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Abstract We have developed a highly accurate numerical method called
Bernoulli-RKM to solve nonlinear singular boundary value problems (SBVPs).
This approach uses Bernoulli polynomials and the traditional reproducing ker-
nel method (RKM) and applies the quasi-linearization method to linearize the
SBVPs. We have discussed the error and convergence of Bernoulli-RKM and
provided numerical examples to demonstrate its potential in solving nonlinear
SBVPs. Additionally, we have compared our results with those in existing
literature.
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1. Introduction

One significant class of boundary value problems that plays a vital role in technology
and science is the nonlinear SBVPs. These problems appear in the modeling of
nuclear physics, gas dynamics, chemical reactions, electrohydrodynamics, and many
engineering applications (see [15, 16, 19] and references therein). In this work, we
consider the following SBVP with nonlinear source function g(x, ν(x)) [26,46,51]:

ν′′(x) +
λ

x
ν′(x) = g(x, ν(x)), x ∈ (0, 1], λ ≥ 0, (1.1)

with Neumann and Robin boundary conditions (NBCs/RBCs):

ν′(0) = 0, γν(1) + ζν′(1) = ρ, (1.2)

where γ > 0, ζ ≥ 0 and ρ is a real constant. It is assumed that ∂g
∂ν ≥ 0 for each of

x ∈ (0, 1], and g(x, ν), ∂g
∂ν are continuous on (0, 1]. The existence and uniqueness

of the solutions to problem (1.1)-(1.2) are discussed by Pandey and Verma [28].
Problem (1.1)-(1.2) for different λ appears in many chemical, physical and biological
models. For instance, below is a brief introduction to some types.

(i) Eq. (1.1) with λ = 2 and g(x, ν) =
σν

ν + ϱ
, σ > 0, ϱ > 0, occurs during

modeling of steady-state oxygen diffusion uptake kinetics [19].
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(ii) Eq. (1.1) with λ = 2 and g(x, ν) = −σe−µν , σ > 0, µ > 0, occurs during
modeling of the distribution of heat source in the human head [15].

(iii) Eq. (1.1) with λ = 1, 2 and g(x, ν) = θeν , (θ is a physical parameter), occurs
in studying the electric double layer in a salt-free solution and the theory of
thermal explosions [3].

(iv) Eq. (1.1) with λ = 0, 1, 2 and g(x, ν) = φ2νm, (φ > 0 and m ∈ R), occurs in
studying the reaction-diffusion process in a porous catalyst [1].

(v) Eq. (1.1) with λ = 2 and g(x, ν) = −ν5, appears from the study of equilibrium
of the isothermal gas sphere [32].

The existence of a singularity at x = 0 is one of the difficulties that researchers
face when solving problem (1.1)-(1.2). There are two classes of methods for solv-
ing SBVPs: numerical and analytical. Although most of the analytical techniques
provide detailed information about the existence and uniqueness of the solutions,
however, some criticisms are inflicted on these techniques. Some advantages and
disadvantages of analytical techniques for solving SBVPs can be seen in [48]. Due
to existing difficulties in analytical techniques, researchers have explored numerical
approaches to solve SBVPs. For instance, an approach based on the Adomian de-
composition method and Green’s function [45], Sinc-Galerkin method [1], variational
iteration method involving Adomian polynomials [4], Quasi-Newton’s method and
the simplified reproducing kernel method (SRKM) [51], SRKM and least squares
method [26], advanced Adomian decomposition method [46], improved differential
transform method [47], a technique based on the operational matrix of the derivative
of the orthonormal Bernoulli polynomials [25], Cubic spline method [17], modified
homotopy analysis method [32], modified homotopy perturbation algorithm [31],
domain decomposition optimal homotopy analysis method [38], discrete optimized
homotopy analysis method [39], iterative approach based on an improved homo-
topy analysis method [33], and B-spline collocation method [34], are presented for
solving problem (1.1)-(1.2). Also, in [20], Liu et al. developed a boundary shape
function iterative method, and in [36] Roul et al. employed a finite difference
method for solving problem (1.1)-(1.2) with source function g(x, ν, ν′). Among
other available numerical methods for solving SBVPs, the spectral poly-sinc col-
location technique [12], combination of the differential transform method and the
Padé approximations and Chebyshev finite difference method [42], Legendre repro-
ducing kernel method [48], compact finite difference method [37], modified Lucas
polynomials derivative operational matrix method [49], a hybrid stochastic numer-
ical solver [16], DE sinc-collocation method [13], a method based on sextic B-spline
collocation approach [40], two methods based on quintic B-spline collocation ap-
proach [41], and a non-uniform mesh optimal cubic B-spline collocation method [35],
can be mentioned. Also, the authors of [2] deal with the spectral problems associ-
ated with SBVPs and, Pandey et al. [27] described an analytical method based on
the combination of Newton’s quasi-linearization method and the Picard iteration
method for solving a class of doubly SBVPs. Moreover, for some other useful tech-
niques on this subject we refer the interested reader to a method based on the linear
B-spline functions [18], local radial basis functions [8], homotopy analysis method
[9], and the Adomian decomposition method [10].

Historically, the idea of reproducing kernels is not new. In 1908, Zaremba intro-
duced this concept while considering harmonic functions [50]. In recent years, there
have been many publications on solving different types of problems, including SB-
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VPs, using RKM (see say [6,26,48,51] and references therein). Using the traditional
RKM, a lot of time is needed in the Gram-Schmidt orthogonalization process [26].
Furthermore, classical RKM requires selecting a dense set of points to obtain a
highly accurate solution [48]. To overcome these disadvantages, some researchers
have applied different techniques to traditional RKM (see for example [5,14,43,48]).

In the present research, we improve the traditional RKM for solving problem
(1.1)-(1.2). We use the idea of traditional RKM and the properties of Bernoulli
polynomials to present a new Bernoulli-RKM. The novelties of this research include:

(i) The new technique introduced in this paper removes the necessity for an
orthogonalization procedure, a step that is essential in the traditional RKM.

(ii) The Bernoulli-RKM does not depend on a dense set of points; rather, it
employs collocation points. Consequently, we expect the speed and accuracy
of Bernoulli-RKM to be improved compared to traditional RKM.

(iii) Other SBVPs can be solved using this approach with certain adjustments.

