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Abstract Let (X,d, 1) be a non-homogeneous metric measure space satisfy-
ing geometrically doubling and upper doubling conditions. Under assumption
that a dominating function A satisfies e-weak reverse doubling condition, the
authors prove that a bilinear 6-type Calderén-Zygmund operator Tp is bounded
from product of generalized weighted Morrey spaces £21®€(u) x £22%¢(y)
into weak generalized weighted Morrey spaces Wﬁ’,jf’g(u), and also show that
the commutator Te,bl,b2 generated by b1, b2 € REM/O(N) and Ty are bounded
from product of spaces L21®¢(1) x £22*2(1) into spaces WLE¢(), where
® : (0,00) — (0,00) is a Lebesgue measurable function, ¢ € (1,00), p =
(plap2)7 o= (LU1,LA.J2) € A;—?(M)a Vg € RHT(AU‘) for r € (1300)7 and % = %+ i
with 1 < p1, p2 < co. Furthermore, the strong and weak type results for the T@
and Tp,p, b, on the product of spaces L£E12(u) x L£E2%2(y) are established.
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6n-Zygmund operator, commutator, space RBMO(u), generalized weighted
Morrey space.

MSC(2010) 42B20, 42B35, 47A07, 47B47, 30L99.

1. Introduction

It is well known that the researches on the boundedness of operators is not only a
hot topic in modern harmonic analysis, but also their use is best justified by the
variety of applications in which they appear; for example, see [3,4,8]. To investi-
gate the local behaviour of solutions for the second order elliptic partial differential
equations, C.B. Morrey [35] introduced the classical Morrey space. On the basis of
this, B. Muckenhoupt and R. Wheeden [36] established the weighted norm inequal-
ities for the Hardy maximal functions; in 1994, E. Nakai [37] introduced a gener-
alized Morrey space LP*(R™), and also obtained the boundedness of the Hardy-
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Littlewood maximal operator M, the singular integral operator 7" and the Riesz
potential I, on spaces LP*(R™). In 2009, T.Y. Komori and S. Shirai [18] intro-
duced a weighted Morrey space LP*(R™), and proved that the Hardy-Littlewood
maximal operator M, the Calderén-Zygmund operator T" and the fractional integral
operator I, are bounded on spaces LP;"(R™). In recent years, many papers focus
the various Morrey spaces on different kinds of underlying spaces. For example, in
2021, I. Ekincioglu et al. [10] introduced a generalized variable exponent Morrey
space M p(')""(R"), and showed that the multilinear commutators T}, generated by
Calderén-Zygmund operators T and b = (by, -+ ,by,) € (BMO(R”))m are bounded
on spaces MP()#(R™). In 2022, Wei [47] obtained the definition of a generalized
mixed Morrey space M;; (R™) and its dual space, and then established the bound-
edness of Calderén-Zygmund singular integral operators T on spaces Mg(R”) for
P = (p1, -+ ,pn) € (1,00)™. In 2023, F. Deringoz [9] obtained the definition of a
generalized weighted Orlicz-Morrey space M2:%(R"), and proved that the Calderén-
Zygmund operators T and their commutators [b, T'] associated with BMO functions
are bounded on spaces M2?(R™). Recently, Lu et al. [32] obtain the definition of
a generalized Morrey space over RD-spaces satisfying the doubling conditions in
the sense of Coifman and Weiss in [6, 7] and the reverse doubling conditions, and
show that the bilinear generalized fractional integral operator T, and its commuta-
tor T by b, Which is formed by b1, b2 € BMO(X) are bounded on product of spaces
LPP1(X ) x L#2P2(X). More development on the various generalized Morrey spaces
can be seen in [5, 19,20, 23,29, 30, 39].

