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Abstract We explore the novel SUM integral transform method for solving
ordinary and partial differential equations, offering an effective approach be-
yond conventional Laplace and Sumudu transforms. Using this method, we
address various differential equations, deriving transfer functions for classical
and fractional derivatives. The resultant transfer functions provide valuable
insights into diverse mathematical models.
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1. Introduction

Integral transformations are strong mathematical tools for converting functions or
problems from one domain to others [3, 16,18, 22,24, 28,29]. They enable us to
study functions in new ways by changing them into new representations, frequently
facilitating problem-solving in domains like as science, technology, data processing,
and computational mathematics. Integral transforms work by describing a function
in terms of another set of functions, often via integral operations. The transforma-
tion is a process of transferring functions from their original domain (time, space,
frequency, etc.) to a new domain, allowing a problem to be investigated from a
different angle. The Fourier transform, Laplace transform, and Mellin transform
are examples of notable integral transforms, each with their own set of features
and uses. These transformations are frequently used to simplify the use of differen-
tial equations, convolutions, and complex calculations, enabling more easy analysis
and solution of issues that would otherwise be difficult to solve. Studying integral
transforms entails knowing their underlying concepts, characteristics, and applica-
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tions to diverse issues. Mastery of these transformations may considerably improve
problem-solving abilities in a variety of fields, making them vital tools in the field
of mathematics and its various applications. Transfer functions are critical instru-
ments in control systems and signal processing. They serve as mathematical models
of a system’s input and output, providing a succinct manner to comprehend and
study the behavior of complex systems. Some recent studies on integral transfor-
mations are as follows [1,2,17,20,21]. A transfer function, in essence, shows how
a system responds to multiple inputs, whether it’s an electrical circuit, a mechan-
ical system, or a chemical process. It’s a strong notion since it incorporates the
dynamics of the system in a concise mathematical form, usually in the frequency
domain. Researchers and engineers can acquire insights about a system’s behavior
by evaluating its transfer function without having to dive into the system’s under-
lying workings. This abstraction helps engineers forecast and regulate the efficiency
of diverse systems by facilitating their design, analysis, and optimization. Transfer
functions are important in many domains, including electrical engineering, theory
of control, physics, and others. They serve as a link between a system’s input
and output, making them essential for understanding and influencing the actions
of many systems. Some studies on the SUM integral transformation: Abubakar
U.M. et al [4] the SUM integral transform finds application in various domains in-
cluding nuclear physics, population growth modeling, analysis of electric circuits,
pharmacokinetics, beam deflection studies, investigations related to Newton’s law
of cooling, and within other realms of mechanics. In this article, analysis and simu-
lations of transfer functions of classical and fractional derivatives were obtained by
applying the SUM integral transform (introduced by Hasan, Sameer Q. at el. [15]).
Our study goes further than traditional integral transforms by covering a wide range
of fractional derivatives, such as the Caputo, Modified Caputo-Fabrizio, Modified
Atangana-Baleanu, and Constant Proportional Caputo derivatives. The fractional
derivatives have garnered significant attention due to their ability to describe com-
plex physical phenomena with memory and non-local effects. These derivatives
find applications across various disciplines including mathematical modeling of bi-
ological systems, analysis of complex networks, and characterization of anomalous
diffusion processes [9, 14,25-27]. By calculating transfer functions for these frac-
tional derivatives, we show how the SUM integral transform can effectively analyze
various mathematical models. Our research offers new paths for solving differential
equations and understanding complex systems, which may not be easily attainable
using only traditional integral transforms.

The rest of our article is planned as follows: Section 2 presents the basic defini-
tions and theorems relevant to our work. In section 3, some basic definitions and
theorems of the SUM integral transform are given. Additionally, the SUM integral
transform was applied to classical and fractional derivatives. In section 4, transfer
functions were obtained using classical and fractional derivatives. In this section we
also show examples of numerical simulations. In section 5, information about pole
analysis was given and some figures were interpreted. In the last part, section 6, we
evaluated the results obtained in the previous chapters.

