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GLOBAL SMOOTH SOLUTION FOR PHASE
TRANSITION EQUATIONS IN
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Abstract This paper presents a phase transition model that characterizes
the thermodynamic and electromagnetic properties of ferromagnetic materi-
als. We establish the existence of both a global weak solution and a global
smooth solution for the phase transition equations in two and three dimen-
sions. Moreover, we obtain the uniqueness of the global smooth solution.
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1. Introduction

It is widely recognized that magnetism can be divided into diamagnetism, param-
agnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism. Notably, fer-
romagnetism is predominantly observed in metals such as iron, cobalt, nickel, and
various alloys containing these elements. This type of magnetism occurs due to
the spontaneous alignment of magnetic moments, resulting in a strong and per-
sistent magnetic field. This property makes these metals and alloys invaluable in
various electromagnetic applications, such as motors and generators [7]. The most
fundamental characteristic of ferromagnetic materials is the existence of sponta-
neous magnetization. The theory of spontaneous magnetization reveals the na-
ture of numerous ferromagnetic properties, including the influence of temperature
on ferromagnetism. As temperature increases, the distance between atoms grows,
thereby decreasing the atomic exchange interaction. The distance between atoms
increases when the temperature increases, which reduces the exchange action of
atoms. Meanwhile, the thermodynamic motion destroys the regular orientation of
the spin magnetic moments continuously, thus causing a decrease in spontaneous
magnetization. Eventually, when the temperature surpasses Curie temperature θc,
the spontaneous magnetic moment vanishes, and the material transitions from being
ferromagnetic to paramagnetic [5].
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In this paper, we are concerned with the theory of the paramagnetic
-ferromagnetic transition [3, 4, 6, 8–10]. Our investigation originates from the pa-
per [3], in which the authors proposed a phase transition model that describes the
paramagnetic-ferromagnetic transition in ferromagnetic materials and established
the existence and uniqueness of weak solutions in dimensions three. The phase
transition equations governing the evolution of the ferromagnetic material reads

γMt = ν∆M− θc(|M|2 − 1)M− θM+H, in QT , (1.1)

c1(ln θ)t + c2θt = k0∆(ln θ) +M ·Mt + k1∆θ + r̂, in QT , (1.2)

where M denotes the magnetization vector, θ represents the absolute temperature,
and QT = Ω × [0, T ] with T > 0. The constants γ, ν, c1, c2, k0, k1 are strictly
positive, while θc is the Curie temperature. Additionally, r̂ is a known function of
x, t. Our focus extends to combining this model with Maxwell’s equations

µHt +Mt = −∇×E, (1.3)

Et + σE = ∇×H, (1.4)

∇ · (µH+M) = 0, ∇ ·E = 0, (1.5)

where H is the magnetic field, E is the electric field, µ and σ are respectively the
magnetic permeability and the conductivity. The existence and uniqueness of the
global weak solution for (1.1)-(1.5) were proved in [3] without the displacement
current ∂tE. Some limiting problems for this model were explored in [16], and the
fractional version of the model was studied in [1].

In this paper, we will consider the global smooth solution of (1.1)-(1.5) with
the inclusion of the current ∂tE in two and three dimensions. We assume that
c1 = k0 = 0. This assumption means that the heat conductivity and specific heat
are dependent on the absolute temperature according to the laws: k(θ) = k1θ and
c(θ) = c2

2 θ
2. We consider the phase transition equations

γMt = ν∆M− θc(|M|2 − 1)M− θM+H, (1.6)

cθt = M ·Mt + k∆θ + r̂, (1.7)

µHt +Mt = −∇×E, (1.8)

Et + σE = ∇×H, (1.9)

∇ · (µH+M) = 0, ∇ ·E = 0, (1.10)

with the periodic conditions

M(x+ 2Dei, t) = M(x, t), θ(x+ 2Dei, t) = θ(x, t),

H(x+ 2Dei, t) = H(x, t), E(x+ 2Dei, t) = E(x, t)
(1.11)

and the initial conditions

M(x, 0) = M0(x), θ(x, 0) = θ0(x), H(x, 0) = H0(x), E(x, 0) = E0(x), x ∈ Ω ∈ Rd,
(1.12)

where Ω =
∏d

j=1(−D,D), d = 2, 3.
In view of the equation (1.10), we should impose the following constraints on

the initial functions M0,H0 and E0:

∇ · (µH0 +M0) = 0, ∇ ·E0 = 0. (1.13)
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Inspired by the ideas presented in [1, 2, 11–16], we aim to study the existence
of the global weak solution and the global smooth solution for the phase transi-
tion equations (1.6)–(1.12). Initially, we construct the solutions of the equations
(1.6)–(1.9) with (1.11) (1.12). Subsequently, we demonstrate that these constructed
solutions fulfill equation (1.10) when subject to the condition specified in (1.13). As
a result, we establish the existence of solutions for the problem (1.6)–(1.12). To the
best of our knowledge, there are currently no available results on global smooth
solutions related to this problem (1.6)–(1.12).

The main results are as follows:

Theorem 1.1. Assume that (M0, θ0,H0,E0) ∈ (H1(Ω), L2(Ω), L2(Ω), L2(Ω)), r̂(x,
t) ∈ L2(0, T ; H1(Ω)), Ω ⊂ Rd, d = 2, 3 and (1.13) is satisfied. The constants µ, σ
are positive. Then the problem (1.6)-(1.12) has at least one global weak solution(
M(x, t), θ(x, t), H(x, t),E(x, t)

)
such that

M(x, t) ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

θ(x, t) ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

H(x, t) ∈ L∞(0, T ;L2(Ω)),

E(x, t) ∈ L∞(0, T ;L2(Ω)).

