, 1, · · · , 1},
mi = λi(li − 1)(x∗

i )
li−2 +O(εσ), i = 1, 2, · · · , n.

Firstly, λi < 0 guarantees mi < 0. Actually, when li is even, li − 2 is even so
that mi and λi are in the same sign. When li is odd, li − 1 is even, which implies

(−ai/λi)
1

li−1 > 0. Since that ε is sufficiently small so that xi,ε > 0 andmi < 0. Now
we prove that Rν+1

k,1 = Rν+1
k,2 = ∅ for fixed ν = 1, 2, · · · and λi < 0, i = 1, 2, · · · , n.

For the case that n is even, it is easy to see that K2n > 0 and α0
kK2n−2k > 0,

k = 1, 2, · · · , n. More specifically, α0
k > 0, K2n−2k > 0 when k is even and
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α0
k < 0, K2n−2k < 0 when k is odd. Otherwise, n is odd, it follow that K2n < 0

and α0
kK2n−2k < 0, k = 1, 2, · · · , n. As all above, we obtain that for all ε ∈ Oν ,

|detL1k,ν | > |K2n| > γ2n

|k|2nτ
>

γν
|k|2nτ

,

since γν < γ0 ≪ γ2n. Based on the same discussion, we also have that for all
ε ∈ Oν ,

|detL2k,ν | > |K4n2

| > γ4n2

|k|4n2τ
>

γν
|k|4n2τ

.

It follows that for all ν = 1, 2, · · · , Oν = O∞ = (0, ε∗) holds. We mention that,
for hyperbolic case, one can directly apply classical KAM iterations to Hamiltonian
(2.21) to prove the Main theorem. Furthermore, it is obvious that measure estimate
for hyperbolic type does not involve any derivatives of detLik,ν , i = 1, 2, with
respect to ε, hence one can choose any integer N ≥ 1 in all of the KAM iterations
mentioned above which leads that the persisted tori form a CN -smoothly family for
any integer N ≥ 1.

6. Appendix

In this subsection, we prove estimate (5.4), which is the key point for measure
estimate. Hereafter, we also use c to denote the constant independent of parameter
ε. Based on Lemma 5.2. we obtain that detL1k,ν is a 2n-th degree polynomial
function with respect to K in the following form

detL1k,ν := P2n = K2n + α0
1K2n−2 + α0

2K2n−4 + · · ·+ α0
n−1K2 + α0

n, (6.1)

where

α0
1 :=

∑
i

εaimi +O(ε),

α0
2 :=

∑
i,j

εai+ajmimj +O(ε1+an),

α0
3 :=

∑
i,j,k

εai+aj+akmimjmk +O(ε1+an−1+an),

...

α0
n := εa1+···+anm1 · · ·mn +O(ε1+a2+···+an).

Denote δ := min{|ai − aj |, |ai| : 1 ≤ i, j ≤ n} and rewrite the coefficients of P2n

as follows:

α0
1 := εanmn + εan+δm̃0

1(ε),

α0
2 := εan−1+anmn−1mn + εan−1+an+δm̃0

2(ε),

α0
3 := εan−2+an−1+anmn−2mn−1mn + εan−2+an−1+an+δm̃0

3(ε),

... (6.2)
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α0
k := εan−k+1+···+anmn−k+1 · · ·mn + εan−k+1+···+an+δm̃0

k(ε),

...

α0
n := εa1+···+anm1 · · ·mn + εa1+a2+···+an+δm̃0

n(ε),

where

m̃0
k :=

∑
(i1,···ik)∈I

εai1+···+aik
−an−k+1−···−anmii · · ·mik +O(ε1+an−k+2−an−k+1),

and I := {(i1, · · · , ik) : 1 ≤ ik ≤ n, (i1, · · · , ik) ̸= (n − k + 1, · · · , n)}. Based on
Lemma 2.2, we obtain the following estimates for p = 1, 2, · · · , N , k = 1, 2, · · · , n,
that is

∥(Πk−1
p=0mn−p)∥ ≤ c, ∥m̃0

i (ε)∥ ≤ c,

∥εpdpε(Πk−1
p=0mn−p)∥ ≤ cεδ, ∥εpdpεm̃0

i (ε)∥ ≤ c.

