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SOLUTIONS OF A TYPE-III
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Abstract This paper is concerned with the well-posedness and stability of a
one-dimensional thermoelastic truncated Timoshenko system of Type III. In
order to establish the well-posedness, we first solve an auxiliary problem and
give the proof in details, using the semigroup theory and some non traditional
operators. Then, we use this result to solve our original problem. After that,
we prove that the presence of the thermal effect in one equation only is strong
enough to drive the system exponentially to rest, irrespective to any relation
between the coefficients. By the end of the work, we present some numerical
tests to illustrate our theoretical findings.
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1. Introduction

The issue of modelling the motion of thick beams was a concern of many engineers
and scientists during the last two centuries. In 1921, the following systemρ1ϕtt − κ (ϕx + ψ)x = 0, in (0, L)× (0,+∞),

ρ2ψtt − bψxx + κ (ϕx + ψ) = 0, in (0, L)× (0,+∞),
(1.1)

was introduced by Timoshenko as answer to such a concern. Here, ϕ is the transverse
displacement, ψ is the rotational angle of the filament of the beam and ρ1, ρ2, b and
κ are fixed positive physical constants.

This system, together with several types of boundary conditions, is conservative.
So, to stabilize it, various kinds of dissipations have been added to one of the
equations or both. As a product, many results concerning the well-posedness and
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long-time behavior of the system have been established. We can see, for example,
[1–3,5, 10,12,14,15,20,21,23,25,26,30].

In fact, it is well-known that the exponential stability of (1.1) can be obtained,
without imposing any condition on the parameters, by the presence of linear damp-
ings in both equations. However, if only one linear damping is acting on the system,
then the exponential stability is achieved if and only if the equal speeds of wave
propagation holds; that is,

κ

ρ1
=

b

ρ2
. (1.2)

The interested reader is advised to see the above references, among others, for
detailed analysis on the well-posedness and the stability of Timoshenko systems. In
particular, the Timoshenko system of thermoelasticity of type-III of the form

ρ1φtt − κ (φx + ψ)x = 0, in (0, L)× (0,+∞),

ρ2ψtt − bψxx + κ (φx + ψ) + δθx = 0, in (0, L)× (0,+∞),

ρ3θtt − βθxx + γψttx − δθtxx = 0, in (0, L)× (0,+∞),

(1.3)

was derived, taking into account Green and Naghdi’s theory, where φ,ψ and θ
model, respectively, the transverse displacement of the beam, the rotation angle of
the filament, and the temperature displacement.

This system, with initial and boundary conditions, has been studied by many
authors. In this regard, we mention Messaoudi and Said-Houari [27] who established
an exponential decay result for the system (1.3) when (1.2) holds. The case of non-
equal speeds was studied later by Messaoudi and Fareh [24] and they established a
polynomial decay result. For more results, see [6, 13].

From the physics point of view, the original Timoshenko system (1.1) is char-
acterized by two natural frequencies which lead to a paradox, known as the second
spectrum, which was not discovered in Timoshenko’s original work. This imposed
(mathematically) a relation on the system coefficients, called the equal-speed prop-
agation. However, this is an unrealistic requirement. To get around this paradox
and to eliminate the anomaly of the second spectrum, Elishakoff [7] proposed in
2009 the following truncated formρ1φtt − κ (φx + ψ)x = 0,

−ρ2φttx − bψxx + κ (φx + ψ) = 0,
(1.4)

in (0, L)× R+. The system (1.4) has been studied by a number of researchers and
results concerning the stability have been established. For example, Almeida Jùnior
et al. [16] considered the following truncated dissipative shear beam modelρ1φtt − κ (φx + ψ)x + µφt = 0,

−bψxx + κ (φx + ψ) = 0,
(1.5)

and established the exponential decay of the system without imposing any rela-
tionship between the coefficients. Also, Feng et al. [11] looked into the following
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truncated system in the presence of time-varying delayρ1φtt − κ (φx + ψ)x = 0,

−ρ2φxtt − bψxx + κ (φx + ψ) + ξ1ψt + ξ2ψt(x, t− τ) = 0,
(1.6)

and proved an exponential stability result. In particular, for the stabilization via
heat dissipation, not much work has been done. For instance, Apalara et al. [4]
considered the following system

ρ1φtt − κ (φx + ψ)x = 0,

−ρ2φttx − bψxx + κ (φx + ψ) + γθx = 0,

ρ3θt − βθxx + γψxtt = 0,

(1.7)

where θ is the temperature difference and ρ3, β > 0, γ ̸= 0 are the capacity, diffu-
sivity and adhesive stiffness, respectively. They discussed briefly the well-posedness
and proved an exponential decay result irrespective of the coefficients of the sys-
tem. Also, Keddi et al. [22] discussed the following second-sound type thermoelastic
truncated Timoshenko system

ρ1φtt − κ (φx + ψ)x = 0, in (0, 1)× (0,+∞),

ρ2ψttx − bψxx + κ (φx + ψ) + δθx = 0, in (0, 1)× (0,+∞),

cθt + qx + δψxt = 0, in (0, 1)× (0,+∞),

τqt + βq + θx = 0, in (0, 1)× (0,+∞),

(1.8)

established the well-posedness in details, using the semigroup theory and introduc-
ing some non classical operators, and showed that the system is exponentially stable
irrespective of the coefficients. For more results in this direction, we refer the reader
to visit [8, 9, 17–19,28,29].