Theorem 1.2. Assume (M0, θ0,H0,E0) ∈ (Hm+1(Ω), Hm(Ω), Hm(Ω), Hm(Ω)), r̂
(x, t) ∈ L∞(0, T ; Hm(Ω)),m ≥ 1,Ω ⊂ R2, and (1.13) is satisfied. The constants
µ, σ are positive. Then there exists a unique global solution (M(x), θ(x),H(x),E(x))
of the periodic problem (1.6)-(1.12) and for any T > 0, satisfying

M(x, t) ∈ L∞(0, T ;Hm+1(Ω)) ∩ L2(0, T ;Hm+2(Ω)),

θ(x, t) ∈ L∞(0, T ;Hm(Ω)) ∩ L2(0, T ;Hm+1(Ω)),

H(x, t) ∈ L∞(0, T ;Hm(Ω)),

E(x, t) ∈ L∞(0, T ;Hm(Ω)).

Additionally, the above results still hold for d = 3 when ∥M0∥2H1 ≤ δ0, δ0 ≪ 1.

This paper is organized as follows. In the next section, we will provide the
definition of a weak solution for the phase transition equations, and establish the
existence of the global weak solution by the Galerkin method. In Section 3, by
employing a priori estimates, we obtain the existence of the smooth solution for the
phase transition equations. In the last section, we show that the global solution of
problem (1.6)-(1.12) is unique.

2. The existence of global weak solution

In this section, we will establish the existence of a global weak solution to the phase
transition equations. Firstly, we construct the Galerkin approximate solutions of
the problem (1.6)-(1.12), and establish a priori uniform estimates of these solu-
tions. Then we provide the proof of the existence of the generalized solutions to the
problem (1.6)-(1.12). Thus, Theorem 1.1 holds.

First, we introduce the definition of the weak solution to the problem (1.6)-
(1.12).
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Definition 2.1. A three-dimensional vector function (M(x, t), θ(x, t),H(x, t),E(x,
t)) ∈ (L∞(0, T ;H1(Ω)), L∞(0, T ;L2(Ω)), L∞(0, T ;L2(Ω)), L∞(0, T ;L2(Ω))) is
called a weak solution to (1.6)-(1.12), if for any vector-valued test function ϕ(x, t) ∈
C1([0, T ];H2(Ω)) with ϕ(x, t)|t=T = 0, and for any scalar test function ξ(x, t)
∈ C1([0, T ];C1(Ω)), the following equations hold:

γ

∫∫
QT

M · ϕtdxdt− ν

∫∫
QT

∇M · ∇ϕdxdt−
∫∫

QT

θc(|M|2 − 1)M · ϕdxdt

−
∫∫

QT

θM · ϕdxdt+
∫∫

QT

H · ϕdxdt+ γ

∫
Ω

M0 · ϕ(x, 0)dx = 0, (2.1)

c

∫∫
QT

θ · ϕtdxdt+

∫∫
QT

M ·Mt · ϕdxdt− k

∫∫
QT

∇θ · ∇ϕdxdt

+

∫∫
QT

r̂ · ϕdxdt+ c

∫
Ω

θ0 · ϕ(x, 0)dx = 0, (2.2)∫∫
QT

(µH+M) · ϕtdxdt−
∫∫

QT

(∇× ϕ) ·Edxdt

+

∫
Ω

(µH0 +M0) · ϕ(x, 0)dx = 0, (2.3)∫∫
QT

E · ϕt(x, t)e
σtdxdt+

∫∫
QT

eσt(∇× ϕ) ·Hdxdt

+

∫
Ω

E0(x)ϕ(x, 0)dx = 0, (2.4)∫∫
QT

∇ξ · (µH+M) dxdt = 0,

∫∫
QT

∇ξ ·E dxdt = 0, (2.5)

M(x, 0) = M0(x), θ(x, 0) = θ0(x),H(x, 0) = H0(x),E(x, 0) = E(x), x ∈ Ω. (2.6)

Next, to solve the equations (1.6)-(1.12), we use the Galerkin method. First, we
establish a priori estimates for the approximate solutions of (1.6)-(1.12).

Let ωn(x), n = 1, 2, · · · be the unit eigenfunctions satisfying the equations

∆ωn + λnωn = 0, ωn(x−Dei) = ωn(x+Dei), i = 1, 2, ..., d,

where λn, n = 1, 2, · · · are the corresponding eigenvalues that are different from
each other. The set {ωn(x)} consists of an orthogonal normal basis of L2(Ω).

Denote the approximate solution of the problem (1.6)-(1.9) byMN (x, t), θN (x, t),
HN (x, t),EN (x, t) in the following form

MN (x, t) =

N∑
s=1

αsN (t)ωs(x), θN (x, t) =

N∑
s=1

βsN (t)ωs(x),

HN (x, t) =

N∑
s=1

γsN (t)ωs(x), EN (x, t) =

N∑
s=1

ζsN (t)ωs(x),

where αsN (t), βsN (t), γsN (t), ζsN (t), s = 1, 2, · · ·, N,N = 1, 2, · · · satisfy the follow-
ing system of ordinary differential equations∫

Ω

[
γMNtωs(x) + ν∇MN∇ωs(x) + θc(|MN |2 − 1)MNωs(x)
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+ θNMNωs(x)−HNωs(x)
]
dx = 0, (2.7)∫

Ω

[
cθNtωs(x)−MN ·MNtωs(x) + k∇θN∇ωs(x)− r̂ws(x)

]
dx = 0, (2.8)∫

Ω

[
µHNtωs(x) +MNtωs(x) +

(
∇×EN

)
ωs(x)

]
dx = 0, (2.9)∫

Ω

[
ENtωs(x) + σENωs(x)− (∇×HN

)
ωs(x)

]
dx = 0 (2.10)

and the initial conditions

αsN (0) =

∫
Ω

MN (x, 0)ωs(x)dx =

∫
Ω

M0(x)ωs(x)dx = α0s,

βsN (0) =

∫
Ω

θN (x, 0)ωs(x)dx =

∫
Ω

θ0(x)ωs(x)dx = β0s,

γsN (0) =

∫
Ω

HN (x, 0)ωs(x)dx =

∫
Ω

H0(x)ωs(x)dx = γ0s,

ζsN (0) =

∫
Ω

EN (x, 0)ωs(x)dx =

∫
Ω

E0(x)ωs(x)dx = ζ0s.