2. SUM integral transform

Before exploring the SUM integral transform method, we introduce two preliminary
definitions:
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Definition 2.1 ( [19]). A function f(¢) is denoted to have exponential growth with
a positive rate 9(> 0) as t approaches 1 if there is a value L > 0 for which

If(t)] < Le®t, L,8>0, ¥>0. (2.1)

Definition 2.2 ( [23]). A function f(¢) is termed as piecewise continuous over the
closed interval [a, b] if it is established and exhibits continuity within the interval
[a, b], except for a finite set of points p1,p2,p3, -+ ,Pn. At each of these points, both
the left and right limits of f(¢) are existent.

In accordance with the sequence of the previous integral transforms, the subse-
quent integral transform is presented as follows [15]:

S0 = 3 [ fatar =5 [ joe s a = Gos). (22)

ift >0,r €Z,a € (0,00)\{1},n1 < s < ng,ny,ne > 0and f(¢) represent sectionally
continuous with exponential order, respectively. The subsequent theorem gives the
sufficient condition for an existence of the SUM integral transform.

Theorem 2.1 ( [15]). If f(t) demonstrates piecewise continuity within every finite
interval from 0 to to, and it displays exponential order (0 > 0) as t approaches
infinity, then the existence of Saf(t)(s) holds true for all s with real part greater

o)
than m .

3. The SUM integral transform of some elementary
functions

In this section, we assess the integral transformation of certain fundamental func-
tions through the SUM integral transform [15].

e Supposing f(t) = k, where k represents a constant, then

k
= —_— .1
Stk = elog(a) )
e Supposing f(t) = t"™, m € Ny, then
I'(m+1)
m = — 1 . 2
Sa{t }(S) ST[S 1og(a)]m+1 ,Re(m+1) >0 (3.2)
e Supposing f(t) = e’ where p remains constant, then
1
Safe”} (o) = : (3-3)

s™{[slog(a)] — p}
Definition 3.1 ( [15]). If a function f(¢) is n-times continuously differentiable
on [0,00) and of exponential order d(> 0), then So{f'(t)}s), Salf”(t)}(s), -,
Sa{fM(t)}(s) exist for Re(s) > % and

n—1

SalF 1)} = [510B(@)]"Sa {1} 0 — o D [sToa(a)]" " D7(0). (3.4

w=0
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When we apply the definition of the SUM integral transform as shown in equation
(3.1) for n = 1 we obtain

Sul ) = s Tom(@)SuLF D} — L2

Theorem 3.1. If Fi(s) and Hi(s) represent the SUM integral transforms of f(t)
and h(t), respectively, then

Sa{f * h}(s) = s"Fi(s)Hu(s). (3.6)

(3.5)

Proof. We have
Fih= / F)R(t - 7)d (3.7)

By employing the SUM integral transform in conjunction with Leibniz’s theorem,

we obtain
Sa{f *h}(s) =5 {/t F(T)h(t - T)dT}

= i {/ f(Oh(t—1) dT:|
:?/0 f(T)dT/T h(t —7)e o8 dt, (3:8)

by setting u =t — 7, we get
1 o0
Suld bl = & [ s [ haem o s
0 0
1 [ T
_ 7/ e_STlog(a)f(T)dT/ h(u)e—srlog(a)du
0 0

s —sT7 log(a) 1 /OO —sulog(a)
— e flr)ydr— h(u)e du
f 0 s" Jo

= s"F(s)H(s). (3.9)

O

The relations for the Caputo [10,11], Caputo-Fabrizio [12], Modified Caputo-

Fabrizio [13], Atangana-Baleanu [7], Modified Atangana-Baleanu [5], and Constant
Proportional Caputo [8] derivatives are expressed as follows:

—¢
Sots) = L s o
ot (0 = L T exp( =),

MOPRS £(1) = d {(f(t) — fo) * 1i exp (—¢t)}7

¢ 1-¢
a8 400, ().