The remainder of this paper is organized as follows. Section 2 introduces
Bernoulli polynomials and shows how to create reproduction kernels in polyno-
mial form. In Section 3, we describe Bernoulli-RKM in full detail to solve problem
(1.1)-(1.2). Also in this section, we discuss the convergence analysis of the Bernoulli-
RKM. In Section 4, several numerical examples are presented and compared with
the results of other methods in the literature. Section 5 is related to our conclusion
about the Bernoulli-RKM.

2. Orthonormal Bernoulli polynomials and corre-
sponding reproducing kernel space

Here we describe some of the preparations used in this study.

2.1. Orthonormal Bernoulli polynomials

The well-known Bernoulli polynomials Bi(x), i = 0, 1, . . . of order i are defined on
the unit interval [0, 1] as [22,30]:

Bi(x) =
i∑

τ=0

(
i

τ

)
ϕτx

i−τ ,

where ϕτ , (τ = 0, 1, . . . , i) are Bernoulli numbers, which can be defined by

ϕ0 = 1, ϕi = −
i−1∑
τ=0

(
i

τ

)
ϕτ

i+ 1− τ
, i ≥ 1.

Some properties of these polynomials can be seen in [24]. It is noteworthy that
Bernoulli polynomials are not orthogonal. However, the orthonormal Bernoulli
polynomials (OBPs) can be obtained using the Gram-Schmidt orthogonalization
process. As stated in [24], the analytical form of OBPs on [0, 1] is as follows:

ψi(x) =

i∑
τ=0

βτ
i x

i−τ , i = 0, 1, . . . ,
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where βτ
i is given as

βτ
i =

√
2i+ 1(−1)τ

(
i

τ

)(
2i− τ

i− τ

)
.

These polynomials create an orthonormal basis for L2[0, 1]. Note that there are
several advantages to approximating functions using Bernoulli polynomials instead
of Legendre polynomials [22].

2.2. Using OBPs to create a new reproducing kernel space

We start by introducing some concepts. For a given set X, we consider

W = {ν(ξ)| ν(ξ) is a real-valued or complex function, ξ ∈ X} ,

as a Hilbert space with an inner product

⟨ν(ξ),w(ξ)⟩W , ν(ξ),w(ξ) ∈ W.

Definition 2.1. ( [6, page 3]). If for each fixed x ∈ X there exists a function
K(ξ, x), such that K(ξ, x) ∈ W and also ∀ν(ξ) ∈ W we have

⟨ν(ξ),K(ξ, x)⟩W = ν(x),

then K(ξ, x) is known as the reproducing kernel of W and W is known as the
reproducing kernel space.

Also, we use Wp(n) [0, 1] to represent the inner product space of polynomials of
degree ≤ n on [0, 1]. For any ν,w ∈ Wp(n) [0, 1], we define the inner product and
the norm as:

⟨ν,w⟩Wp(n) [0,1] =

∫ 1

0

ν(x)w(x) dx, ∥ν∥Wp(n) =
√
⟨ν, ν⟩Wp(n) ,

respectively. Since Wp(n) [0, 1] is a closed finite-dimensional subspace of L2[0, 1], we
know that Wp(n) [0, 1] is a (n+1)-dimensional Hilbert space [11]. Therefore, we have
⟨ν,w⟩Wp(n) = ⟨ν,w⟩L2 and ∥ν∥Wp(n) = ∥ν∥L2 . Also, it is clear that {ψi(x)}ni=0 is
an orthonormal basis for Wp(n) [0, 1].

Theorem 2.1. Wp(n) [0, 1] is a reproducing kernel space and its polynomial repro-
ducing kernel function is

K(ξ, x) =

n∑
i=0

ψi(x)ψi(ξ). (2.1)

Proof. See [6, Example 1.1.2].

3. Solution of problem (1.1)-(1.2) by Bernoulli-RKM

Since Eq. (1.1) is nonlinear, we first need to linearize this equation. We use the
quasi-linearization method (QLM) [21,27,29] to change the nonlinear Eq. (1.1) into
a sequence of linear equations. Then we use the Bernoulli-RKM to solve these linear
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equations at each iteration. Utilizing the QLM to problem (1.1)-(1.2) determines
the (k + 1)th iterative approximation νk+1, (k = 0, 1, 2, · · · ) as a solution of the
following linear SBVP:

ν′′k+1(x) +
λ

x
ν′k+1(x) + dk(x)νk+1(x) = bk(x), (3.1)

ν′k+1(0) = 0, γνk+1(1) + ζν′k+1(1) = ρ, (3.2)

where dk(x) = −gν
(
x, νk

)
and bk(x) = g

(
x, νk

)
− νkgν

(
x, νk

)
. Here, gν = ∂g/∂ν is

the functional derivative of g (x, ν).

Remark 3.1. Mandelzweig et al. [21] formulated and explained the general con-
ditions under which second-order and uniform convergence can be proved in the
QLM for solving nth-order nonlinear ordinary differential equations. The pre-
dicted trend is that this method produces rapid convergence. In other words, if
∆νk+1(x) = ν(x)− νk+1(x) be the difference between the exact solution of problem
(1.1)-(1.2) and the (k + 1)-th iteration in Eq. (3.1), then ∥∆νk+1∥ ≤ µ∥∆νk∥2, for
some constant µ. However, in order to have a fast convergence, a suitable initial
guess should be chosen. See [21] for more details.

Since Eq. (3.1) exhibits a singularity at x = 0, we will first apply L’Hospital’s
rule to the second term of Eq. (3.1) to address the singularity at the origin [17].
We obtain

ν′′k+1(x) + lk(x)ν
′
k+1(x) + wk(x)νk+1(x) = hk(x), k = 0, 1, 2, · · · , (3.3)

where

lk(x) =


0, x = 0,

λ

x
, x ̸= 0,

wk(x) =


dk(0)

λ+ 1
, x = 0,

dk(x), x ̸= 0,

and

hk(x) =


bk(0)

λ+ 1
, x = 0,

bk(x), x ̸= 0.

Now, let us rewrite Eq. (3.3) along with boundary conditions given in (3.2), in
the following operator form:Lνk+1 = hk(x), k = 0, 1, 2, · · · ,

ν′k+1(0) = 0, γνk+1(1) + ζν′k+1(1) = ρ.
(3.4)

In Eq. (3.4), the linear operator L : Wp(n) [0, 1] → L2[0, 1] is defined as:

Lνk+1 = ν′′k+1(x) + lk(x)ν
′
k+1(x) + wk(x)νk+1(x). (3.5)

Lemma 3.1. Let wk(x) be a continuous function on the interval [0, 1]. Then L is
a bounded linear operator.