(2.11)

Obviously, there holds∫
Ω

MNtωs(x)dx = α′
sN (t),

∫
Ω

θNtωs(x)dx = β′
sN (t),∫

Ω

HNtωs(x)dx = γ′
sN (t),

∫
Ω

ENtωs(x)dx = ζ ′sN (t).

(2.12)

For simplicity, we introduce notation as follows

∥ · ∥Lp(Ω) = ∥ · ∥p, p ≥ 2. (2.13)

It follows from the standard theory on nonlinear ordinary differential equations
that the problem (2.7)-(2.11) admits a unique local solution. In order to obtain
the existence and uniqueness of the solution of (2.7)-(2.11), we require additional
estimates as follows.

Lemma 2.1. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (H1(Ω), L2(Ω), L2(Ω),
L2(Ω)), r̂(x, t) ∈ L2(0, T ; H1(Ω)). For the solutions to the initial value problem
(2.7)-(2.11), we have the following estimates

sup
0≤t≤T

{
∥MN∥H1 + ∥θN∥2 + ∥HN∥2 + ∥EN∥2

}
≤ C, (2.14)∫ T

0

[∥MNt∥22 + ∥∇θN∥22 + ∥EN∥22]dt ≤ C, (2.15)

where C is a constant which is independent of N and D.

Proof. Multiplying equation (2.7) by α′
sN (t) for each s from 1 to N , and then

summing up all the results, we obtain

1

2

d

dt

[
ν∥∇MN∥22 +

θc
2
∥MN∥44

]
+ γ∥MNt∥22 +

∫
Ω

θNMNMNtdx
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− θc

∫
Ω

MNMNtdx−
∫
Ω

HNMNtdx = 0. (2.16)

By taking the scalar product of βsN (t) with (2.8), and then summing up the
outcomes for all s = 1, 2, · · · , N , we derive

c

2

d

dt
∥θN∥22 + k∥∇θN∥22 −

∫
Ω

θNMNMNtdx−
∫
Ω

r̂θNdx = 0. (2.17)

By taking the scalar product of γsN (t) with (2.9) and the scalar product of
ζsN (t) with (2.10) respectively, adding the two resulting equalities together, and
subsequently summing up the outcomes for all s = 1, 2, ..., N , we have

1

2

d

dt

[
µ∥HN∥22 + ∥EN∥22

]
+ σ∥EN∥22 +

∫
Ω

HNMNtdx = 0. (2.18)

Adding (2.16), (2.17) and (2.18), we obtain

1

2

d

dt

[
ν∥∇MN∥22 +

θc
2
∥MN∥44 + c∥θN∥22 + µ∥HN∥22 + ∥EN∥22

]
+ γ∥MNt∥22 + k∥∇θN∥22 + σ∥EN∥22

= θc

∫
Ω

MNMNtdx+

∫
Ω

r̂θNdx

≤ γ

2
∥MNt∥22 +

θ2c
2γ

∥MN∥22 +
k

2
∥θN∥22 +

1

2k
∥r̂∥22, (2.19)

and then

1

2

d

dt

[
ν∥∇MN∥22 +

θc
2
∥MN∥44 + c∥θN∥22 + µ∥HN∥22 + ∥EN∥22

]
+

γ

2
∥MNt∥22 + k∥∇θN∥22 + σ∥EN∥22

≤C(1 + ∥MN∥44 + ∥θN∥22 + ∥r̂∥22). (2.20)

By Gronwall inequality, we can obtain the estimates (2.14) and (2.15). This com-
pletes the proof of lemma 2.1.

Remark 2.1. In fact, by the equation (2.7) and estimates (2.14) and (2.15), we

can derive
∫ T

0
∥∆MN∥22dx ≤ C easily.

Lemma 2.2. Under the conditions of Lemma 2.1, for the solution (MN , θN ,HN ,
EN ) of the initial value problem (2.7)-(2.11), we have the following estimates

∥MNt∥H−1(Ω) + ∥HNt∥H−1(Ω) + ∥ENt∥H−1(Ω) ≤ C, (2.21)∫ T

0

∥θNt∥2H−1(Ω)dx ≤ C, (2.22)

where C is independent of N and D, and H−m(Ω) denotes the dual space of the
space Hm(Ω).

Proof. For any function φ ∈ H2, φ can be represented as

φ = φN + φN , φN =

N∑
s=1

βsωs(x), φN =

∞∑
s=N+1

βsωs(x).
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For s ≥ N + 1, we have
∫
Ω
MNtωs(x)dx = 0. Then by Lemma 2.1, we get∫

Ω

MNtφdx =

∫
Ω

MNtφN (x)dx

=− ν

γ

∫
Ω

∇MN∇φNdx− θc
γ

∫
Ω

(|MN |2 − 1)MNφNdx

− 1

γ

∫
Ω

θNMNφNdx+
1

γ

∫
Ω

HNφNdx

≤C
[
∥∇MN∥2∥∇φN∥2 + (∥MN∥66 + ∥MN∥22)∥φN∥2

+ ∥MN∥4∥θN∥2∥φN∥4 + ∥HN∥2∥φN∥2
]

≤C∥φN∥H1(Ω)

≤C∥φ∥H1(Ω).