MABCD® £(4) — ?B(ﬁ) (f(t) — By (—pot?) £(0) — pot® By b (—ust?) * f(1))
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t—¢

-9
CPCDY f(t) = k(o) (M * f(t)> + ko(9) (F(i—qﬁ) * f’(ﬂ) ;

where pg = % The SUM integral transforms corresponding to these derivatives
are given by:

S.{SD2F (D)} o
"
sa{ ¢*f()}(s)

-

=3"5, {}(5) Sa {1} )

1-9¢
—(s1og(a))* S {£(1)} ) — (slog(a))*~

(3.10)

Sa{ MDY £ (1)} (o)

_s. {i{(f(t)—fomi@fxp (‘1%’5)}}(5

—slog(a)s” (Su {F()} ) — Sa {F(0)},)) %Sa P (‘d)t) }<s>

£(0) ) 1 1
s" (slog(a))/ 1

=slog(a)s” (Sa {fO} s —

_ slog(a) Sulf Ve — (3.11)

slog(a)(1—¢) + ¢ s (slog(a)(1 — @) + ¢)’

Sa{MAPCDEF (D)} o
s, {ﬁB_ (10~ B (-1ot*) O = ™ s (t®) 50}
(S {F O} = Sa {Bo (—10t?) } ) £(0) = oS {1
s (= u¢»t¢) } )

slog(a))?™*
_AB@) (s W} - r<(( OBl ()~ s

1
X Sa {f(t)} s
s ((slog(@)? + g ) ( ))
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_ABO) [ (r (1 e ) _ (slog@)®t
1-¢ ( - U0k (slog(a))” + s s" ((slog(a))¢ + u¢) o
_AB(9) (Sa Y0 010 f(0)>

1—¢ (s1og(@)” + s s ((slog(a))” + g
AB(

AB(9) (slog(a))” 9) (s1og(a))” ™"
N A=d)+0 s ((slog(@)’ (1—0)+¢

=S, {F (1)} (o) )f<0>v (3.12)

(slog(a

Sa{CPCOD?f(t>}(s)
-9 —¢
=50 {10 (=g *10) + o) (M : f’(t)> .
= {F1(0)(5Tog())*™" + ko(¢) (s Tog(@))?} S (1)} ) — — (s1Toa(a))*""
x ko(6)1(0). (313)

We examine the subsequent set of problems:
Df =Af,
GDYf =M,
YOEDgs = A
MABGD?f = A,
CPGDLS = Af.
We determine the SUM integral transformation of these equations as follows:
Df =X/,
Sa{Df} = Sa{Af}s),
(s1og(@) S}~ L
Salf}(s)(slog(a) = A) = ===,

1 1
Sa{f}(s) = f(O);mv

= )\Sa{f}(s)v
f(0)

let 7 =0,a=c¢e, f(0) =1,A =1, then we get:

Sa{f}s) = % (3.14)

We can then plot the SUM integral transform with the classical derivative in Figure
1.

EPYE
SG{COfo}(s) = Sa{>\f}(s)a
(s1og(a))?Sa{f}(s) — (slog(a))?

. fi?) = ASo{f} (o)
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Figure 1. SUM integral transform with the classical derivative

SulFlio ((s1og(@)? — A) = - (Slog(a)?~7(0)

1 (slog(a))?*
Sa{f}(s) = ;Wﬂo)a
let r=1,a=-e, f(0) =1,A=1,¢ =1, then we get

1
s(s—1)°

Sa{fls) = (3.15)

We can then plot the SUM integral transform with the Caputo derivative in Figure
2.

METDEf = M,
Sa{MCFOfo}(s) = Sa{)‘f}(s)v

slog(a) 3
Tog@( - o)+ oSO

slog(a) 3 B
Salfle <slog<a><1 S g A) = T els@(1 -3 1)’
slog(a) — A (slog(a)(1 — ¢) + ) 7(0)
(

Sa{f}(s) slog(a)(l _ ¢) + ¢ = sT (5 log(a) 1-— ¢) + d))a

V)
3
—
V)
—_
Qo
09
—
Q
~—
—~
—_
[
<
~
<
~—~

then,
1

Sl = 5 Toga) = A (sTog(@) (1 — 6) — A9)
let f(0)=1,r=2,a=¢€,\=2,¢ =1, then we get