Proof. The proof is similar to Lemma 2.1 in [26].
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3.1. Construction of a new basis for Wp(n) [0, 1]

Let L∗ be the conjugate operator of L, and let κ(ξ, x) be the kernel function of
L2[0, 1]. Also, assume that {xi}n−1

i=1 are any n−1 distinct nodes in (0, 1). We define

Φi(x) = L∗
ξκ(ξ, x)|ξ=xi

, i = 1, 2, · · · , n− 1.

In this equation, L∗
ξ means that L∗ applies to the function of ξ. Using the properties

of reproducing kernel space [6, 26], we obtain the following lemma:

Lemma 3.2. Φi(x) = LξK(ξ, x)|ξ=xi
, i = 1, 2, · · · , n− 1.

Proof.

Φi(x) = ⟨L∗
ξκ(ξ, ϑ)|ξ=xi

,K(ϑ, x)⟩Wp(n) = ⟨κ(ξ, ϑ),LϑK(ϑ, x)|ϑ=xi
⟩L2 = LξK(ξ, x)|ξ=xi

.

Also, according to the NBCs and RBCs given in Eq. (1.2), we define the follow-
ing two bases Θ1(x) and Θ2(x).

Θ1(x) =
∂

∂ξ
K(ξ, x)|ξ=0, Θ2(x) = γK(ξ, x)|ξ=1 + ζ

∂

∂ξ
K(ξ, x)|ξ=1.

Through a process similar to Theorem 2.1 in [26], we obtain the following result:

Theorem 3.1. {Φ1(x), Φ2(x), · · · , Φn−1(x), Θ1(x), Θ2(x)} are linearly independent
in Wp(n) [0, 1].

Since dim(Wp(n) [0, 1]) = n+1, Theorem 3.1 ensures that a set {Φ1, · · · , Φn−1, Θ1,
Θ2} is the new basis of Wp(n) [0, 1].

3.2. Applying the Bernoulli-RKM on Eq. (3.4)

In this part, we use the Bernoulli-RKM along with the spectral collocation method
to solve the linear differential equations in Eq. (3.4). For this purpose, we use the
following collocation points:

xi =
1

2

(
cos

(
iπ

n

)
+ 1

)
, i = 1, · · · , n− 1.

To solve Eq. (3.4), let νn,k+1 ∈ Wp(n) [0, 1] be the approximation of νk+1 in (k+1)-
iteration. Using Theorem 3.1, νn,k+1 can be presented as:

νn,k+1(x) =

n−1∑
j=1

zj,k+1Φj(x) + s1,k+1Θ1(x) + s2,k+1Θ2(x), (3.6)

where z1,k+1, z2,k+1, · · · , zn−1,k+1, s1,k+1, s2,k+1 are unknown coefficients. We find
νn,k+1, (k = 0, 1, · · · ,Max− 1) such that:{

Lνn,k+1(xi) = hn,k(xi), i = 1, · · · , n− 1,

ν′n,k+1(0) = 0, γνn,k+1(1) + ζν′n,k+1(1) = ρ.
(3.7)
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Here,

hn,k(x) =


g
(
0, νn,k

)
− νn,kgνn,k

(
0, νn,k

)
λ+ 1

, x = 0,

g
(
x, νn,k

)
− νn,kgνn,k

(
x, νn,k

)
, x ̸= 0,

is a known function, and Max is the maximum number of iterations.

Lemma 3.3. The linear system of equations given in Eq. (3.7), is equivalent to:
⟨νn,k+1, Φi⟩Wp(n) = hn,k(xi), i = 1, · · · , n− 1, k = 0, 1, · · · ,Max− 1,〈
νn,k+1, Θ1

〉
Wp(n) = 0,〈

νn,k+1, Θ2

〉
Wp(n) = ρ.

(3.8)

Proof. Let νn,k+1 ∈ Wp(n) [0, 1] be the exact solution of (3.7). Using the properties
of the reproducing kernel, we have

⟨νn,k+1, Φi⟩Wp(n) =
〈
νn,k+1,L∗

ξκ(ξ, x)|ξ=xi

〉
Wp(n)

=
〈
Lνn,k+1, κ(ξ, x)|ξ=xi

〉
L2

= Lνn,k+1(xi)

= hn,k(xi), i = 1, · · · , n− 1,

⟨νn,k+1, Θ1⟩Wp(n) =
〈
νn,k+1,

∂

∂ξ
K(ξ, x)|ξ=0

〉
Wp(n)

=
∂

∂ξ

〈
νn,k+1K(ξ, x)

〉
|ξ=0

=
∂

∂ξ
νn,k+1|ξ=0

= ν′(0)

= 0,〈
νn,k+1, Θ2

〉
Wp(n) =

〈
νn,k+1, γK(ξ, x)|ξ=1 + ζ

∂

∂ξ
K(ξ, x)|ξ=1

〉
Wp(n)

= γ
〈
νn,k+1,K(ξ, x)|ξ=1

〉
Wp(n) +

〈
νn,k+1, ζ

∂

∂ξ
K(ξ, x)|ξ=1

〉
Wp(n)

= γνn,k+1(1) + ζ
∂

∂ξ

〈
νn,k+1,K(ξ, x)

〉
|ξ=1

= γνn,k+1(1) + ζ
∂

∂ξ
νn,k+1|ξ=1

= ρ.

Theorem 3.2. The Bernoulli-RKM (3.7) is uniquely solvable.

Proof. Using Lemma 3.3, by substituting (3.6) into the linear system (3.8), we
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obtain

n−1∑
j=1

zj,k+1⟨Φj , Φi⟩+ s1,k+1⟨Θ1, Φi⟩+ s2,k+1⟨Θ2, Φi⟩=hn,k(xi), i=1, · · · , n− 1,

n−1∑
j=1

zj,k+1⟨Φj , Θ1⟩+ s1,k+1⟨Θ1, Θ1⟩+ s2,k+1⟨Θ2, Θ1⟩ = 0,

n−1∑
j=1

zj,k+1⟨Φj , Θ2⟩+ s1,k+1⟨Θ1, Θ2⟩+ s2,k+1⟨Θ2, Θ2⟩ = ρ.