As above, we define the polynomial functions with respect to K as follows:

P2n−2 :=
dεP2n

dεa01
:= K2n−2 + α1

1K2n−4 + α1
2K2n−6 + · · ·+ α1

n−1,

P2n−4 :=
dεP2n−2

dεa11
:= K2n−4 + α2

1K2n−6 + α2
2K2n−8 + · · ·α2

n−3K2 + α2
n−2,

· · ·

P2n−2j :=
dεP2n−2(j−1)

dεα
j
1

:= K2n−2j + αj
1K2n−2j−2 + · · ·+ αj

n−j ,

· · ·

P2 :=
dεP2n−2(n−2)

dεα
n−2
1

:= K2 + αn−1
1 ,

where, for fixed j = 1, 2, · · · , n− 1, the coefficients

αj
i :=

dεα
j−1
i+1

dεα
j−1
1

, i = 1, 2, · · · , n− j. (6.3)

Now we calculate the coefficients. Firstly, we have

|dεα0
1| = |anεan−1mn + εandεmn + εan+δ−1m̃0

1(ε) + εan+δdεm̃
0
1(ε)| (6.4)

≥ anε
an−1|mn||1−

|εdεmn|
an|mn|

− εδ
|m̃0

1(ε)|
an|mn|

− εδ
|εdεm̃0

1(ε)|
an|mn|

|

>
anε

an−1|mn|
2

.

Denote m̂0 := (εdεmn)/an and m̃0 := (m̃0
1 + εdlεm̃

0
1)/an, we simply rewrite dεα

0
1

as

dεα
0
1 := anε

an−1(mn + m̂0(ε) + εδm̃0(ε)).

It follows that for p = 0, 1 · · · , N − 1,

∥εpdpm̂0∥ ≤ cεδ, ∥εpdpm̃0∥ ≤ c. (6.5)
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By the inductive formula (6.3), we obtain the coefficients of P2n−2 as follows:

α1
1 =

dεα
0
2

dεα0
1

=
c11ε

an−1mn−1mn + εan−1m̂1
1 + εan−1+δm̃1

1

mn + m̂0 + εδm̃0
,

α1
2 =

dεα
0
3

dεα0
1

=
c12ε

an−2+an−1mn−2mn−1mn + εan−2+an−1m̂1
2 + εan−2+an−1+δm̃1

2

mn + m̂0 + εδm̃0
,

...

α1
k =

dεα
0
k+1

dεα0
1

=
c1kε

∑k−1
p=0 an−1−p((Πk−1

p=0mn−1−p)mn + ε
∑k−1

p=0 an−1−pm̂1
k + ε

∑k−1
p=0 an−1−p+δm̃1

k)

mn + m̂0 + εδm̃0
,

...

α1
n−1 =

dεα
0
n

dεα0
1

=
c1n−1ε

∑n−2
p=0 an−1−p((Πn−2

p=0mn−1−p)mn + m̂1
n−1 + εδm̃1

n−1)

mn + m̂0 + εδm̃0
,

where

c1k :=
an−k + · · ·+ an

an
, m̂1

k := εdε(mn−k · · ·mn). (6.6)

Since that |mn + εdεmn + εδm̃0
1(ε)| > 0, the coefficients α1

k are well defined. More-
over, we have that for p = 0, 1, · · · , N − 1,

∥εpdpεm̂1
k∥ ≤ cεδ, ∥εpdpεm̃1

k(ε)∥ ≤ c.

Then, we calculate the derivative of α1
1, that is

dεα
1
1 =

c11an−1ε
an−1−1(mn−1m

2
n + m̂1(ε) + εδm̃1(ε))

(mn + m̂0 + εδm̃0)2
, (6.7)

where

m̂1 := mn−1mnm̂
0 + (εdεmn−1mn)mn/an−1 + (εdmn−1mn)m̂

0/an−1

+m̂1
1m̂

0/c11 + (ε(dεmn−1mn) + ε2(d2εmn−1mn))(mn + m̂0)/c11

−mn−1mn(εdεmn)/an−1 + m̂1
1mn/c

1
1 −mn−1mn(εdεmn)/(an−1an)

−mn−1mn(ε
2d2εmn)/(an−1an)− m̂1

1εdεmn − m̂1
1(εdεm̂

0),

m̃1 := mn−1mnm̃
0 + εdεmn−1mnm̃

0/an−1 + m̂1
1m̂

0/c11

−m̂1
1(m̂

0 + εdεm̃
0) + (εdεm̃

1
1 + (an−1 + δ))(mn + m̂0 + εδm̃0)/c11an−1

−mn−1mn(m̃
0 + (εdεm̃

0))/an−1

−m̃1
1(ε∂εmn + εdεm̂

0 + εδm̃0 + εδ+1dεm̃
0).