£(0),

Sallte) = 2 ! (3.16)

(s—2)°
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Figure 2. SUM integral transform with the Caputo derivative

We can then plot the SUM integral transform with the Modified Caputo-Fabrizio
derivative in Figure 3.
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Figure 3. SUM integral transform with the Modified Caputo-Fabrizio derivative

MABCDY f = )f,
S {MABGDS f1 ey = Su{A}s)s
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slog(a))? slog(a))? "
S50y Ol __AB0) o)y,

(slog(@)® (1= 9) +¢ & ((slog(a)® (1 - ¢) +¢)

1(0),

:)\Sa{f}(s
B(¢) (slog(a))” AB() (slog(a)*”"

Sal s ) =

o (( log(a))? (1— @) + ¢ ) ST ((slog(a))¢ (1—¢)+¢)
AB(9) (slog(a)” — A ((slog(a)) (1 - ¢) + ¢)
Sa{f}(s) &

(slog(a))” (1 - ¢) +¢
AB(g) (logla >>¢ :

- s" <(slog a))? (1 - ¢) e
AB(¢) (slog(a))”” ( )
Sa{f}is) = (AB( (slog(a))® ( slog(a )+ ¢))

let r=0,a=e¢e, f(0)=1,A=1, andgﬁ:%,we get

Salf}e) = 5 1_%77/5 (3.17)

We can then plot the SUM integral transform with the Modified Atangana-Baleanu
derivative in Figure 4.
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Figure 4. SUM integral transform with the Modified Atangana-Baleanu derivative

CPEDY f = A,
Sa{TGDL 1) = SalM o)
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Sul oo Uha(9)(s108(@)* ™" -+ ko(9) (slog(a))*} — - (slog(a))*~ Yro(6) £ (0)
= ASa{f}(s)s

Sa{f}s) (k1(9)(slog(a))? ™" + ko(¢)(s1og(a))? — N)
=~ ((slog(@)*~ko(6)(0),

1 ((s1og(a))*~)ko(6) £(0)
Sl = 3 1@ (s Tog(@) 1 T ko(6) (s log(a)) — X

leta=e,r=0A=1,f0)=1,¢= %,]ﬁ((b) =1,ko(¢) = 1, then we have

s 1E,
Sa{f}s) “E@)s T 1 22?;)8¢ -
5?1
= T
g-1/2
1
N (3.18)

We can then plot the SUM integral transform with the Constant Proportional Ca-
puto derivative in Figure 5.
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Figure 5. SUM integral transform with the Constant Proportional Caputo derivative
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4. Transfer function

Definition 4.1. The transfer function H(s) is defined for a continuous-time input
signal z(t) and output y(t) as [6]:

C¥(s) L)
HE) = %06 = Ta)

(4.1)

In signal processing, communication theory, and control theory, transfer functions
are essential to the understanding of systems like single-input single-output filters.
These operations are basic instruments that come from classical control engineer-
ing. We provide the decay differential equation’s transfer function in this con-
text, which includes four different differential operators: the classical derivative
(shown in Figure 6), Caputo fractional differentiation (shown in Figure 7), Mod-
ified Caputo-Fabrizio (shown in Figure 8), Modified Atangana-Baleanu fractional
operators (shown in Figure 9), and conventional differentiation (shown in Figure
10). For the following equations, we choose f(0) = 0 as the starting condition. As
such, we extract the transfer functions using the SUM integral transformations.

Sa{Df}(s) = Sa{g}(s)a

(s108() a9~ 22 = Sufg)ey
(3 IOg(a‘))Sa{f}(s) = Sa{g}(s)a
Sa{g}(s) — (slog(a
5l = (slog(a)),
a = e, then we get (o}
Saig}s) _
Sa{f}(s) - (42)

Sa{COfo}(s) = Sa{g}(s)a

Sl o (s 102(@)? (s1og(a)* 2 — 5, (g} o,
Sa{g}(s) — (slog(a @
S = (slog(a))*

let  =0.5,a = e we get
Sa{g}(s) - \/g (43)

ERTI
Sa{ MDY o) = Salg}o)s

slog(a) B £(0) -
Tog@ - +o O Tl -a 1 e
Sa{gts) slog(a)

Sa{f}s)  slog(a)(1—¢)+ ¢’

let =1 and a = e, we get
Sa{g}(s) o

Sa{f}es) >
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Figure 7. Transfer function for ¢ = 0.5,a =€

Sa{MABC(J)DZ)f}(s) = Sa{g}(s)7

Sa {f(t)}(s)

= Sa{g}(s)a

AB(9) (slog(a))”

108

AB(9) (slog(a))”™!