In this paper, we are concerned with the following Type-III thermoelastic Tim-
oshenko system in the light of the second spectrum of frequency

ρ1φtt − κ (φx + ψ)x + µθx = 0,

−bψxx + κ (φx + ψ) = 0,

cθtt − κθxx − δθxxt + µφxtt = 0,

(1.9)

together with the initial and boundary conditionsφ (x, 0) = φ0(x), φt (x, 0) = φ1(x), θ (x, 0) = θ0(x), θt (x, 0) = θ1(x),

φ (0, t) = φ (1, t) = ψx (0, t) = ψx (1, t) = θx (1, t) = θx (0, t) = 0.
(1.10)

By differentiating the first and second equations of (1.9) with respect to t and
introducing the new variables ϕ = φt and ω = ψt, the problem (1.9),(1.10) becomes

ρ1ϕtt − k (ϕx + ω)x + µθxt = 0,

−bωxx + k (ϕx + ω) = 0,

cθtt − κθxx − δθxxt + µϕxt = 0,

(1.11)
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with the following boundary conditions

ϕ (0, t) = ϕ (1, t) = ωx (0, t) = ωx (1, t) = θx (1, t) = θx (0, t) = 0, ∀t ≥ 0, (1.12)

and the initial data

ϕ (x, 0) = ϕ0 (x) = φ1(x), ϕt (x, 0) = ϕ1 (x) =
k
ρ1

(φ0x + ψ0)x (x) + µθ0x,

θ (x, 0) = θ0(x), θt (x, 0) = θ1(x), ∀x ∈ [0, 1].
(1.13)

Since the boundary conditions on ω and θ are of Neumann type. We are unable
to apply Poincaré’s inequality. However, from the second and the third equation of
(1.11) and the boundary conditions (1.12), we can deduce∫ 1

0

ω(x, t)dx = 0,
d2

dt2

∫ 1

0

θ(x, t)dx = 0, (1.14)

which entails ∫ 1

0

θ(x, t)dx =

[∫ 1

0

θ1(x)dx

]
t+

∫ 1

0

θ0(x)dx. (1.15)

Therefore, if we set

θ(x, t) = θ(x, t)−
[∫ 1

0

θ1(x)dx

]
t−

∫ 1

0

θ0(x)dx, (1.16)

we get ∫ 1

0

θ(x, t)dx = 0, (1.17)

which allows the application of Poincaré’s inequality. In the sequel, we work with
(ϕ, ω, θ), but for convenience, we write (ϕ, ω, θ).

The remaining of the paper is organized as follows. In Section 2, we present the
existence and uniqueness in details, using the semigroup theory and some unusual
operators. The stability result is given in Section 3. In Section 4, we check the
stability of the discrete system and illustrate our theoretical results by performing
some numerical tests.

2. Well posedness

In this section, we prove the existence and uniqueness of the solution for the problem
(1.11)-(1.13).

From the second equation of (1.11), we get

ω = −k (k − b∂xx)
−1
ϕx

and by substituting this latter equation into the first equation of (1.11), we obtainρ1ϕtt − kϕxx + k2 (k − b∂xx)
−1
ϕxx + µθxt = 0,

cθtt − κθxx − δθxxt + µϕxt = 0.
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Consequently, our problem reduces toρ1ϕtt −BS−1ϕxx + µθxt = 0,

cθtt − κθxx − δθxxt + µϕxt = 0,
(2.1)

and 

ϕ (0, t) = ϕ (1, t) = θx (1, t) = θx (0, t) = 0, ∀t ≥ 0,

ϕ (x, 0) = ϕ0 (x) = φ1(x),

ϕt (x, 0) = ϕ1 (x) =
k

ρ1
(φ0x + ψ0)x (x) + µθ0x, ∀x ∈ (0, 1),

θ (x, 0) = θ0, θt (x, 0) = θ1(x), ∀x ∈ (0, 1),

(2.2)

where B, S : L2 (0, 1) → L2 (0, 1) are positive self-adjoint operators defined by

B = −bk∂xx,
S = k − b∂xx,

with domains

D (B) = D (S) = H2 (0, 1) ∩H1
0 (0, 1).