It is obvious that for p = 0, 1, · · · , N − 2, we have

∥εpdpεm̂1∥ ≤ cεδ, ∥εpdpεm̃1(ε)∥ ≤ c.
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It follows that

|dεα1
1| ≥ c11an−1ε

an−1−1|mn−1|/2 > 0. (6.8)

Based on (6.7) and inductive formula (6.3), we obtain the following calculation
results:

α2
1 =

dεα
1
2

dεα1
1

=
c21ε

an−2mn−2mn−1m
2
n + εan−2m̂2

1(ε) + εan−2+δm̃2
1(ε)

mn−1m2
n + m̂1 + εδm̃1

,

α2
2 =

dεα
1
3

dεα1
1

=
c22ε

an−3+an−2(mn−3mn−2mn−1m
2
n + m̂2

2 + εδm̃2
2)

mn−1m2
n + m̂1 + εδm̃1

,

...

α2
k =

dεα
1
k+1

dεα1
1

=
c2kε

∑k−1
p=0 an−2−p(Πk−1

p=0mn−2−pmn−1m
2
n + m̂2

k + εδm̃2
k)

mn−1m2
n + m̂1 + εδm̃1

,

...

α2
n−2 =

dεα
1
n−1

dεα1
1

=
c2n−2ε

∑n−3
p=0 an−2−p(Πk−1

p=0mn−2−pmn−1m
2
n + m̂2

n−1 + εδm̃1
n−1)

mn−1m2
n + m̂1 + εδm̃1

,

where, for k = 1, 2, · · · , n− 2, we have

|εpdpεm̂2
k| ≤ cεδ, |εpdpεm̃2

k| ≤ c, p = 0, 1, · · · , N − 2,

and

c2k :=
c1k+1

∑k
p=0 an−1−p

c11an−1
> 0.

Now assume that we have calculated out the coefficients of P2n−2j for j = 1, 2, · · · , ν
and obtain the estimate

|dεαj
1| ≥ cj1an−jε

an−j−1|mn−j |/2 > cεσ−1, (6.9)

where cj1 :=
cj−1
2

∑1
p=0 an−j+1−p

cj−1
2 an−j+1

for j = 1, 2, · · · , ν − 1, c12 is defined in (6.6). Write

the coefficients of polynomial function P2n−2(ν−1) as follows

αν
1 =

cν1ε
an−νmn−νΠ

ν−1
p=0m

2ν−1−p

n−p + εan−ν m̂ν
1(ε) + εan−ν+δm̃ν

1

Πν−1
p=0m

2ν−1−p

n−p + m̂ν−1 + εδm̃ν−1
,

αν
2 =

cν2ε
an−ν−1+an−ν (mn−ν−1mn−νΠ

ν−1
p=0m

2ν−1−p

n−p + m̂ν
2 + εδm̃ν

2)

Πν−1
p=0m

2ν−1−p

n−p + m̂ν−1 + εδm̃ν−1
,

...

αν
k =

cνkε
∑k−1

p=0 an−ν−p(Πk−1
p=0mn−ν−pΠ

ν−1
p=0m

2ν−1−p

n−p + m̂ν
k + εδm̃ν

k)

Πν−1
p=0m

2ν−1−p

n−p + m̂ν−1 + εδm̃ν−1
,

...

αν
n−ν =

cνn−νε
∑n−ν−1

p=0 an−ν−p(Πn−ν−1
p=0 mn−ν−pΠ

ν−1
p=0m

2ν−1−p

n−p + m̂ν
n−ν + εδm̃ν

n−ν)

Πν−1
p=0m

2ν−1−p

n−p + m̂ν−1 + εδm̃ν−1
,
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where, the terms m̂ν−1, m̃ν−1, m̂ν
k, m̃ν

k satisfy that

∥εpdεm̂ν−1∥ ≤ cεδ, ∥εpdεm̃ν−1∥ ≤ c, p = 0, 1, 2, · · · , N − ν,

∥εpdεm̂ν
k∥ ≤ cεδ, ∥εpdεm̃ν

k∥ ≤ c, p = 0, 1, 2, · · · , N − ν, k = 1, 2, · · · , n− ν,

and

cνk :=
cν−1
k+1

∑k
p=0 an−ν+1−p

cν−1
1 an−ν+1

, k = 1, 2, · · · , n− ν.