(sToa(a)” (1=9) +0 s ((slog(a)” (1~ ) +0)

f(0)
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Figure 8. Transfer function (4.4) for ¢ =1 and a =¢e
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Sa{f}s)

Salghis) _ Vs (14 V)
SAfYesy VT +s)
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1010
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Figure 9. Transfer function (4.5) for a =e, f(0) =1, and ¢ = 1

Sa{FCD? F1s) = Salddiss



New transfer functions with SUM integral 3295

Sa{f} s {k1(0)(slog(a))?~" + ko(¢)(slog(a))?} — 8%((3 log(a))?~")ko(#) £(0)
= Sa{g}(s)7
Sa{f}s) (k1(9)(s1og(a)®~" + ko(9)(s10g(a))?) = Sa{f} ()

Sa{g}(s) _
Sa{f}(s)
leta=ce, f(0)=1,¢ = %,kl(é) = 1,ko(¢) = 1, then we have

(k1(6)(s1og(a))?~" + ko(¢)(slog(a))?, (4.6)

Sa{g}s) _ s+1
Salf}ey Vs

(4.7)

|

n
o
o

-
a
o

-
o
o

a
o

Magnitude, |H(w)|, [dB

ok 1

0.5 b

Phase, Arg(H(w)), [rad]

10 1074 102 10° 102 104 108 108

w

Figure 10. Transfer function for a = e, f(0) = 1,¢ = %, k1(¢) =1,ko(¢) =1

5. Pole analysis

Pole analysis is a method used in various fields such as engineering, control sys-
tems, and mathematics to understand the behavior of complex systems, especially
systems described by equations or functions. It involves analyzing the polarities of
a system to understand its stability, dynamics and performance characteristics. In
engineering, especially in control systems, poles represent the roots of the denom-
inator polynomial of a system’s transfer function. The transfer function describes
the relationship between the input and output of a system. Poles are very important
as they determine the stability and response of the system [6].
Let’s start by addressing the following problem as our initial experiment [6]:

dv di 1,
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The transfer

function for this specific problem is obtained through SUM integral

transforms in the following manner, as depicted in Figure 11:

s () - {nf) s L), 52

(s10g())Sa{V} o) = R(s1og(a))Sa{i}(s) + éSa{i}(s),

(slog())Su{V}(s) = Sa{i} o) (R (slog(a)) + (1;) ,

Sali}s) _ slog(a)
Sa{V}is)  R(slog(a)) + &
slog(a)C

- RC(slog(a)) + 1’

let a =e,c=3,R =2, we get
Sa{i}(s) o 3s (5 3)
Sa{V}(s) 6s+1
— 0 T T T T T T
[an]
S
3100 1
=
g
3 -200F .
=
[o)}
M
= -300 n L L L L L
10°® 107 102 10° 102 104 108 108
w
=15F T T T T T ™
8 5
3 1t 1
=
<4
<
5 05F .
(2]
[
ey
o 0 A L L L ul. ul.
10°® 107 102 10° 102 104 108 108
w
Figure 11. Transfer function for a = e,¢c =3, R =2
Let’s explore the following problem as our second experiment [6]:

dE  di  d% 1
@ _RY 2 4
R TR TRk (54)

Upon performing the SUM integral transformation on both sides of the aforemen-
tioned equation, the result is, as illustrated in Figure 12:

dE
5.5

. 2 . 1
} :SQ{R;“} +SG{LZ§} +Sa{ic} : (5.5)
(s) t ) ) () (s)
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slog(a)S.{E}(s) = Rslog(a)Sa{i}(s) + L(s IOg(a))QSa{i}(s) + %Sa{i}(s),

slog(a)Sa{E}s = Safi}(s)(Rslog(a) + L(slog(a))® + %)7

Salitsy

slog(a)