Next, we define the Hilbert space

H = H1
0 (0, 1)× L2 (0, 1)×H1

∗ (0, 1)× L2
∗(0, 1),

equipped with the inner product〈
(ϕ, v, θ, ϑ)T , (ϕ∗, v∗, θ∗, ϑ∗)

T
〉

=ρ1 ⟨v, v∗⟩+
〈
B1/2S−1/2ϕx, B

1/2S−1/2ϕ∗x

〉
+ c ⟨ϑ, ϑ∗⟩+ κ⟨θx, θ∗x⟩,

where

L2
∗ (0, 1) =

{
ϕ ∈ L2 (0, 1) /

∫ 1

0

ϕ(x)dx = 0

}
and H1

∗ (0, 1) = H1 (0, 1) ∩ L2
∗(0, 1).

Now, we introduce the new variables ϕt = v and θt = ϑ and the problem (2.1)-(2.2)
becomes Φt +AΦ = 0,

Φ (0) = Φ0 = (ϕ0, ϕ1, θ0, θ1)
T ,

where Φ = (ϕ, v, θ, ϑ) and the operator A : D (A) ⊂ H → H is defined by

AΦ =


−v

− 1
ρ1
BS−1ϕxx + µ

ρ1
ϑx

−ϑ

−κ
c θxx − δ

cϑxx + µ
c vx

 ,
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with domain

D(A) =

Φ ∈ H : ϕ ∈ H2(0, 1), v ∈ H1
0 (0, 1), ϑ ∈ H1

∗ (0, 1),

κθ + δϑ ∈ H2
∗ (0, 1)

 ,

where
H2

∗ (0, 1) =
{
ϕ ∈ H2(0, 1) : ϕx (0) = ϕx (1) = 0

}
.

Theorem 2.1. Let Φ0 ∈ D(A). Then there exists a unique solution of the problem
(2.1), Φ ∈ C (R+;D (A)) ∩ C1 (R+;H).

Proof. We use the semigroup method. According to the Hille-Yosida theorem, it
suffices to prove that A is a maximal monotone operator.

First, we prove that A is monotone. Let Φ ∈ D(A), then the inner product, the
properties of the operators B and S and integration by parts lead to

⟨AΦ,Φ⟩H = −
〈
BS−1ϕxx − µϑx, v

〉
−
〈
B1/2S−1/2vx, B

1/2S−1/2ϕx

〉
−⟨κθxx + δϑxx − µvx, ϑ⟩ − κ ⟨ϑx, θx⟩

=
〈
B1/2S−1/2ϕx, B

1/2S−1/2vx

〉
+ µ ⟨ϑx, v⟩

−
〈
B1/2S−1/2vx, B

1/2S−1/2ϕx

〉
+ κ ⟨θx, ϑx⟩

+δ ⟨ϑx, ϑx⟩ − µ ⟨v, ϑx⟩ − κ ⟨ϑx, θx⟩
= δ ⟨ϑx, ϑx⟩
≥ 0.

Thus, A is monotone.
Next, let F = (f1, f2, f3, f4)

T ∈ H, we seek Φ ∈ D (A) such that (I −A) Φ = F,
that is 

ϕ− v = f1,

ρ1v −BS−1ϕxx + µϑx = ρ1f2,

θ − ϑ = f3,

cϑ− κθxx − δϑxx + µvx = cf4.

(2.3)

From the first and third equations of (2.3), we get

v = ϕ− f1, ϑ = θ − f3 (2.4)

and by substituting (2.4) into the second and fourth equations of (2.3), we obtainρ1ϕ−BS−1ϕxx + µθx = g1,

cθ − κθxx − δθxx + µϕx = g2,
(2.5)

where

g1 = ρ1f1 + ρ1f2 + µf3x ∈ L2(0, 1), g2 = µf1x − δf3xx − cf3 + cf4 ∈ H−1(0, 1).



Type-III thermoelastic truncated Timoshenko system 3391

Let’s define the following variational formulation

B
(
(ϕ, θ), (ϕ̃, θ̃)

)
= L

(
ϕ̃, θ̃

)
, ∀

(
ϕ̃, θ̃

)
∈ W, (2.6)

where

B
(
(ϕ, θ), (ϕ̃, θ̃)

)
=ρ1

∫ 1

0

ϕϕ̃dx+

∫ 1

0

BS−1ϕxϕ̃xdx+ µ

∫ 1

0

θxϕ̃dx+ c

∫ 1

0

θθ̃dx

+ (κ+ δ)

∫ 1

0

θxθ̃xdx+ µ

∫ 1

0

ϕxθ̃dx

is the bilinear form over W = H1
0 (0, 1)×H1

∗ (0, 1) and

L
(
ϕ̃, θ̃

)
=

∫ 1

0

g1ϕ̃dx+ µ

∫ 1

0

f1xθ̃dx+ δ

∫ 1

0

f3xθ̃xdx− c

∫ 1

0

f3θ̃dx+ c

∫ 1

0

f4θ̃dx

is a linear form. It is easy to check that B and L are bounded. Moreover,

B ((ϕ, θ), (ϕ, θ))

= ρ1 ⟨ϕ, ϕ⟩+
〈
BS−1ϕx, ϕx

〉
+ c ⟨θ, θ⟩+ (κ+ δ) ⟨θx, θx⟩

= ρ1 ⟨ϕ, ϕ⟩+ k ⟨ϕx, ϕx⟩+ k2
〈
S−1ϕx, ϕx

〉
+ c ⟨θ, θ⟩+ (κ+ δ) ⟨θx, θx⟩

= ρ1 ⟨ϕ, ϕ⟩+ k ⟨ϕx, ϕx⟩+ k2
〈
S−1/2ϕx, S

−1/2ϕx

〉
+ c ⟨θ, θ⟩+ (κ+ δ) ⟨θx, θx⟩

≥ C∥ (ϕ, θ) ∥2W ,

for some C > 0; which shows that B is coercive. Thus, the Lax-Milgram theorem
guarantees the existence of a unique solution (ϕ, θ) ∈ W to the problem (2.6).