Similarly, for s ≥ N +1, we have
∫
Ω
HNt ·ωs(x)dx = 0,

∫
Ω
ENt ·ωs(x)dx = 0. Then

by Lemma 2.1, we deduce that

µ

∫
Ω

HNtϕdx = µ

∫
Ω

HNtϕNdx

= µ

∫
Ω

(∇×EN · φN −MNtφN )dx

≤ C(∥EN∥2∥∇φN∥2 + ∥φ∥H1(Ω))

≤ C(∥∇ϕN∥2 + ∥φ∥H1(Ω))

≤ C1∥φ∥H1(Ω),∫
Ω

ENtϕdx =

∫
Ω

ENtϕNdx

≤C(∥HN∥2 + ∥EN∥2)(∥∇φN∥2 + ∥φN∥2)
≤C(∥∇ϕN∥2 + ∥φN∥2)
≤C2∥φ∥H1(Ω).

The above inequalities indicate that (2.21) holds true.
Let Φ ∈ L2(0, T ;H1(Ω)), by (2.8) and Lemma 2.1, we have∫ T

0

∫
Ω

θNtΦdxdt ≤
1

c

∫ T

0

∥MN∥4∥MNt∥2∥Φ∥4 + k∥∇θN∥2∥∇Φ∥2 + ∥r̂∥2∥Φ∥2dt

≤ C

∫ T

0

∥Φ∥2H1(Ω)dt,

where C is a constant independent of N . The lemma is proved.

Lemma 2.3. Assume that the conditions presented in Lemma 2.1 are satisfied.
For the solution (MN (x, t), θN (x, t), HN (x, t),EN (x, t)) of the initial value problem
(2.7)-(2.11), there are the following estimates

∥MN (·, t1)−MN (·, t2)∥2 ≤ C|t1 − t2|
1
2 , ∀t1, t2 ≥ 0,

∥θN (·, t1)− θN (·, t2)∥H−1 ≤ C|t1 − t2|
1
2 , ∀t1, t2 ≥ 0,

∥HN (·, t1)−HN (·, t2)∥H−1 + ∥EN (·, t1)−EN (·, t2)∥H−1 ≤ C|t1 − t2|
1
2 ,

∀t1, t2 ≥ 0,
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where the constant C is independent of N and D.

Proof. By Lemma 2.2 and Hölder inequality, we have

∥MN (·, t1)−MN (·, t2)∥2 =

∥∥∥∥ ∫ t2

t1

MNtdt

∥∥∥∥
2

≤
∫ t2

t1

∥MNt∥2dt

≤|t2 − t1|
1
2

(∫ T

0

∫
Ω

|MNt|2dxdt
) 1

2

≤C|t2 − t1|
1
2

and

∥θN (·, t1)− θN (·, t2)∥H−1 =

∥∥∥∥∫ t2

t1

θ̇Ndt

∥∥∥∥
H−1

≤
∫ t2

t1

∥θ̇N∥H−1dt

≤|t2 − t1|
1
2

(∫ T

0

∥θ̇N∥2H−1dt

) 1
2

≤C|t2 − t1|
1
2 .

Similarly, we have

∥HN (·, t1)−HN (·, t2)∥H−1 ≤ C|t2 − t1|
1
2 ,

∥EN (·, t1)−EN (·, t2)∥H−1 ≤ C|t2 − t1|
1
2 .

This lemma is proved.
From ODE theory, Lemma 2.1- Lemma 2.3, we have the following lemma:

Lemma 2.4. Under the conditions of Lemma 2.1, there exists a unique global so-
lution (αsN (t), βsN (t), γsN (t), ζsN (t)) (s = 1, 2, ..., N, t ∈ [0, T ], ∀T > 0) of the
initial value problem for the ordinary differential equations (2.7)-(2.11). Moreover,
this solution is continuously differentiable.

In the following, we will prove the existence of a global weak solution for (1.6)-
(1.12).

The Proof of Theorem 1.1. From the uniform estimates of the approximate so-
lution {MN (x, t), θN (x, t), HN (x, t),EN (x, t)} in Lemma 2.1 and Lemma 2.2, then
by the Sobolev imbedding theorem and Lions-Aubin lemma, there is a subsequence
which is still denoted by {MN (x, t), θN (x, t),HN (x, t),EN (x, t)} such that

MN (x, t) ⇀ M(x, t) weak ∗ in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), (2.23)

MNt(x, t) ⇀ Mt(x, t) weak ∗ in L∞(0, T ;H−1(Ω)), (2.24)

MN (x, t) → M(x, t) strongly in Lq(0, T ;Lp(Ω)), 2 ≤ q < ∞, 2 ≤ p ≤ ∞, (2.25)

θN (x, t) ⇀ θ(x, t) weak ∗ in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.26)

θNt(x, t) ⇀ θt(x, t) weak ∗ in L2(0, T ;H−1(Ω)), (2.27)
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θN (x, t) → θ(x, t) strongly in L2(0, T ;L2(Ω)), (2.28)

HN (x, t) ⇀ H(x, t) weak∗ in L∞(0, T ;L2(Ω)), (2.29)

EN (x, t) ⇀ E(x, t) weak∗ in L∞(0, T ;L2(Ω)). (2.30)

For any vector-valued test function ϕ(x, t) ∈ C1([0, T ];H1(Ω)) with ϕ(x, t)|t=T

= 0, we define an approximate sequence as follows

ϕN (x, t) =

N∑
n=1

an(t)ωn(x), an(t) =

∫
Ω

ϕ(x, t)ωn(x)dx.