SaA{E} (s  Rslog(a) + L(slog(a))? + %

Salitsy

b

slog(a)C

So{E})  RCslog(a) + LC(slog(a))? 4+ 1

leta=e,C=2,R=1,L =1, we get

Sa{i}(s) B 3s
Sa{V}(S)  6s +s241°

Let’s look at the following problem as our third experiment [6]:

o
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Figure 12. Transfer function fora =e,C =2, R=1,L =1

MABCDV = R

di 1,
i

a ot

di 1

MABC 1o — ;
a D — Ma . a 2l 9
S, {o tV}(s) S, {Rdt}(s)+5 {Cz}(s)

Sa V)

=R <(s log(a))Sa{i}(s) —

AB(9) (slog(a))”  AB(9) (slog(a))*™"

(slog(a))¢ (I-¢)+¢ v ((8 log(a))¢ (1—-9¢)+ (b)
i(0)

ST

1 .
) + asa{z}(s)v

V(0)

(5.6)

(5.7)



3298 A. Akgiil, D. Baleanu, E. Ulgiil, N. Sakar & N. Attia

AB(9) (slog(a))”
(slog(a))® (1 —¢) + ¢

Suli} _ AB(9) (s los(a))*C
5V} (s10g(@)?(1 — @) + 6) (RC(s log(a)) + 1)’

let a=e,C =2,R=2, and ¢ = 1, then we get

Sa{i}(s) _ 2s
SG{V}(é) C4s+ 17

Sa{V} = (R(Slog(a)) + é) Sa{i}(s),

(5.8)

We can then plot the transfer function in Figure 13. Let’s examine the following

o

-
o
o
T
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8
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300 . . . . . .
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o
T
.

Phase, Arg(H(w)), [rad]

Figure 13. Transfer function (5.8) fora =¢,C =2, R=2,and ¢ =1

problem as our fourth experiment [6]:

W (s« b
dV . .
Sa {dt}(s) =S, {R (g/fABCDf@>}(S) +Sa {éz}(s) )
(slog(a)) S, (V) )~
_ g 5.0y, PO (s log(a))” AB(9) (slog(@)"™

Lo
+ 5Sa {ites

(s1og(a))* (1=0) +0 s ((slog(a))” (1- ) +0)
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AB(9) (slog(a))” RC + (slog(a)* (1 = ¢) + ¢
¢ ((s1og(a)” (1 - ¢) +0)

Salidy _ (slog(a)) C ((slog(a)*(1 — ¢) + ¢)
SVl  AB(9)(s1og(a))? RC + (slog(@))? (1 — ¢) + ¢’

(slog(a)) Sa {V}(s) = Sa {i}(s)

let C=1,a=¢e,R=3, and ¢ = 1, then we get

Sa{i}(s) _ S
Sa{V}(S) 3s+1°

(5.9)

We can then plot the transfer function in Figure 14. Let’s take the following problem

o
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Figure 14. Transfer function (5.9) for C =1,a =¢,R=3, and ¢ =1
as our fifth experiment [6]:

1
YABC DRV = R (145D + i,

C
MABC 1o _ @ lz
S, {0 DtV}(S) _Sa{Rdt}(s)+Sa{C }<5>’
AB(9) (slog(a))” L _AB(¢)(slog(a))® 1
Sa iV}, = RS, {i}, —Sa{itis),
Vo Glogta)? (1 - 0) 10 e Gog@) (g 1o 0
AB(¢) (slog(a))’ . ( AB(¢) (slog(a))’ R 1)
Sa 14 . == Sa Ti(s ~ |
Vo Grog@r a1 1o "0\ Glog@) - 0) 16 T ©
AB(9) (slog(a))®

e Vo G loga)* (1—9) + 9
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(¢)(slog(a))?RC + (slog(a))®(1 — ¢) + ¢
C ((slog(a))?(1 = ¢) +¢) ’