(3.9)
Let us define an (n+ 1)-dimensional vector −→z as:

−→z T
= [z1,k+1, z2,k+1, ..., zn−1,k+1, s1,k, s2,k]

where T indicates transposition. The matrix form of the linear system (3.9) may
be written as:

G−→z =
−→
h , (3.10)

where

G =


⟨Φi, Φj⟩(n−1)×(n−1) ⟨Θj , Φi⟩(n−1)×2

⟨Φj , Θi⟩2×(n−1) ⟨Θi, Θj⟩2×2


(n+1)×(n+1)

,
−→
h =



hn,k(x1)

hn,k(x2)

...

hn,k(xn−1)

0

ρ


. (3.11)

As can be seen from Eq. (3.11), the coefficient matrix G in Eq. (3.10) is a Gram
matrix, so G is symmetric and positive definite. As a result, the coefficient matrix
G is invertible and the linear system (3.8) has a unique solution.

3.3. Convergence analysis and error estimation

This part describes the convergence and error analysis of Bernoulli-RKM. Assume
that ν(x) and νk+1(x) are the exact solutions of problem (1.1)-(1.2), and Eq. (3.4),
respectively. Also, we assume that νn,k+1(x) is the approximation of νk+1(x) ob-
tained by (3.7). Using triangle inequality, we get:

∥ν(x)− νn,k+1(x)∥ ≤ ∥ν(x)− νk+1(x)∥+ ∥νk+1(x)− νn,k+1(x)∥.

We have already, see Remark 3.1, talked about the first term ∥ν(x)− νk+1(x)∥. It
remains to obtain an upper bound for ∥νk+1(x)− νn,k+1(x)∥.

Lemma 3.4. If Rn+1νk+1 denotes the orthogonal projection of νk+1 on Wp(n) [0, 1],
then νn,k+1 = Rn+1νk+1.
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Proof. Similar to the proof of Lemma 3.3, we can show that Rn+1νk+1 holds in
(3.8). The unique solvability of (3.8) shows that νn,k+1 = Rn+1νk+1.

Theorem 3.3. Suppose νk+1(x) is sufficiently smooth. Then

∥νk+1(x)− νn,k+1(x)∥ ≤ 1

22n+1(n+ 1)!
max
x∈[0,1]

|ν(n+1)
k+1 (x)|. (3.12)

Proof. Using Lemma 3.4, we can conclude that

⟨νk+1 − Rn+1νn,k+1︸ ︷︷ ︸
νn,k+1

, ωn⟩ = 0, ∀ωn ∈ Wp(n) [0, 1]. (3.13)

We have from (3.13) that (see say [44])

∥νk+1 − νn,k+1∥ ≤ inf
ωn∈Wp(n) [0,1]

∥νk+1 − ωn∥.

Let qn(x) ∈ Wp(n) [0, 1] be the interpolation polynomial which interpolates νk+1(x)
at distinct points {x̂i}n+1

i=1 in [0, 1] (i.e., qn(x̂i) = νk+1(x̂i)). If we choose Chebyshev
nodes on [0, 1] as:

x̂i =
1

2
+

1

2
cos

(
(2i− 1)π

2n+ 2

)
, i = 1, ..., n+ 1,

then the interpolation error is given by

|νk+1(x)− qn(x)| ≤
1

22n+1(n+ 1)!
max
x∈[0,1]

|ν(n+1)
k+1 (x)|. (3.14)

This completes the proof.

4. Numerical experiments

This section contains six illustrations that demonstrate the effectiveness and accu-
racy of our approach. The Examples 4.1-4.5 directly correspond to Eq. (1.1) with
nonlinear source functions of types (i), (ii), (iii), (iv), and (v). Furthermore, Ex-
ample 4.6 represents a derivative-dependent doubly SBVP as detailed in [33]. For
problems for which the exact solution is known, we evaluate the accuracy of the
method by reporting the following maximum absolute error:

MAEn,Max = max
x∈[0,1]

|ν(x)− νn,Max(x)|,

where, ν(x) represents the exact solution, and νn,Max(x) is an approximate solution
obtained from (3.7) using n−1 collocation points. Also, for problems where we don’t
know the exact solution, we assess the efficiency and accuracy of the Bernoulli-RKM
by reporting the absolute residual error function ERn,Max(x) and the maximum
absolute residual error MERn,Max, which are defined respectively as:

ERn,Max(x) =
∣∣∣Lνn,Max(x)− hn,Max−1(x)

∣∣∣,
and

MERn,Max = max
x∈[0,1]

(ERn,Max(x)).
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Moreover, as mentioned in Remark 3.1, it is necessary to obtain a good initial guess
for the QLM. It is usually advantageous for ν0(x) to satisfy the boundary conditions.
In this paper, for all examples except the third example, according to the NBCs
and RBCs given in Eq. (1.2), the initial guess is taken as:

ν0(x) = −0.01(γ + 2ζ)− ρ

γ
+ 0.01x2, γ ̸= 0. (4.1)

We performed our computations using Maple 17 on a personal computer equipped
with Core i5 processor and 6 GB of memory.

Example 4.1. ( [38, 46, 47, 51]). We consider Eq. (1.1) with a non-linear source
function of type (i), where σ = 0.76129, ϱ = 0.03119. Also, the values of the
constants in (1.2) are ζ = 1, and γ = ρ = 5. There is no analytical solution to
this example. In Table 1, the results of the presented method with Max = 2 and
n = 10 are compared with the domain decomposition optimal homotopy analysis
method (DDOHAM) [38], the improved differential transform method (IDTM) [47],
the advanced Adomian decomposition method (AADM) [46], and the SRKM [51].
The comparison presented in Table 1, shows that these methods agree well with
each other. Also, we compare our method with SRKM [51] in terms of MERn,1

as shown in Table 2. Additionally, this table includes the CPU time (s) for our
method. Table 2 illustrates that Bernoulli-RKM exhibits higher accuracy than
SRKM, and it is noteworthy that the computational time of the current method is
very low. Moreover, absolute residual error functions with n = 14, 18, and Max = 1
are plotted in Figure 1.

Table 1. Comparison of the numerical results for Example 4.1.