Next, we take
(
ϕ̃, θ̃

)
=

(
ϕ̃, 0

)
in (2.6) to arrive at

∫ 1

0

BS−1ϕxϕ̃xdx =

∫ 1

0

[g1 − ρ1ϕ− µθx] ϕ̃dx, ∀ϕ̃ ∈ H1
0 (0, 1).

Then the elliptic regularity theory gives

BS−1ϕ ∈ H2(0, 1),

with
BS−1ϕxx = ρ1ϕ+ µθx − ρ1f1 − ρ1f2 − µf3x ∈ L2(0, 1).

Since BS−1 : L2 (0, 1) → L2 (0, 1) is a bijection, we conclude that ϕxx ∈ L2 (0, 1) ;
consequently

ϕ ∈ H1
0 (0, 1) ∩H2(0, 1). (2.7)

Further, by using (2.4), we get

ρ1v −BS−1ϕxx + µϑx = ρ1f2.

Similarly, taking
(
ϕ̃, θ̃

)
=

(
0, θ̃

)
, we infer that

∫ 1

0

[κθx + δϑx] θ̃xdx =

∫ 1

0

[µf1x − cf3 + cf4 − µϕx − cθ] θ̃dx, ∀θ̃ ∈ H1
∗ (0, 1).
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To be able to apply the regularity results, let Θ̃ ∈ H1
0 (0, 1) and set θ̃ = Θ̃ −∫ 1

0

Θ̃ (x) dx. Clearly θ̃ ∈ H1
∗ (0, 1) and we have

∫ 1

0

[κθx + δϑx] Θ̃xdx =

∫ 1

0

[µf1x − cf3 + cf4 − µϕx − cθ] Θ̃dx, ∀Θ̃ ∈ H1
0 (0, 1).

Therefore,
κθ + δϑ ∈ H2 (0, 1)

and
κθxx + δϑxx = µϕx + cθ − µf1x + cf3 − cf4 ∈ L2(0, 1).

Then, use of (2.4) yields

cϑ− κθxx − δϑxx + µvx = cf4.

On the other hand, since κθxx + δϑxx = R ∈ L2 (0, 1), then

−
∫ 1

0

[κθxx + δϑxx] Ψdx =

∫ 1

0

RΨdx, ∀Ψ ∈ H1(0, 1). (2.8)

Integration by parts gives∫ 1

0

[κθx + δϑx] Ψxdx− [(κθx + δϑx)Ψ]
1
0 =

∫ 1

0

RΨdx, ∀Ψ ∈ H1(0, 1),

consequently, we have∫ 1

0

[κθx + δϑx] Ψxdx− [(κθx + δϑx)Ψ]
1
0 =

∫ 1

0

RΨdx, ∀Ψ ∈ H1
∗ (0, 1).

We use (2.8) to get

[κθx (1) + δϑx (1)]Ψ (1)− [κθx (0) + δϑx (0)]Ψ (0) = 0.

Since Ψ ∈ H1
∗ (0, 1) is arbitrary, then

κθx (1) + δϑx (1) = κθx (0) + δϑx (0) = 0,

which means that
κθ + δϑ ∈ H2

∗ (0, 1). (2.9)

Substituting (2.7) and (2.9) into (2.4), we arrive at

v ∈ H1
0 (0, 1) and ϑ ∈ H1

∗ (0, 1). (2.10)

Hence, the solution Φ belongs to D(A). This shows that A is maximal. Thus, the
Hille-Yosida theorem guarantees the existence of a unique solution to the problem
(2.1),(2.2). This completes the proof of Theorem 2.1.

Now, we turn to our problem (1.11)-(1.13). For this purpose, we define the
following set

D =

U=(ϕ, v, ω, θ, ϑ)∈H1
0 (0, 1)×L2 (0, 1)×H1(0, 1)×H1

∗ (0, 1)× L2
∗(0, 1) :

ϕ∈H2(0, 1), v∈H1
0 (0, 1), ϑ∈H1

∗ (0, 1), κθ + δϑ∈H2
∗ (0, 1), ω∈H2

∗ (0, 1)

 .