We know that ϕN is uniformly convergent to ϕ(x, t) in C1([0, T ];H1(Ω)), namely

∥ϕN − ϕ∥C1([0,T ];H1(Ω)) → 0, as N → ∞. (2.31)

Taking the scaler product of as(t) with (2.7),(2.8),(2.9), respectively, and the
scaler product of eσtas(t) with (2.10), summing up the products for all s = 1, 2,
· · · , N and then integrating by parts, we get

γ

∫∫
QT

MN · ϕNtdxdt− ν

∫∫
QT

∇MN · ∇ϕNdxdt−
∫∫

QT

θNMN · ϕNdxdt

−
∫∫

QT

θc(|MN |2 − 1)MN · ϕNdxdt+

∫∫
QT

HN · ϕNdxdt

+ γ

∫
Ω

MN (x, 0) · ϕN (x, 0)dx = 0, (2.32)

c

∫∫
QT

θN · ϕNtdxdt+

∫∫
QT

MNMNt · ϕNdxdt− k

∫∫
QT

∇θN · ∇ϕNdxdt

+

∫∫
QT

r̂(x, t) · ϕNdxdt+ c

∫
Ω

θN (x, 0) · ϕN (x, 0)dx = 0, (2.33)

µ

∫∫
QT

HN · ϕNt(x, t)dxdt+

∫∫
QT

MN · ϕNt(x, t)dxdt−
∫∫

QT

(∇× ϕN ) · EN (x)dxdt

+

∫
Ω

(
µHN (x, 0) +MN (x, 0)

)
· ϕN (x, 0)dx = 0, (2.34)∫∫

QT

EN · (ϕNte
σt)dxdt+

∫∫
QT

eσt(∇× ϕN ) ·HN (x, t)dxdt

+

∫
Ω

EN (·, 0) · ϕN (·, 0)dx = 0. (2.35)

From (2.23)-(2.31), it suffices to deal with the nonlinear terms in (2.32)-(2.35).
From (2.23) and (2.31) we have∫∫

QT

(∇MN · ∇ϕN −∇M · ∇ϕ)dxdt

=

∫∫
QT

(∇MN −∇M) · ∇ϕN +∇M(∇ϕN −∇ϕ)dxdt

≤
∫ T

0

∥∇MN −∇M∥2∥∇ϕN∥2dt+
∫ T

0

∥∇M∥2∥∇ϕN −∇ϕ∥2dt → 0, N → ∞.
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From (2.23)-(2.25) and (2.31), we derive∫∫
QT

(|MN |2 − 1)MN · ϕNdxdt →
∫∫

QT

(|M|2 − 1)M · ϕdxdt, as N → ∞.

By (2.25), (2.28) and (2.31) we obtain∫∫
QT

θNMN · ϕNdxdt →
∫∫

QT

θM · ϕdxdt, as N → ∞.

It follows from (2.23)-(2.25) and (2.31) that∫∫
QT

MNMNt · ϕNdxdt →
∫∫

QT

MMt · ϕdxdt, as N → ∞.

So by (2.30) and (2.31), we derive∫∫
QT

(∇× ϕN ) ·ENdxdt−
∫∫

QT

(∇× ϕ) ·Edxdt

=

∫∫
QT

∇× (ϕN − ϕ) ·ENdxdt+

∫∫
QT

∇× ϕ ·ENdxdt−
∫∫

QT

(∇× ϕ) ·Edxdt

=

∫∫
QT

∇× (ϕN − ϕ) ·ENdxdt+

∫∫
QT

(∇× ϕ) · (EN −E)dxdt

≤
(∫∫

QT

|∇(ϕN − ϕ)|2dxdt
) 1

2

∥EN∥L2(QT ) +

∣∣∣∣ ∫∫
QT

(∇× ϕ) · (EN −E)dxdt

∣∣∣∣
→0, as N → ∞.

Similarly, we can prove that∫∫
QT

HN · ϕNtdxdt →
∫∫

QT

H · ϕtdxdt, as N → ∞,∫∫
QT

EN · (ϕNte
σt)dxdt →

∫∫
QT

E · (ϕte
σt)dxdt, as N → ∞,∫∫

QT

eσt(∇× ϕN ) ·HNdxdt →
∫∫

QT

eσt(∇× ϕ) ·Hdxdt, as N → ∞,∫∫
QT

MN · ϕNtdxdt →
∫∫

QT

M · ϕtdxdt, as N → ∞,∫∫
QT

θN · ϕNtdxdt →
∫∫

QT

θ · ϕtdxdt, as N → ∞,∫∫
QT

∇θN · ∇ϕNdxdt →
∫∫

QT

∇θ · ∇ϕdxdt, as N → ∞.

Thus, taking N → ∞ in (2.32), (2.33), (2.34) and (2.35), we obtain that the limit
functions M(x, t), θ(x, t), H(x, t) and E(x, t) satisfy the integral equalities (2.1),
(2.2), (2.3) and (2.4). Furthermore, if the initial vector functions M0,H0,E0 satisfy
the conditions

∫
Ω
∇ξ · (µH0 +M0) dx = 0,

∫
Ω
∇ξ ·E0 dx = 0 for all ξ(x) ∈ C1(Ω),

we can easily deduce that for any ξ(x, t) ∈ C1([0, T ];C1(Ω)) with ξ(x, T ) = 0 and
ξ0 = ξ(x, 0), we have from (2.3) and (2.4) that∫∫

QT

∇ξ · (µH+M) dxdt = 0,

∫∫
QT

∇ξ ·E dxdt = 0.
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Therefore, through the above analysis and calculations, the global weak solution of
the problem (1.6)-(1.12) is obtained.

3. The existence of global smooth solution

To demonstrate the existence of a global smooth solution (M, θ,H,E) for problem
(1.6)-(1.12), it is necessary to establish a priori estimates. In this section, we first
consider the special case d = 2 and x ∈ Ω ⊂ R2. Then we also find the estimates
hold for d = 3 when the initial data is small.