DDOHAM [38] IDTM [47] AADM [46] SRKM [51] Present method

x N = 5, n = 4 n = 12 n = 12 n = 10, k = 4 n = 10

0.0 0.8284830967 0.8284832870 0.8284832870 0.8284833754 0.8284832903

0.1 0.8297058988 0.8297060890 0.8297060890 0.8297061155 0.8297060924

0.2 0.8333745399 0.8333747303 0.8333747302 0.8333747353 0.8333747336

0.3 0.8395089283 0.8394899106 0.8394899106 0.8394899068 0.8394899139

0.4 0.8480654950 0.8480527816 0.8480527816 0.8480527759 0.8480527850

0.5 0.8591864005 0.8590649239 0.8590649238 0.8590649167 0.8590649271

0.6 0.8726159876 0.8725283166 0.8725283166 0.8725283100 0.8725283199

0.7 0.8887789925 0.8884453023 0.8884453022 0.8884452975 0.8884453056

0.8 0.9070573450 0.9068185448 0.9068185447 0.9068185422 0.9068185480

0.9 0.9282044565 0.9276509853 0.9276509852 0.9276509849 0.9276509883

1.0 0.9513015634 0.9509457960 0.9509457960 0.9509457969 0.9509457984

Example 4.2. ( [1, 26, 32, 38, 47, 51]). In this example, we consider Eq. (1.1) with
a non-linear source function of type (ii), where σ = 1 and ρ = 0. We report the
results for the following four cases:

Case 1. µ = γ = ζ = 1.

Case 2. µ = 1, γ = 2 and ζ = 1.

Case 3. µ = 1, γ = 0.1 and ζ = 1.

Case 4. µ = 10, γ = 4 and ζ = 1.
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Table 2. Comparison of the maximum absolute residual error for Example 4.1.

SRKM [51] Present method

n k = 4 Max = 1 CPU time

4 4.25E-05 7.60E-6 0.531

6 6.14E-06 1.35E-8 0.578

8 1.38E-06 1.74E-11 0.594

10 8.39E-07 1.89E-14 0.625

Figure 1. Graph of ERn,1(x), with n = 14 (left) and n = 18 (right), for Example 4.1.

We do not have any analytic solution to this example. For Case 1, in Table 3, the
numerical results of the Bernoulli-RKM with Max = 3, and n = 10 are compared
with the DDOHAM [38], the IDTM [47], the SRKM [51], and the Sinc-Galerkin
method (SGM) [1]. Also, Table 4 shows the comparison of the absolute residual
error function of the Bernoulli-RKM with Max = 1 and the SRKM [26] for Case 2.
Table 4 shows that Bernoulli-RKM has much better accuracy compared to SRKM,
and the accuracy of this method increases as the number of basis functions increases.
Additionally, the ERn,3(x) for both Cases 1 and 3 are illustrated in Figure 2.
For Case 4, in Table 5, the maximum absolute residual error and the CPU time
of the Bernoulli-RKM with Max = 1, and different values of n = 4, 6, 8, 10 are
compared with the results obtained by a method based on a modified homotopy
analysis method [32]. Table 5 shows that the current method has significantly
higher accuracy than the method presented in [32]. Additionally, it demonstrates
that the computational time of the current method is very low. We also plot the
logarithmic graph of MERn,3, (log10(MERn,3)) of Bernoulli-RKM with different
values of n = 4, 8, 12, 16, 20 for Case 1, Case 2, Case 3 and Case 4 in Figure 3.
From Figure 3, we can see that the log10(MERn,3) decreases rapidly as n increases.

Example 4.3. ( [20]). Let us consider Eq. (1.1) with a non-linear source function
of type (iii) where λ = 1, and θ = 1. Also, the values of the constants in (1.2) are
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Table 3. Comparison of the numerical results for Example 4.2 (Case 1).

DDOHAM [38] IDTM [47] SRKM [51] SGM [1] Present method

x N = 5, n = 4 n = 12 n = 10, k = 3 M = 40 n = 10

0.0 0.3675135205 0.3675167997 0.3675166189 0.3675168124 0.3675168150

0.1 0.3663590308 0.3663623137 0.3663622527 0.3663623265 0.3663623291

0.2 0.3628907562 0.3628940507 0.3628940189 0.3628940634 0.3628940660

0.3 0.3571336159 0.3570975301 0.3570975087 0.3570975430 0.3570975456

0.4 0.3489737609 0.3489484049 0.3489483815 0.3489484178 0.3489484205

0.5 0.3387004028 0.3384121330 0.3384121172 0.3384121459 0.3384121486

0.6 0.3256760709 0.3254435063 0.3254434945 0.3254435196 0.3254435223

0.7 0.3110427573 0.3099860240 0.3099860196 0.3099860373 0.3099860401

0.8 0.2928786338 0.2919710864 0.2919711009 0.2919711001 0.2919711029

0.9 0.2742437526 0.2713169936 0.2713170010 0.2713170072 0.2713170101

1.0 0.2505516417 0.2479277073 0.2479277424 0.2479277203 0.2479277232

Table 4. Comparison of the absolute residual error function, for Example 4.2 (Case 2).

SRKM [26] Present method

x n = 8 n = 10 n = 8 n = 10

0.2 9.17614E-06 5.59474E-06 7.65385E-13 2.91047E-15

0.4 4.37089E-07 7.15070E-07 1.58178E-12 2.96101E-14

0.6 4.37001E-07 1.37600E-06 2.73729E-12 4.62095E-14

0.8 1.50857E-05 6.88321E-06 4.69236E-12 1.31123E-14

1.0 6.19418E-05 2.53189E-05 4.79590E-11 8.98164E-13

Figure 2. Graph of ERn,3(x) for Case 1 (left) and Case 3 (right), for Example 4.2.

γ = 0, ζ = 1, and ρ = 4/7. The exact solution is:

ν(x) = ln

(
64

x4 − 16x2 + 64

)
.

In this example, we put ν0(x) = 0.01 + 2/7 x2. It can be seen that ν0(x) satisfies
the boundary conditions in Eq. (1.2). The absolute error function |ν(x)− νn,4(x)|
is plotted in Figure 4. Also, Table 6 shows the obtained values of MAEn,4 for
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Figure 3. Graph of log10(MERn,3) for different values of n = 4, 8, 12, 16, 20, for Example 4.2.

Table 5. Comparison of the maximum absolute residual error and the CPU time in seconds for Exam-
ple 4.2 (Case 4).

n 4 6 8 10

MERn,1

Method of [32] 0.0758 0.0307 0.0131 0.0057

Bernoulli-RKM 3.50E-02 6.30E-04 1.10E-06 3.22E-08

CPU time

Method of [32] 1.40 3.28 8.53

Bernoulli-RKM 0.578 0.578 0.610 0.828

n = 5, 10, 15, 20 and CPU time in seconds. It is obvious from Table 6 that with the
increase of n, the maximum absolute error decreases rapidly. Also, in Table 6, we
can see that the computational time of the current method is significantly low.