Since that |Πν−1
p=0m

2ν−1−p

n−p +m̂ν−1+εδm̃ν−1| > 0, the coefficients αν
k, k = 1, 2, · · · , n−

ν, are well defined. For the next step, we calculate the derivative of αν
1 as follows:

dεα
ν
1 =

cν1an−νε
an−ν−1(mn−νΠ

ν−1
p=0m

2ν−p

n−p + m̂ν(ε) + εδm̃ν(ε))

(Πν−1
p=0m

2ν−1−p

n−p + m̂ν−1 + εδm̃ν−1)2
, (6.10)

where, Λ := Πν−1
p=0m

2ν−1−p

n−p and

m̂ν := εdεmn−νΛm̂
ν−1 + m̂ν

1(Λ + m̂ν−1)/cν1 + εdεm̂
ν
1(Λ + m̂ν−1)/cν1

−mn−νΛ(εdεΛ + εdεm̂
ν−1)− m̂ν

1(εdεΛ + εdεm̂
ν−1)/cν1 ,

m̃ν := (m̃ν
1 + εdεm̃

ν
1)(Λ + m̂ν−1 + εδm̃ν−1)/cν1

−m̃ν
1(εdεΛ + εdεm̂

ν−1 + εδm̃ν−1 + ε1+δdεm̃
ν−1)/cν1 .

It is obvious that for p = 0, 1, · · · , n− ν − 1

∥εpdpεm̂ν∥ ≤ cεδ, ∥εpdpεm̃ν∥ ≤ c.

It follows that

|dεαν
1 | ≥ cν1an−νε

an−ν−1|mn−ν |/2 > c∗ε
σ−1, (6.11)

where c∗ depends on ai and the norm of mi, i = 1, 2, · · · , n. When ν = n− 1, the
process ends; when ν < n − 1, by the inductive formula (6.3), the coefficients for
polynomial function P2n−2(ν+1) are as follows

αν+1
1 =

cν+1
1 εan−ν−1mn−ν−1(Π

ν
p=0m

2ν−p

n−p + m̂ν+1
1 (ε) + εδm̃ν+1

1 )

Πν
p=0m

2ν−p

n−p + m̂ν + εδm̃ν
,

αν+1
2 =

cν+1
2 εan−ν+an−ν−1(mn−νmn−ν−1Π

ν
p=0m

2ν−p

n−p + m̂ν+1
2 + εδm̃ν+1

2 )

Πν
p=0m

2ν−p

n−p + m̂ν + εδm̃ν
,

...

αν+1
k =

cν+1
k ε

∑k−1
p=0 an−ν−1−p(Πk−1

p=0mn−ν−1−pΠ
ν
p=0m

2ν−p

n−p + m̂ν+1
k + εδm̃ν+1

k )

Πν
p=0m

2ν−p

n−p + m̂ν + εδm̃ν
,

where

cν+1
k :=

cνk+1

∑k
p=0 an−ν−p

cν1an−ν
> 0

for k = 1, 2, · · · , n − ν − 1 and ν = 1, 2, · · · , n − 2. Together with (6.4) and (6.8),
by the Mathematical Inductive method, we obtain that estimate (6.11) holds for
ν = 0, 1, 2, · · · , n− 1.
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Remind that
detL2k,ν := K2nP4n2−2n,

where

P4n2−2n = K4n2−2n + α0
1K4n2−2n−2 + α0

2K4n2−2n−4

+ · · ·+ α0
2n2−n−1K2 + α0

2n2−n.

By simple calculation, we obtain the coefficients of P4n2−2n as follows:

α0
1 := εanmn + εan+δm̃0

1,

α0
2 := ε2anm2

n + ε2an+δm̃0
2,

...

α0
4n−3 := ε(4n−3)anm4n−3

n + ε(4n−3)an+δm̃0
4n−3,

...

α0
8n−10 := ε(4n−3)an+(4n−7)an−1m4n−3

n m4n−7
n−1 + ε(4n−3)an+(4n−7)an−1+δm̃0

8n−10,

...

α0
4n2−2n := ε

∑n−1
p=0 (4n−3−4p)an−pΠn−1

p=0m
4n−3−4p
n−p + ε

∑n−1
p=0 (4n−3−4p)an−pm̃0

2n2−n,

where, for fixed k = 1, 2, · · · , 2n2−n, the reminder terms satisfy that∥εp∂εm̃0
k∥ ≤ c.

Observing the main terms in the coefficients, they are nonzero terms and the order
of ε is increasing. By the same discussion as above, we prove that there exists a
positive constant c depending on ai and the norm of mi, i = 1, 2, · · · , n, that is

|αj
1| ≥ cεσ−1, j = 0, 1, · · · , 2n2 − n− 1.
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