Lemma 3.1. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (H2(Ω), H1(Ω), H1(Ω),
H1(Ω)), r̂(x, t) ∈ L2(0, T ; H1(Ω)), then there exists a smooth solution (M, θ,H,E)
for problem (1.6)-(1.12) satisfying the following estimates

sup
0≤t≤T

{
∥M∥H2 + ∥θ∥H1 + ∥H∥H1 + ∥E∥H1

}
+

∫ T

0

[∥∇∆M∥22 + ∥∆θ∥22 + ∥∇E∥22]dt ≤ C. (3.1)

Proof. Multiplying (1.6) by ∆2M, and integrating the resulting equality with
respect to x ∈ Ω, we obtain

γ

2

d

dt
∥∆M∥22 + ν∥∇∆M∥22

= θc

∫
Ω

∇[(|M|2 − 1)M] · ∇∆Mdx+

∫
Ω

∇(θNM) · ∇∆Mdx−
∫
Ω

∇H · ∇∆Mdx

≤ θc

(
3∥M∥2∞ + 1

)
∥∇M∥2∥∇∆M∥2 +

(
∥M∥∞∥∇θ∥2 + ∥θ∥4∥∇M∥4

)
∥∇∆M∥2

+ ∥∇∆M∥2∥∇H∥2

≤ C
(
∥M∥2∥∆M∥2 + 1

)
∥∇M∥2∥∇∆M∥2 + C

(
∥M∥

1
2
2 ∥∆M∥

1
2
2 ∥∇θ∥2

+ ∥∇θ∥
1
2
2 ∥θ∥

1
2
2 ∥∇M∥

1
2
2 ∥∆M∥

1
2
2

)
∥∇∆M∥2 + ∥∇∆M∥2∥∇H∥2

≤ ν

16
∥∇∆M∥22 + C(1 + ∥∆M∥42) +

ν

16
∥∇∆M∥22 + C(1 + ∥∆M∥22)∥∇θ∥22

+
ν

16
∥∇∆M∥22 + C(∥∇θ∥22 + ∥∆M∥22) +

ν

16
∥∇∆M∥22 + C∥∇H∥22

≤ ν

4
∥∇∆M∥22 + C(∥∆M∥42 + ∥∆M∥22 + ∥∇θ∥42 + ∥∇θ∥22 + ∥∇H∥22 + 1), (3.2)

where we have used Hölder inequality, Gagliardo-Nirenberg inequality and Lemma
2.1.

Multiplying (1.7) by ∆θ, and integrating the resulting equality with respect to
x ∈ Ω, we have

c

2

d

dt
∥∇θ∥22 + k∥∆θ∥22

=−
∫
Ω

M ·Mt ·∆θdx−
∫
Ω

r̂ ·∆θdx

=− ν

γ

∫
Ω

M ·∆M ·∆θdx+
θc
γ

∫
Ω

M · [(|M|2 − 1)M] ·∆θdx
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+
1

γ

∫
Ω

M · (θM) ·∆θdx− 1

γ

∫
Ω

M ·H ·∆θdx−
∫
Ω

r̂ ·∆θdx. (3.3)

By Lemma 2.1, Hölder inequality and Gagliardo-Nirenberg inequality, we derive∣∣∣∣− ν

γ

∫
Ω

M ·∆M ·∆θdx

∣∣∣∣ ≤C∥M∥∞∥∆M∥2∥∆θ∥2 ≤ C∥M∥
1
2
2 ∥∆M∥

3
2
2 ∥∆θ∥2

≤k

8
∥∆θ∥22 + C(∥∆M∥42 + 1). (3.4)

Similarly, we obtain∣∣∣∣θcγ
∫
Ω

M · [(|M|2 − 1)M] ·∆θdx

∣∣∣∣ ≤θc
γ

(
∥M∥4∞ + ∥M∥2∞

)
∥∆θ∥2

≤C
(
∥M∥22∥∆M∥22 + ∥M∥2∥∆M∥2

)
∥∆θ∥2

≤k

8
∥∆θ∥22 + C

(
∥∆M∥42 + ∥∆M∥22 + 1

)
, (3.5)

∣∣∣∣ 1γ
∫
Ω

M · (θM) ·∆θdx

∣∣∣∣ ≤C∥M∥2∞∥θ∥2∥∆θ∥2

≤C∥M∥2∥∆M∥2∥θ∥2∥∆θ∥2

≤k

8
∥∆θ∥22 + C∥∆M∥22 (3.6)

and∣∣∣∣− 1

γ

∫
Ω

M ·H ·∆θdx

∣∣∣∣ ≤ 1

γ
∥M∥∞∥H∥2∥∆θ∥2 ≤ k

8
∥∆θ∥22 + C

(
∥∆M∥22 + 1

)
,

(3.7)∣∣∣∣ ∫
Ω

r̂ ·∆θdx

∣∣∣∣ ≤ C∥∇r̂∥2∥∇θ∥2 ≤ C(∥∇θ∥22 + 1). (3.8)

Thus, inserting estimates (3.4)-(3.8) into (3.3), we have

c

2

d

dt
∥∇θ∥22 +

k

2
∥∆θ∥22 ≤ C(∥∇θ∥22 + ∥∆M∥22 + ∥∆M∥42 + 1). (3.9)

Now taking the product of ∆H with (1.8) and the product of ∆E with (1.9)
respectively, and summing the two resulting equalities, and then integrating the
final equality with respect to x ∈ Ω, we obtain the following inequality

1

2

d

dt

(
µ∥∇H∥22 + ∥∇E∥22

)
+ σ∥∇E∥22

=

∫
Ω

∇Mt · ∇Hdx ≤ ∥∇Mt∥2∥∇H∥2

≤ 1

γ
(ν∥∇∆M∥2 + θc∥∇[(|M|2 − 1)M]∥2 + ∥∇M∥∞∥θ∥2

+ ∥M∥∞∥∇θ∥2 + ∥∇H∥2)∥∇H∥2

≤ν

4
∥∇∆M∥22 + C(∥∇θ∥42 + ∥∆M∥42 + ∥∆M∥22 + ∥∇H∥22 + 1), (3.10)
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where we have used Hölder inequality and Sobolev imbedding theorem.
Thus, combining (3.2), (3.9) and (3.10), we derive

1

2

d

dt

(
γ∥∆M∥22 + c∥∇θ∥22 + µ∥∇H∥22 + ∥∇E∥22

)

+
ν

2
∥∇∆M∥22 +

k

2
∥∆θ∥22 + σ∥∇E∥22

≤C(∥∆M∥42 + ∥∆M∥22 + ∥∇θ∥42 + ∥∇θ∥22 + ∥∇H∥22 + 1). (3.11)

By employing the estimates (2.15) and (3.11) and the Gronwall inequality, we es-
tablish the estimate (3.1).