Figure 4. Graph of absolute error function |ν(x) − νn,4(x)| with n = 25, for Example 4.3.
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Table 6. The values of MAEn,4 and CPU time in seconds for Example 4.3.

n 5 10 15 20

MAEn,4 8.80E-05 1.08E-09 1.60E-14 2.37E-19

CPU time 0.609 0.985 2.000 4.328

Example 4.4. ( [1, 7, 23]). Consider Eq. (1.1) with a non-linear source function
of type (iv) where λ = 2, γ = 1, ζ = 0, and ρ = 1. This example represents the
reaction-diffusion process in a porous spherical catalyst (e.g., see [1,7] and references
therein). In this example, the values of two parameters φ (utilized to describe a
dimensionless group called the Thiele modulus) and η (effectiveness factor) are very
important. For a spherical catalyst pellet, η is defined as [1]:

η =
3

φ2

dν

dx

∣∣∣∣∣
x=1

. (4.2)

To make a comparison, in Table 7, we compare the results for effectiveness factor η
of Bernoulli-RKM with Max = 4 together with the results obtained by SGM [1], op-
timal homotopy analysis method (OHAM) [7], and the numerical solution obtained
by shooting method [23] for different values of φ andm. Also, in Table 8, the numer-
ical results of the Bernoulli-RKM with Max = 4, φ = 5, and m = 1.5 are compared
with the SGM [1] and the shooting method [23]. We observe from Tables 7 and
8, that our numerical results are in excellent agreement with the numerical results
given in [23]. Furthermore, to show the efficiency of the Bernoulli-RKM, the abso-
lute residual error function ER15,1(x) is plotted in Figure 5. We end this example by
plotting a logarithmic graph of MERn,1, (log10(MERn,1)) for Bernoulli-RKM. We
use different values of n = 7, 11, 15, 19, 23 with φ = 5, m = 1.5 and φ = 5, m = 1
in Figure 6. This figure illustrates that the distribution of points is nearly linear,
indicating the rapid convergence of an exponential rate.

Figure 5. Graph of ER15,1(x) with φ = 2, and m = 0.5, for Example 4.4.

Example 4.5. ( [31]). Consider Eq. (1.1) with a non-linear source function of type
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Table 7. Comparison of the values of η, for Example 4.4.

m φ Method n = 9 n = 14

Numerical [23] 0.879262

SGM [1] 0.879260

OHAM [7] 0.879249

0.5 2 Bernoulli-RKM 0.879261 0.879262

Numerical [23] 0.480054

SGM [1] 0.480040

OHAM [7] 0.480056

1 5 Bernoulli-RKM 0.480053 0.480054

Numerical [23] 0.431958

SGM [1] 0.431941

OHAM [7] 0.432001

1.5 5 Bernoulli-RKM 0.431926 0.431958

Numerical [23] 0.397233

SGM [1] 0.397214

OHAM [7] 0.397192

2 5 Bernoulli-RKM 0.397124 0.397233

Table 8. Comparison of ν(x) for φ = 5, m = 1.5, for Example 4.4.

Numerical [23] SGM [1] Bernoulli-RKM

x M = 10 n = 11

0.0 0.177518 0.177518 0.177518

0.1 0.180659 0.180659 0.180659

0.2 0.190386 0.190383 0.190386

0.3 0.207669 0.207663 0.207669

0.4 0.234322 0.234338 0.234322

0.5 0.273373 0.273373 0.273373

0.6 0.329732 0.329715 0.329732

0.7 0.411406 0.411414 0.411406

0.8 0.531770 0.531774 0.531769

0.9 0.713974 0.713974 0.713974

1.0 1.000000 1.000000 1.000000

(v) where λ = 2, γ = 1, ζ = 0, and ρ =

√
3

4
. The exact solution is:

ν(x) =

√
3

x2 + 3
.
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Figure 6. Graph of log10(MERn,1) for different values of n = 7, 11, 15, 19, 23, for Example 4.4.

The absolute error function |ν(x) − νn,4(x)| is plotted in Figure 7. We also plot
the logarithmic graph of MAEn,5, (log10(MAEn,5)) of the presented method with
n = 4, 8, 12, 16, 20 in Figure 8. Moreover, in Table 9, we compare the maximum
absolute errors of our method for n = 4, 6, 8 and Max = 4 with the results from
the fourth order domain decomposition homotopy perturbation method (DDHPM)
presented in [31]. Additionally, this table includes the CPU time in seconds for the
presented method.

Table 9. Comparison of the maximum absolute error for Example 4.5.

DDHPM [31] Bernoulli-RKM

n (N = 4) (Max = 4) CPU time

4 2.4000E-04 0.578

6 5.4263E-05 2.2000E-06 0.657

8 3.7898E-06 1.8155E-08 0.766

Example 4.6. ( [33]). As our last example, we consider a linear derivative depen-
dent doubly singular boundary value problems as follows:

(xαν′(x))
′

= βxα+β−2 (xν′(x) + (α+ β − 1) ν(x)) ,

ν(0) = 1, ν(1) = exp(1).

The exact solution of this example is ν(x) = exp(xβ). We solve this problem for
α = 0.25 and β = 1. Since this example is a linear problem, there is no need to use
the quasi-linearization method. It can be easily solved with an approach similar
to the method presented in Section 3. In Figure 9, the logarithmic graph of the
maximum absolute errors, denoted as (log10(MAEn)), for our method is plotted
for different values of n. This graph clearly demonstrates a rapid decrease in the
maximum absolute errors as the value of n increases. Also, in Table 10, we compare
the maximum absolute errors obtained for n = 6, 10, 14 with the results of the
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Figure 7. Graph of absolute error function |ν(x) − νn,4(x)| with n = 12, for Example 4.5.
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Figure 8. Graph of log10(MAEn,5) for different values of n = 4, 8, 12, 16, 20, for Example 4.5.

improved homotopy analysis method (IHAM) presented in [33]. Additionally, this
table provides the CPU time in seconds for our approach. As observed in Table 10,
our proposed method demonstrates better accuracy compared to IHAM [33]. It is
important to note that the computational time of our method is significantly low.
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Figure 9. Graph of log10(MAEn) for different values of n for Example 4.6.