Our well-posedness result reads as follows:



Type-III thermoelastic truncated Timoshenko system 3393

Theorem 2.2. For any (ϕ0, ϕ1, θ0, θ1) ∈ D(A), problem (1.11)-(1.13) has a unique
solution, (ϕ, ϕt, ω, θ, θt) ∈ C (R+;D) and (ϕ, ϕt, θ, θt) ∈ C1(R+;H).

Proof. By using Theorem 2.1, we find (ϕ, ϕt, θ, θt) ∈ C (R+;D(A))∩C1 (R+;H).

To fined ω, we use the second equation of (1.11).

Namely, we consider the following problem−bωxx + kω = −kϕx,

ωx(0, t) = ωx(1, t) = 0.

A simple application of Lax-Milgram theorem, we obtain ω ∈ C
(
R+;H2

∗ (0, 1)
)
,

since ϕx ∈ C
(
R+;H1(0, 1)

)
. Therefore, (ϕ, ϕt, ω, θ, θt) ∈ C (R+;D).

By recalling (2.1), we easily check that (ϕ, ω, θ) is the desired solution.

3. Exponential stability

In this section, we present and prove our exponential decay result. For this, we
need the following essential lemmas.

Lemma 3.1. The energy functional of the system (1.11)-(1.13), given by

E (t) =
1

2

∫ 1

0

(
ρ1ϕ

2
t + k (ϕx + ω)

2
+ bω2

x + cθ2t + κθ2x

)
dx, (3.1)

satisfies

E′ (t) = −δ
∫ 1

0

θ2xtdx ≤ 0. (3.2)

Proof. Taking the L2-product of equation (1.11)1 with ϕt, equation (1.11)2 with
ωt, and equation (1.11)3 with θt, and applying integration by parts, we get

ρ1
2

d

dt

∫ 1

0

ϕ2tdx+ k

∫ 1

0

(ϕx + ω)ϕxtdx− µ

∫ 1

0

θtϕxtdx = 0,

b

2

d

dt

∫ 1

0

ω2
xdx+ k

∫ 1

0

(ϕx + ω)ωtdx = 0

and
c

2

d

dt

∫ 1

0

θ2t dx+
κ

2

d

dt

∫ 1

0

θ2xdx+ δ

∫ 1

0

θ2xtdx+ µ

∫ 1

0

ϕxtθtdx = 0.

Thus, summing up, we obtain

1

2

d

dt

[
ρ1

∫ 1

0

ϕ2tdx+ k

∫ 1

0

(ϕx + ω)
2
dx+ b

∫ 1

0

ω2
xdx+ c

∫ 1

0

θ2t dx+ κ

∫ 1

0

θ2xdx

]
= −δ

∫ 1

0

θ2xtdx. (3.3)
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Lemma 3.2. The functional

F1 (t) = c

∫ 1

0

θtθdx+
δ

2

∫ 1

0

θ2xdx+ µ

∫ 1

0

ϕxθdx

satisfies, along the solution of (1.11)-(1.13) and for any ε1 > 0, the estimate

F
′

1 (t)

≤− κ

∫ 1

0

θ2xdx+

(
c+

µ2

4ε1

)
cp

∫ 1

0

θ2xtdx+ 2ε1

∫ 1

0

(ϕx + ω)
2
dx+ 2cpε1

∫ 1

0

ω2
xdx,

(3.4)

where cp is the Poincaré constant.

Proof. Differentiating F1, using (1.11), integration by parts, and the boundary
conditions, we obtain

F
′

1 (t) =

∫ 1

0

(κθxx + δθxxt − µϕxt) θdx+ c

∫ 1

0

θ2t dx+ δ

∫ 1

0

θxθxtdx+ µ

∫ 1

0

ϕxtθdx

+µ

∫ 1

0

ϕxθtdx

= −κ
∫ 1

0

θ2xdx− δ

∫ 1

0

θxtθxdx+ δ

∫ 1

0

θxθxtdx+ c

∫ 1

0

θ2t dx+ µ

∫ 1

0

ϕxθtdx

= −κ
∫ 1

0

θ2xdx+ c

∫ 1

0

θ2t dx+ µ

∫ 1

0

ϕxθtdx.

Using Young’s and Poincaré’s inequalities, we get, for any ε1 > 0,

F
′

1 (t) ≤ −κ
∫ 1

0

θ2xdx+

(
c+

µ2

4ε1

)
cp

∫ 1

0

θ2xtdx+ ε1

∫ 1

0

ϕ2xdx.

The fact that ϕ2x ≤ 2 (ϕx + ω)
2
+ 2ω and Poincaré’s inequality lead to (3.4).

Lemma 3.3. The functional

F2 (t) = ρ1

∫ 1

0

ϕtϕdx

satisfies, along the solution of (1.11)-(1.13), the estimate

F
′

2 (t) ≤ ρ1

∫ 1

0

ϕ2tdx− k

2

∫ 1

0

(ϕx + ω)
2
dx− b

2

∫ 1

0

ω2
xdx+M

∫ 1

0

θ2txdx, (3.5)

where M > 0 is a constant.