Lemma 3.2. Assume that (M0(x), θ0(x),H0(x),E0(x)) ∈ (Hm+1(Ω), Hm(Ω),
Hm(Ω), Hm(Ω)), r̂ ∈ L2(0, T ; Hm(Ω)), m ≥ 0, then there exists a smooth solu-
tion (M, θ,H,E) for problem (1.6)-(1.12) satisfying the following estimates

sup
0≤t≤T

[
∥M(·, t)∥2Hm+1 + ∥θ(·, t)∥2Hm + ∥H(·, t)∥2Hm + ∥E(·, t)∥2Hm

]
+

∫ T

0

(∥M∥2Hm+2 + ∥θ∥2Hm+1 + ∥E∥2Hm)dt ≤ C. (3.12)

Proof. The lemma will be proved by the induction for m. According to Lemma
2.1 and Lemma 3.1, the estimate (3.12) holds when m = 0, 1.

Now assume that the estimate (3.12) holds for m = K ≥ 2, that is

sup
0≤t≤T

[
∥M(·, t)∥2HK+1 + ∥θ(·, t)∥2HK + ∥E(·, t)∥2HK + ∥H(·, t)∥2HK

]
+

∫ T

0

(∥M∥2HK+2 + ∥θ∥2HK+1 + ∥E∥2HK )dt ≤ C. (3.13)

We aim to prove that (3.12) holds for m = K + 1.
Taking the scalar product of ∆K+2M with (1.6), and integrating the resulting

equality with respect to x ∈ Ω, we derive

γ

2

d

dt
∥∇K+2M∥22dx+ ν∥∇K+3M∥22

=θc

∫
Ω

∇K+1[(|M|2 − 1)M] · ∇K+3Mdx+

∫
Ω

∇K+1(θM) · ∇K+3Mdx

−
∫
Ω

∇K+1H · ∇K+3Mdx, (3.14)

where ∫
Ω

∇K+1[(|M|2 − 1)M] · ∇K+3Mdx

≤∥∇K+1(|M|2M)∥2∥∇K+3M∥2 + ∥∇K+1M∥2∥∇K+3M∥2

≤∥
K+1∑
i=0

i∑
j=0

Ci
K+1C

j
i∇

jM∇K+1−iM∇i−jM∥2∥∇K+3M∥2

+ ∥∇K+1M∥2∥∇K+3M∥2
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≤C
∑

i1+i2+j3=K+1

∥∇i1M∥6∥∇i2M∥6∥∇i3M∥6∥∇K+3M∥2

≤ ν

18
∥∇K+3M∥22 + C(1 + ∥∇K+2M∥22). (3.15)

Similarly, we have∫
Ω

∇K+1(θM) · ∇K+3Mdx =C

K+1∑
i=0

∥∇iθ∥3∥∥∇K+1−iM∥6∥∇K+3M∥2

≤ ν

18
∥∇M+3M∥22 + C(1 + ∥∇K+1θ∥22). (3.16)

Hence, combining (3.14)–(3.16), we have

γ

2

d

dt
∥∇K+2M∥22 + ν∥∇K+2∥22

≤ν

6
∥∇K+3M∥22 + C(1 + ∥∇K+1θ∥22 + ∥∇K+2M∥22 + ∥∇K+1H∥22). (3.17)

Taking the scalar product of ∆K+1θ with (1.7), and integrating the resulting
equality with respect to x ∈ Ω, we obtain

c

2

d

dt
∥∇K+1θ∥22 + k∥∇K+2θ∥22

≤
∫
Ω

MMt · ∇K+2θdx+

∫
Ω

r̂ · ∇K+2θdx

≤∥M∥∞∥Mt∥2∥∇K+2θ∥2 + ∥r̂∥2∥∇K+2θ∥2

≤C∥∆M∥
1
2
2 ∥M∥

1
2
2

(
ν∥∆M∥2 + θc∥(|M|2 − 1)M∥2

+ ∥θ∥4∥M∥4 + ∥H∥2
)
∥∇K+2θ∥2 + ∥∇K+1r̂∥2∥∇K+2θ∥2

≤ν

6
∥∇K+3M∥22 +

k1
2
∥∇K+2θ∥22 + C(1 + ∥∇K+2M∥22 + ∥∇K+1θ∥22 + ∥∇K+1r̂∥22).

(3.18)

Taking the scalar product of ∆K+1E with (1.8) and the scalar product of
∆K+1H with (1.9), summing the two equalities, and then integrating the resulting
equality with respect to x ∈ Ω, we obtain

1

2

d

dt

(
∥∇K+1E∥22 + µ∥∇K+1H∥22

)
+ σ∥∇K+1E∥22

=

∫
Ω

∇K+1Ṁ · ∇K+1Hdx

≤∥∇K+1Ṁ∥2∥∇K+1H∥2
≤
(
ν∥∇K+3M∥2 + θc∥∇K+1[(|M|2 − 1)M]∥2
+ 2∥∇K+1(Mθ)∥2 + ∥∇K+1H∥2

)
∥∇K+1H∥2

≤ν

6
∥∇K+3M∥22 + C(1 + ∥∇K+1H∥22 + ∥∇K+2M∥42 + ∥∇K+1θ∥22). (3.19)

It follows from (3.17)-(3.19), that

d

dt

(
∥∇K+2M∥22 + ∥∇K+1θ∥22 + ∥∇K+1E∥22 + ∥∇K+1H∥22

)
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+ ∥∇K+2∥22 + ∥∇K+2θ∥22 + ∥∇K+1E∥22
≤C(1 + ∥∇K+1θ∥22 + ∥∇K+2M∥22 + ∥∇K+2M∥42 + ∥∇K+1H∥22). (3.20)

Therefore, by employing (3.13) and applying Gronwall inequality, we can establish
the estimate (3.12).