Table 10. Comparison of the maximum absolute error for Example 4.6.

IHAM [33] Bernoulli-RKM

n (α = 0.25, β = 1) (α = 0.25, β = 1) CPU time

6 5.5742E-07 9.6997E-08 0.281

10 3.2807E-10 4.5068E-14 0.407

14 5.1975E-21 0.453

5. Conclusion

In the current study, a new Bernoulli-RKM is introduced and successfully applied
to solve a class of SBVPs with Neumann and Robin boundary conditions. To con-
struct this method, orthonormal Bernoulli polynomials, quasi-linearization tech-
niques, and classical RKM ideas play a fundamental role. Also, we proved the
solvability of a set of linear algebraic equations that appears in Bernoulli-RKM,
and the convergence of our method.

The method described in this article deals with some of the limitations of clas-
sical RKM. Bernoulli-RKM eliminates the reliance on the Gram-Schmidt orthogo-
nalization process and the necessity to choose a dense set of points. As a result,
Bernoulli-RKM achieves highly accurate numerical results using far fewer nodes
compared to classical RKM and some other semi-analytical and numerical methods.
Indeed, our method effectively reduces CPU time by eliminating the Gram-Schmidt
orthogonalization process.

Moreover, Bernoulli-RKM applies to six examples, and our numerical findings
are compared with exact solutions, as well as existing results. From a computational
point of view, the solutions obtained using Bernoulli-RKM are in excellent agree-
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ment with the results of previous studies. Furthermore, the logarithmic plots of the
errors, as depicted in Figures 3, 6, 8, and 9, exhibit a nearly linear distribution of
points. This observation suggests the convergence at an exponential rate.

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions
that improved the final manuscript.

References

[1] E. Babolian, A. Eftekhari and A. Saadatmandi, A Sinc-Galerkin technique for
the numerical solution of a class of singular boundary value problems, Comp.
Appl. Math., 2015, 34, 45–63.

[2] M. Bagherzadeh and A. Neamaty, The Borg’s theorem for singular Sturm-
Liouville problem with non-separated boundary conditions, Math. Interdisc.
Res., 2023, 8(3), 233–245.

[3] S. H. Chang, Electroosmotic flow in a dissimilarly charged slit microchannel
containing salt-free solution, Eur. J. Mech. B Fluids., 2012, 34, 85–90.

[4] S. H. Chang, A variational iteration method involving Adomian polynomials
for a strongly nonlinear boundary value problem, East Asian J. Appl. Math.,
2019, 9(1), 153–164.

[5] Z. Chen, W. Jiang and H. Du, A new reproducing kernel method for Duffing
equations, Int. J. Comput. Math., 2021, 98(11), 2341–2354.

[6] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel
Space, Nova Science Publishers, Inc, 2009.

[7] M. Danish, S. Kumar and S. Kumar, A note on the solution of singular bound-
ary value problems arising in engineering and applied sciences: Use of OHAM,
Comput. Chem. Eng., 2012, 36, 57–67.

[8] M. Dehghan and A. Nikpour, Numerical solution of the system of second-order
boundary value problems using the local radial basis functions based differential
quadrature collocation method, Appl. Math. Model., 2013, 37(18–19), 8578–
8599.

[9] M. Dehghan and F. Shakeri, Asemi-numerical technique for solving the multi-
point boundary value problems and engineering applications, Int. J. Numer.
Methods Heat Fluid Flow, 2011, 21(7), 794–809.

[10] M. Dehghan and M. Tatari, Finding approximate solutions for a class of third-
order non-linear boundary value problems via the decomposition method of Ado-
mian, Int. J. Comput. Math., 2010, 87(6), 1256–1263.

[11] F. Deutsch, Best Approximation in Inner Product Spaces, Springer, New York,
2001.

[12] A. Eftekhari, Spectral poly-sinc collocation method for solving a singular non-
linear BVP of reaction-diffusion with Michaelis-Menten kinetics in a cata-
lyst/biocatalyst, Iranian J. Math. Chem., 2023, 14(2), 77–96.



A Bernoulli-reproducing kernel method 3279

[13] A. Eftekhari and A. Saadatmandi, DE sinc-collocation method for solving a
class of second-order nonlinear BVPs, Math. Interdisc. Res., 2021, 6(1), 11–
22.

[14] S. Farzaneh Javan, S. Abbasbandy and M. A. Fariborzi Araghi, Application of
reproducing kernel Hilbert space method for solving a class of nonlinear integral
equations, Math. Probl. Eng., 2017, 2017(1), 7498136.

[15] B. F. Gray, The distribution of heat sources in the human head-theoretical
consideration, J. Theor. Biol., 1980, 82(3), 473–476.

[16] J. Guo, A. Khan, M. Sulaiman and P. Kumam, A novel neuroevolutionary
naradigm for solving strongly nonlinear singular boundary value vroblems in
physiology, IEEE Access, 2022, 10, 21979–22002.

[17] A. R. Kanth and V. Bhattacharya, Cubic spline for a class of non-linear singu-
lar boundary value problems arising in physiology, Appl. Math. Comput., 2006,
174(1), 768–774.

[18] M. Lakestani and M. Dehghan, Four techniques based on the B-spline expansion
and the collocation approach for the numerical solution of the Lane-Emden
equation, Math. Methods Appl. Sci., 2013, 36(16), 2243–2253.

[19] S. H. Lin, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake
kinetics, J. Theor. Biol., 1976, 60(2), 449–457.

[20] C. S. Liu, E. R. El-Zahar and C. W. Chang, A boundary shape function iterative
method for solving nonlinear singular boundary value problems, Math. Comput.
Simul., 2021, 187, 614–629.

[21] V. B. Mandelzweig and F. Tabakin, Quasilinearization approach to nonlinear
problems in physics with application to nonlinear ODEs, Comput. Phys. Com-
mun., 2001, 141(2), 268–281.

[22] S. Mashayekhi, Y. Ordokhani and M. Razzaghi, Hybrid functions approach
for optimal control of systems described by integro-differential equations, Appl.
Math. Model., 2013, 37(5), 3355–3368.

[23] D. B. Meade, B. S. Haran and R. E. White, The shooting technique for the
solution of two-point boundary value problems, Maple Tech. Newsl., 1996, 3(1),
1–8.