Proof. The differentiation of F2, using the first equation of (1.11) and integration
by parts, gives

F
′

2 (t) = ρ1

∫ 1

0

ϕ2tdx+ ρ1

∫ 1

0

ϕttϕdx

= ρ1

∫ 1

0

ϕ2tdx+ k

∫ 1

0

ϕ [(ϕx + ω)x − µθxt] dx
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= ρ1

∫ 1

0

ϕ2tdx− k

∫ 1

0

ϕx (ϕx + ω) dx− µ

∫ 1

0

ϕθxtdx

= ρ1

∫ 1

0

ϕ2tdx− k

∫ 1

0

(ϕx + ω)
2
dx+ k

∫ 1

0

(ϕx + ω)ωdx+ µ

∫ 1

0

ϕθxtdx.

(3.6)

From the second equation of (1.11) and (1.12), we have

k

∫ 1

0

(ϕx + ω)ωdx = −b
∫ 1

0

ω2
xdx. (3.7)

Plugging (3.7) into (3.6), we arrive at

F
′

2 (t) = ρ1

∫ 1

0

ϕ2tdx− k

∫ 1

0

(ϕx + ω)
2
dx− b

∫ 1

0

ω2
xdx+ µ

∫ 1

0

ϕθxtdx

and using Young’s and Poincaré’s inequalities, and again the fact ϕ2x ≤ 2 (ϕx + ω)
2
+

2ω, we obtain, ∀ε2 > 0,

F
′

2 (t) = ρ1

∫ 1

0

ϕ2tdx− k

∫ 1

0

(ϕx + ω)
2
dx− b

∫ 1

0

ω2
xdx+ 2ε2

∫ 1

0

(ϕx + ω)
2
dx

+2ε2cp

∫ 1

0

ω2
xdx+

µ2cp
4ε2

∫ 1

0

θ2xtdx.

Choosing ε2 ≤ min
(

k
4 ,

b
4cp

)
, the estimate (3.5) follows immediately.

Lemma 3.4. The functional

F3 (t) = ρ1c

∫ 1

0

ϕt

∫ x

0

θt (y) dydx

satisfies, along the solution of (1.11)-(1.13) and for all ε3 > 0, the estimate

F
′

3 (t) ≤− ρ1
2

∫ 1

0

ϕ2tdx+ ε3

∫ 1

0

(ϕx + ω)
2
dx+

κ2ρ1
µ2

∫ 1

0

θ2xdx

+

[
c2k2cp
4µ2ε3

+ ccp +
δ2ρ1
µ2

] ∫ 1

0

θ2xtdx, (3.8)

where cp is the Poincaré constant.

Proof. Direct differentiation of F3, using the first equation of (1.11) and integra-
tion by parts, yields

F
′

3 (t) =
c

µ

∫ 1

0

[k (ϕx + ω)x − µθxt]
(∫ x

0

θt (y) dy
)
dx

+
ρ1
µ

∫ 1

0

ϕt

(∫ x

0

(κθxx + δθxxt − µϕxt) (y) dy
)
dx

= − c

µ

∫ 1

0

[k (ϕx + ω)− µθt] θtdx+
ρ1
µ

∫ 1

0

ϕt (κθx + δθxt − µϕt) dx

= −ck
µ

∫ 1

0

(ϕx + ω) θtdx+ c

∫ 1

0

θ2t dx+
κρ1
µ

∫ 1

0

θxϕtdx
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+
δρ1
µ

∫ 1

0

θxtϕtdx− ρ1

∫ 1

0

ϕ2tdx.

Exploiting Young’s and Poincaré’s inequalities, we arrive at (3.8).

Theorem 3.1. Let (ϕ, ω, θ) be the solution of problem (1.11)-(1.13). Then the
energy functional (3.1) satisfies

E(t) ≤ σe−ϖt, ∀t ≥ 0,

where σ and ϖ are two positive constants.

Proof. First, we define the Lyapunov functional by

L (t) = NE (t) +N1F1 (t) + F2 (t) + 3F3(t),

for N and N1, positive constants to be determined appropriately.
Clearly, we have

|L (t)−NE (t)|

≤C
[∣∣∣∣∫ 1

0

θtθdx

∣∣∣∣+ ∣∣∣∣∫ 1

0

θ2xdx

∣∣∣∣+ ∣∣∣∣∫ 1

0

ϕxθdx

∣∣∣∣+ ∣∣∣∣∫ 1

0

ϕtϕdx

∣∣∣∣+ ∣∣∣∣∫ 1

0

ϕt

∫ x

0

θt (y) dydx

∣∣∣∣ .
Cauchy–Schwarz, Young’s and Poincaré’s inequalities give, for some λ > 0,

|L (t)−NE (t)| ≤ λE(t).