Following a similar approach to the proof of Theorem 1.1, we can establish the
local existence of the smooth solution to (1.6)-(1.12). Subsequently, by employing
a priori estimates for the smooth solution, we can deduce the global existence of a
smooth solution to the problem (1.6)-(1.12).

Remark 3.1. When the dimension is set to d = 3, Lemma 3.1 and Lemma 3.2
can also be proven, provided that ∥M0∥2H1 is sufficiently small. Subsequently, by
replicating the methodologies employed in the proof for the case d = 2, we can
establish the existence of the solution (M, θ,H,E) for the d = 3 dimension.

4. The uniqueness of global smooth solution

In this section, we are devoted to proving uniqueness. Let (Mj , θj ,Hj ,Ej) (j = 1, 2)
be the smooth solutions for the problem (1.6)-(1.12). Denote (M, θ,H,E) = (M1−
M2, θ1 − θ2,H1 − H2,E1 − E2). As a result, (M, θ,H,E) satisfies the following
system:

γMt = ν∆M− θc
(
(|M1|2 − 1)M+ (M1 +M2)MM2

)
− (θM1 + θ2M) +H,

(4.1)

cθt = MM1t +M2Mt + k∆θ, (4.2)

µHt +Mt = −∇×E, (4.3)

Et + σE = ∇×H, (4.4)

∇ · (µH+M) = 0,∇ ·E = 0, (4.5)

with periodic conditions

M(x+ 2Dei, t) = M(x, t), θ(x+ 2Dei, t) = θ(x, t),

H(x+ 2Dei, t) = H(x, t), E(x+ 2Dei, t) = E(x, t),
(4.6)

and initial conditions

M(x, 0) = 0, θ(x, 0) = 0, H(x, 0) = 0, E(x, 0) = 0. (4.7)

Taking the scalar product of equation (4.1) with M − ∆M, then integrating the
equality obtained over Ω, we derive

γ

2

d

dt
{∥M∥22 + ∥∇M∥22}+ ν{∥∇M∥22 + ∥∆M∥22}

=− θc

∫
Ω

(
(|M1|2 − 1)M+ (M1 +M2)MM2

)
(M−∆M)dx

−
∫
Ω

(θM1 + θ2M)(M−∆M)dx+

∫
Ω

H(M−∆M)dx

≤C(∥M1∥2∞ + ∥M2∥2∞ + 1)∥M∥2(∥M∥2 + ∥∆M∥2)
+ (∥M1∥∞∥θ∥2 + ∥θ2∥2∥M∥∞)(∥M∥2 + ∥∆M∥2) + ∥H∥2(∥M∥2 + ∥∆M∥2)

}
.
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By Gagliardo-Nirenberg inequality, we get

∥M∥∞ ≤ C∥M∥1−
d
4

2 ∥∆M∥
d
4
2 . (4.8)

Then it follows from the estimates (3.12) and (4.8) that

γ

2

d

dt
{∥M∥22 + ∥∇M∥22}+ ν{∥∇M∥22 + ∥∆M∥22}

≤ν

6
∥∆M∥22 + C(∥M∥22 + ∥θ∥22 + ∥H∥22).

(4.9)

By taking the scalar product of equation (4.2) with θ, and integrating the equal-
ity with respect to x ∈ Ω, we have

c

2

d

dt
∥θ∥22 + k∥∇θ∥22

=

∫
Ω

(MM1t +M2Mt)θdx

≤C∥M∥∞
(
∥∆M1∥2 + θc∥(|M1|2 − 1)∥∞∥M1∥2 + ∥M1∥∞∥θ1∥2 + ∥H∥2

)
∥θ∥2

+ C∥M2∥∞
(
∥∆M∥2 + θc(∥M1∥2∞ + 1)∥M∥2 + ∥M1∥∞∥θ∥2

+ ∥θ2∥2∥M∥∞ + ∥H∥2
)
∥θ∥2

≤ν

6
∥∆M∥22 + C(∥M∥22 + ∥θ∥22 + ∥H∥22), (4.10)

where we have used the estimates (3.12) and (4.8).
Next, by taking the scalar product of equation (4.3) with H, and the scalar

product of equation (4.4) with E, summing the two equalities, then integrating the
resulting equality with respect to x ∈ Ω, and applying the estimates (3.12) and
(4.8), we obtain

1

2

d

dt
{µ∥H∥22 + ∥E∥22}+ σ∥E∥22

=−
∫
Ω

MtHdx

≤C
(
∥∆M∥2 + (∥M1∥2∞ + 1)∥M∥2 + ∥M1∥∞∥θ∥2 + ∥θ2∥2∥M∥∞ + ∥H∥2

)
∥H∥2

≤ν

6
∥∆M∥22 + C(∥M∥22 + ∥θ∥22 + ∥H∥22). (4.11)

By adding (4.9), (4.10) and (4.11), then applying the Gronwall inequality, we
derive

∥M∥22 + ∥∇M∥22 + ∥θ∥22 + ∥H∥22 + ∥E∥22 = 0. (4.12)

Thus the global solution (M, θ,E,H) is unique for m ≥ 1.
Therefore by the above uniqueness result and existence result established in

Section 3, we complete the proof of Theorem 1.2.
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