Sa{i}(s) AB(¢)(5 log(a))¢C

. AB
= Sa{i}(s)

Sa{V}s)  AB(¢)(slog(a))?RC + (slog(a))?(1 — ¢) + ¢’
let C=4,a=¢e,R=3, and ¢ = 1, then we get

Sa{i}(s) - 4s
Sa{V}les) 12541

(5.10)

We can then plot the transfer function in Figure 15. Let’s explore the subsequent
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Figure 15. Transfer function (5.10) for C =4,a =e,R=3, and ¢ =1

problem as our sixth experiment [6]:

di |1,
a " o”

di 1
Sa {g‘Pch’v}(s) — 3, {Rd;}( S {Ci}( '

[k1(6)(slog(a))* ™" + ko(9) (s log(a))?] SV }(s)

§PCDYV =R

= R(slog(a))Sa{i}(s) + %Sa{ihs)v

501V} 06 (sTox(@)? ™!+ k(o) (s1ox()*] = ( Rslog(a) + & ) Sulid o,

Sa{its) _ C[ki(#)(slog(a))®" + ko(¢)(slog(a))?]
Sa{V}e) RCslog(a) + 1 ’
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let C=4,a=e¢,R=3,¢0=2ki1(¢) = 1,ko(¢) = 1, we get

Sali}sy  4s+4s?

= . A1
Sa{V}(S) 125+ 1 (5.11)

We can then plot the transfer function in Figure 16. Let’s approach the following

400 T T T T T T

n
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o
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o
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w

Figure 16. Transfer function for C =4,a =€, R=3,¢ = 2,k1(¢) = 1,ko(¢) = 1

problem as our seventh experiment [6]:

% — R (§7°Di) + %z

e {Cil‘t/}@ S {R <°CPCD?i) }<s> 5 {(];"Z} ’

(s)
SIOg(a)Sa{V}(S) = RSa{Z}(s) [kl((b)(s log(a))¢_1 + k0(¢)(8 log(a))‘ﬂ + ésa{i}(s)v
S10g(@)S,(V) ) = RS (i} |11 (0)(s108(@)* + ofe)(slog@)* + 5]

Sa{i}(s) _ C's log(a)
Sa{V}i)  RC[ki(¢)(slog(a))?~" + ko(¢)(slog(a))? + 1]

let C=3,a=¢,R=2,¢0=3,ki1(¢) = 1,ko(¢) = 1, we get

Sali}(s
Ui _ i . (5.12)
SQ{V}(S) 283 + 252 + 2

We can then plot the transfer function in Figure 17. Let’s examine the following
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Figure 17. Transfer function for C =3,a=¢, R =2,¢ =3, k1(¢) = 1, ko(¢) =1

problem as our eighth experiment [6]:

CPCD¢V RCPCD¢ é%

s{sreniv) = {r(§ront)} v {gin |
Sa{V}(s) [k1(8)(s10g(a))* ™" + ko(6)(slog(a))?]

= R [k(9) (s og()* ™ + kols108(a))*] Safi} ) + &Suli} o)
Sa{V}(s) [k1(8)(s10g(a))* ™" + ko(6)(slog(a))?]

= R k1 (6)(s1og(@))* ™ + ho(slog())® + = | Sufiko),

Salitsy _ Clki(9)(slog(a))?"" + ko(¢)(slog(a))?]
Sa{V}s)  RC[ki(9)(slog(a))?~ + ko(¢)(slog(a))? + 1]’

let C=3,a=¢,R=2,¢0=2ki(¢) =1,ko(¢) =1, we get

Salitsy = s°+s

= . 1
Sa{V}(s) s2+s+1 (5 3)

We can then plot the transfer function in Figure 18.
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Figure 18. Transfer function for C =3,a=¢, R=2,¢ =2, k1(¢) = 1, ko(¢) =1

6. Conclusion

108

In this paper, we investigate a new integral transform. We obtained many new
transfer functions with this integral transform. We use many different kernels to
get effective transfer functions. We demonstrate the simulations of the transfer

functions by some figures.
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