Consequently, we obtain

(N − λ)E (t) ≤ L (t) ≤ (λ+N)E(t), ∀t > 0. (3.9)

Next, by differentiating L and using (3.2), (3.4), (3.5) and (3.8), we get

L
′
(t) ≤ −

[
δN −

(
c+

µ2

4ε1

)
cpN1 −M − 3

[
c2k2cp
4µ2ε3

+ ccp +
δ2ρ1
µ2

]] ∫ 1

0

θ2xtdx

−
[
κN1 − 3

κ2ρ1
µ2

] ∫ 1

0

θ2xdx−
[
b

2
− 2cpε1N1

] ∫ 1

0

ω2
xdx

−
[
k

2
− 2ε1N1 − 3ε3

] ∫ 1

0

(ϕx + ω)
2
dx− ρ1

2

∫ 1

0

ϕ2tdx.

At this point, we choose N1 > 3κρ1

µ2 and select ε1 such that

b

2
− 2cpε1N1 > 0 and

k

2
− 2ε1N1 = C1 > 0.

After that, we pick ε3 small enough such that

C2 = C1 − 3ε3 > 0.

Finally, we choose N very large so that

δN −
(
c+

µ2

4ε1

)
cpN1 −M − 3

[
c2k2cp
4µ2ε3

+ ccp +
δ2ρ1
µ2

]
> 0, N − λ > 0.
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Thus, there exist ζ, ξ,m1,m2 > 0 such that

L
′
(t) ≤ −ζ

[∫ 1

0

θ2xdx+

∫ 1

0

ω2
xdx+

∫ 1

0

(ϕx + ω)
2
dx+

∫ 1

0

ϕ2tdx

]
− ξ

∫ 1

0

θ2xtdx

and
m1E (t) ≤ L (t) ≤ m2E (t) , ∀t ≥ 0. (3.10)

Using Poincaré’s inequality, we infer that there exists γ,ϖ > 0 such that

L
′
(t) ≤ −γE (t) ≤ −ϖL (t) , ∀t ≥ 0.

Therefore, by integration we obtain

L (t) ≤ L (0) e−ϖt, ∀t ≥ 0.

Again, using (3.10), we get, for some σ > 0,

E (t) ≤ σe−ϖt, ∀t ≥ 0.

This completes the proof of Theorem 3.1.

4. Numerical experiments

In this section, we propose a finite element approximation to system (1.11) with
the initial conditions (1.13) and under the boundary conditions (1.12). Moreover,
we prove that the discrete energy decays, from which we derive a discrete stability
property. Multiplying (1.11) by test functions ξ, η, ζ ∈ H1

0 (0, 1), we get the following
weak form: 

ρ1(ϕtt, ξ) + k(ϕx + ω, ξx)− µ(θt, ξx) = 0,

b(ωx, ηx) + k(ϕx + ω, η) = 0,

c(θtt, ζ) + κ(θx, ζx) + δ(θtx, ζx)− µ(ϕt, ζx) = 0.

(4.1)

Let us partition the interval (0, 1) into subintervals Ii = (xi−1, xi) of length
h = 1/Nh with 0 = x0 < x1 < · · · < xNh

= 1 and define

P 1
h =

{
u ∈ H1

0 (0, 1) ∩ C(0, 1), u|Ii is a linear function
}
.

For a given final time T and a positive integer Nt, let ∆t = T/Nt be the time step
and tn = n∆t, n = 0, . . . , Nt. The finite element method for (4.1) is to find ϕnh, ω

n
h ,

θnh ∈ P 1
h , such that, for all ξh, ηh, ζh ∈ P 1

h ,
ρ1
∆t

(ϕnht − ϕn−1
ht , ξh) + k(ϕnhx + ωn

h , ξhx)− µ(θnht, ξhx) = 0,

b(ωn
hx, ηhx) + k(ϕnhx + ωn

h , ηh) = 0,
c

∆t
(θnht − θn−1

ht , ζh) + κ(θnhx, ζhx) + δ(θnhtx, ζhx)− µ(ϕnht, ζhx) = 0,

(4.2)

where ϕnh = ϕn−1
h +∆tϕnht and θ

n
h = θn−1

h +∆tθnht. The notations ϕ0h, ϕ
0
ht, ω

0
h, θ

0
h,

θ0ht are adequate approximations to ϕ0, ϕ1, ω0, θ0 and θ1, respectively. Then, the
discrete energy is given by

En
h =

1

2

(
ρ1∥ϕnht∥22 + k∥ϕnhx + ωn

h∥22 + b∥ωn
hx∥22 + c∥θnht∥22 + κ∥θnhx∥22

)
. (4.3)
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The next result is a discrete version of the energy decay property satisfied by
the solution of system (1.11).