[24] F. Mirzaee and N. Samadyar, Explicit representation of orthonormal Bernoulli
polynomials and its application for solving Volterra-Fredholm-Hammerstein in-
tegral equations, SeMA J., 2020, 77(1), 81–96.

[25] M. Mohsenyzadeh, K. Maleknejad and R. Ezzati, A numerical approach for the
solution of a class of singular boundary value problems arising in physiology,
Adv. Differ. Equ., 2015, 2015, 1–10.

[26] J. Niu, M. Xu, Y. Lin and Q. Xue, Numerical solution of nonlinear singular
boundary value problems, J. Comput. Appl. Math., 2018, 331, 42–51.

[27] R. K. Pandey and S. Tomar, An effective scheme for solving a class of nonlinear
doubly singular boundary value problems through quasilinearization approach,
J. Comput. Appl. Math., 2021, 392, 113411.

[28] R. K. Pandey and A. K. Verma, Existence-uniqueness results for a class of
singular boundary value problems arising in physiology, Nonlinear Anal.: Real
World Appl., 2008, 9(1), 40–52.



3280 A. Ghasemi & A. Saadatmandi

[29] K. Parand, A. Ghaderi-Kangavari and M. Delkosh, Two efficient computational
algorithms to solve the nonlinear singular Lane-Emden equations, Astrophysics,
2020, 63(1), 133–150.

[30] M. Pourbabaee and A. Saadatmandi, New operational matrix of Riemann-
Liouville fractional derivative of orthonormal Bernoulli polynomials for the
numerical solution of some distributed-order time-fractional partial differential
equations, J. Appl. Anal. Comput., 2023, 13(6), 3352–3373.

[31] P. Roul, On the numerical solution of singular two-point boundary value prob-
lems: A domain decomposition homotopy perturbation approach, Math. Meth-
ods Appl. Sci., 2017, 40(18), 7396–7409.

[32] P. Roul, A fast and accurate computational technique for efficient numerical
solution of nonlinear singular boundary value problems, Int. J. Comput. Math.,
2019, 96(1), 51–72.

[33] P. Roul, Doubly singular boundary value problems with derivative dependent
source function: A fast-converging iterative approach, Math. Methods Appl.
Sci., 2019, 42(1), 354–374.

[34] P. Roul, A new mixed MADM-collocation approach for solving a class of Lane-
Emden singular boundary value problems, J. Math. Chem., 2019, 57, 945–969.

[35] P. Roul, A fourth-order non-uniform mesh optimal B-spline collocation method
for solving a strongly nonlinear singular boundary value problem describing
electrohydrodynamic flow of a fluid, Appl. Numer. Math., 2020, 153, 558–574.

[36] P. Roul and V. P. Goura, Numerical solution of doubly singular boundary value
problems by finite difference method, Comp. Appl. Math., 2020, 39, 1–25.

[37] P. Roul, V. P. Goura and R. Agarwal, A compact finite difference method for
a general class of nonlinear singular boundary value problems with Neumann
and Robin boundary conditions, Appl. Math. Comput., 2019, 350, 283–304.

[38] P. Roul and H. Madduri, A new highly accurate domain decomposition opti-
mal homotopy analysis method and its convergence for singular boundary value
problems, Math. Methods Appl. Sci., 2018, 41(16), 6625–6644.

[39] P. Roul, H. Madduri and K. Kassner, A new iterative algorithm for a strongly
nonlinear singular boundary value problem, J. Comput. Appl. Math., 2019, 351,
167–178.

[40] P. Roul, H. Madduri and K. Kassner, A sixth-order numerical method for a
strongly nonlinear singular boundary value problem governing electrohydrody-
namic flow in a circular cylindrical conduit, Appl. Math. Comput., 2019, 350,
416–433.

[41] P. Roul, K. Thula and R. Agarwal, Non-optimal fourth-order and optimal sixth-
order B-spline collocation methods for Lane-Emden boundary value problems,
Appl. Numer. Math., 2019, 145, 342–360.

[42] A. Saadatmandi, N. Nafar and S. P. Toufighi, Numerical study on the reaction
cum diffusion process in a spherical biocatalyst, Iranian J. Math. Chem., 2014,
5, 47–61.

[43] M. G. Sakar, O. Saldlr and A. Akgül, Numerical solution of fractional Bratu
type equations with Legendre reproducing kernel method, Int. J. Appl. Comput.
Math., 2018, 4(5), 126.



A Bernoulli-reproducing kernel method 3281

[44] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and
Applications, Springer, 2011.

[45] R. Singh and J. Kumar, An efficient numerical technique for the solution of
nonlinear singular boundary value problems, Comput. Phys. Commun., 2014,
185(4), 1282–1289.

[46] Umesh and M. Kumar, Numerical solution of singular boundary value problems
using advanced Adomian decomposition method, Eng. Comput., 2021, 37, 2853–
2863.

[47] L. J. Xie, C. L. Zhou and S. Xu, An effective numerical method to solve a
class of nonlinear singular boundary value problems using improved differential
transform method, SpringerPlus, 2016, 5, 1–19.

[48] M. Xu and E. Tohidi, A Legendre reproducing kernel method with higher con-
vergence order for a class of singular two-point boundary value problems, J.
Appl. Math. Comput, 2021, 67, 405–421.

[49] Y. H. Youssri, S. M. Sayed, A. S. Mohamed, E. M. Aboeldahab andW. M. Abd-
Elhameed, Modified Lucas polynomials for the numerical treatment of second-
order boundary value problems, Comput. Methods Differ. Equ., 2023, 11(1),
12–31.

[50] S. Zaremba, Sur le calcul numerique des founctions demandess dans le problems
de dirichlet et le problems hydrodynamique, Bull. Int. Acad. Sci. Cracovie, 1908,
68, 125–195.

[51] H. Zhu, J. Niu, R. Zhang and Y. Lin, A new approach for solving nonlinear
singular boundary value problems, Math. Model. Anal., 2018, 23(1), 33–43.


	Introduction
	Orthonormal Bernoulli polynomials and corresponding reproducing kernel space
	Orthonormal Bernoulli polynomials 
	Using OBPs to create a new reproducing kernel space

	Solution of problem (1.1)-(1.2) by Bernoulli-RKM
	Construction of a new basis for  Wp(n)[0,1] 
	Applying the Bernoulli-RKM on Eq. (3.4) 
	Convergence analysis and error estimation

	Numerical experiments
	Conclusion