Theorem 4.1. For n = 1, 2, . . . , Nt, the discrete energy satisfies the following decay
property

1

∆t

(
En

h − En−1
h

)
≤ 0. (4.4)

Proof. Choosing ξh = ϕnht, ηh = ωn
h , and ζh = θnht in (4.2) and thanks to the

following equality

(a− b, a) =
1

2

(
∥a− b∥22 + ∥a∥22 − ∥b∥22

)
,

we obtain

ρ1
2∆t

(∥ϕnht − ϕn−1
ht ∥22 + ∥ϕnht∥22 − ∥ϕn−1

ht ∥22) + k(ϕnhx + ωn
h , ϕ

n
htx)− µ(θnht, ϕ

n
htx) = 0,

b∥ωn
hx∥22 + k(ϕnhx + ωn

h , ω
n
h) = 0,

c

2∆t
(∥θnht − θn−1

ht ∥22 + ∥θnht∥22 − ∥θn−1
ht ∥22) + κ(θnhx, θ

n
htx)

+δ∥θnhtx∥22 − µ(ϕnht, θ
n
htx) = 0.

Adding the latter equations, we find that

ρ1
2∆t

(∥ϕnht − ϕn−1
ht ∥22 + ∥ϕnht∥22 − ∥ϕn−1

ht ∥22) + k(ϕnhx + ωn
h , ϕ

n
htx + ωn

h) + b∥ωn
hx∥22

+
c

2∆t
(∥θnht − θn−1

ht ∥22 + ∥θnht∥22 − ∥θn−1
ht ∥22) + κ(θnhx, θ

n
htx) + δ∥θnhtx∥22 = 0.

We note that

k(ϕnhx + ωn
h , ϕ

n
htx + ωn

h)

=
k

∆t
(ϕnhx + ωn

h , ϕ
n
hx + ωn

h − (ϕn−1
hx + ωn−1

h ))

+
k

∆t
(ϕnhx + ωn

h ,−ωn
h + ωn−1

h ) + k(ϕnhx + ωn
h , ω

n
h)

=
k

2∆t
(∥ϕnhx + ωn

h − (ϕn−1
hx + ωn−1

h )∥22 + ∥ϕnhx + ωn
h∥22 − ∥ϕn−1

hx + ωn−1
h ∥22)

− b

∆t
(ωn

hx, ω
n−1
hx ) + (

b

∆t
− b)∥ωn

hx∥22

≥ k

2∆t
(∥ϕnhx + ωn

h − (ϕn−1
hx + ωn−1

h )∥22 + ∥ϕnhx + ωn
h∥22 − ∥ϕn−1

hx + ωn−1
h ∥22)

− b

2∆t
(∥ωn

hx∥22 + ∥ωn−1
hx ∥22)

and

κ(θnhx, θ
n
htx) =

κ

∆t
(θnhx, θ

n
hx − θn−1

hx )

=
κ

2∆t

(
∥θnhx − θn−1

hx ∥22 + ∥θnhx∥22 − ∥θn−1
hx ∥22

)
.

These results together, yield

1

∆t

[1
2

(
ρ1∥ϕnht∥22 + k∥ϕnhx + ωn

h∥22 + b∥ωn
hx∥22 + c∥θnht∥22 + κ∥θnhx∥22

)
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− 1

2

(
ρ1∥ϕn−1

ht ∥22 + k∥ϕn−1
hx + ωn−1

h ∥22 + b∥ωn−1
hx ∥22 + c∥θn−1

ht ∥22 + κ∥θn−1
hx ∥22

) ]
≤ 0

and the theorem is proved using the definition of the discrete energy (4.3).
In order to illustrate the theoretical results, some numerical experiments have

been performed using the numerical method analysed in the previous section. We
divide the spatial interval [0, 1] into Nh = 50 subintervals, where the spatial step size
h = 0.02. The temporal interval [0, T ] = [0, 150] with a time step size ∆t = 10−2.

We run our code for Nt time steps (Nt = T/∆t) using the following initial
conditions:

ϕ0h(x) =
1

2
sin(πx), ϕ0ht(x) = −kπ

ρ1
(π sin(πx) + sin(πx)) +

µπ

ρ1
sin(πx),

ω0
h(x) = 0, θ0h(x) = cos(πx), θ0ht(x) = 2 cos(πx).

The numerical tests are done for different entries as follows:

• Test 1:
ρ1 = k = µ = b = κ = δ = c = 1.

• Test 2:
ρ1 = k = µ = b = κ = c = 1 and δ = 0.1.

• Test 3:
ρ1 = k = b = κ = δ = c = 1 and µ = 2.

Figure 1. Test 1: Damping cross section waves.

For each numerical test, we plot the cross section cuts for the approximate
solution (ϕ, ω, θ) at different points (x = 0.3, x = 0.5 and x = 0.9). The numerical
results are shown in Figure 1, Figure 2 and Figure 3, successively. Next, we present
the energy curves for the three cases in Figure 4, for times between t = 5 and
t = T = 150, to show the difference between the energy decays according to the
parameters chosen in each test.
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Figure 2. Test 2: Damping cross section waves.

Figure 3. Test 3: Damping cross section waves.

As a conclusion, for all tests, we observed that the numerical solution con-
verges to zero and an exponential decay with different rates (see log scales of the
energy on the right of Figure 4) seems to be reached which is compatible with the
theoretical results.
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dissipative Timoshenko systems, Math. Methods Appl. Sci., 2013, 36(14), 1965–
1976.
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