Regarding two important class of function spaces in harmonic analysis, i.e., sp-
aces of homogeneous type in the sense of Coifman and Weiss [6,7] and non-doubling
measure spaces whose measures satisfy the polynomial growth conditions (see [38,
42,43,46]), many results from real analysis and harmonic analysis on spaces R™ are
proved still valid on these two spaces. But, generally, some results hold on spaces
of homogeneous type many not be correct on spaces without doubling measures.
To unify the two class of spaces, in 2010, T. Hytonen [15] introduced a new class of
metric measure spaces satisfying so-called geometrically doubling and upper dou-
bling conditions, which are now called non-homogeneous metric measure spaces and
simply denoted by (X, d, ). Since then, many papers focus on the various proper-
ties of function spaces and integral operators over (X, d, u). For example, in 2021,
Lu [25] showed that an #-type Calderén-Zygmund operator Ty and its commutator
[b, Ty] generated by b € RBMO(u) and Ty are bounded on weighted weak Lebesgue
spaces W LP(w) and weighted weak Morrey spaces W LP*?(w). At the same year,
Zhao et al. in [50] obtained some weak-type multiple weighted estimates for the
iterated commutator Ty 5 formed by b= (b1, - ,by) € [RBMO(1)]™ and a multil-
inear Calderén-Zygmund operator T. In 2022, Lu [26] proved that fractional type
Marcinkiewicz integrals M, , ., and their commutators M, , ., generated by b €
RBMO(p) and the M, , 5 are bounded on generalized Morrey spaces LP?(u)
and on Morrey spaces MJ(u), where ¢ is a Lebesgue measurable function defined
on (0,00) and 1 < p < ¢ < co. Recently, Lu et al. [33] show that the bilinear
strongly generalized fractional integrals T., and their commutator 7, o.by by formed
by b1,b2 € RTB\M/O(/L) and T, on product of Lebesgue spaces LP!(y1) x LP2 (1), prod-
uct of Morrey spaces MP! (1) x MP?(pn) and product of generalized Morrey spaces

LP0v () x LP2¥2 (). More researches about the integral operators and function
spaces on (X, d, ) can be seen in [13,16,24,27,28,34,41,44,45,48,49].
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It is position to state the organizations of this paper as follows: in section 2,
we mainly recall some necessary notation and notions. In section 3, the authors
showed that Ty is bounded form the product of generalized weighted Morrey spaces
L£2P-2 (1) x LP2P2(11) into weak generalized weighted Morrey spaces W/J{Zf’@ (1),

—

where ® is a non-negative Lebesgue measurable function defined on (0,00), & =
2 r
(wi,w2) € AZ(n), P = (p1,p2), % = p% + p%, for p1,p2 € [1,00), and vg = [[ w;” €
j=1
RH,(n) with r € (1,00). In section 4, the authors prove that the Ty, 5, formed
by by, bs € RBMO(y) and the Ty are bounded from product of spaces LE-Pe (1) x
LP2%¢(y1) into spaces WLE®¢(y). The strong (weak) type boundedness for the Tp

and Tp 4, », on product of spaces L21P-2 (1) x LP2®:2(1) are obtained in section 5.

Finally, we make some conventions on notation. Throughout this paper, we
always denote by C' a positive constant being independent of the main parameters,
but it may vary from line to line. Given any p € [1,00), we denote p’ as its conjug-
ate index, that is, 1/p+1/p’ = 1. For any measurable set E, xg denotes its charac-
teristic function,

5(B) = [ vs(@)in(o)
with & € A%(u) and

1
me(f) = m /E f(x)du(z)

represents the average of the function f on E.

2. Preliminaries

In this section, we recall some necessary notions and notation, including the domin-
ating function, the discrete coefficient K 1(9’)7)5, the spaces RBMO(u), the bilinear 6-t-

ype Calderén-Zygmund operator and generalized weighted Morrey spaces £2;%¢(u).
The following definitions of upper doubling is from [15].

Definition 2.1. A metric measure space (X, d, ut) is said to be upper doubling if  is
a Borel measure on X’ and there exist a dominating function A : X x (0, 00) — (0, 00)
and a positive constant C(y), only depending on A, such that, for each z € X', r —
A(z,7) is non-decreasing and, for all z € X and r € (0, 00).

w(B(x,r)) < Ma,r) < CoyAa,r/2). (2.1)
Remark 2.1. T. Hytonen [16] showed that there exists another dominating func-
tion A such that A < A, C(X) < Cpy) and, for all z,y € X with d(z,y) <,

Az, 7) < ConA(y, ). (2.2)

Hence, in this paper, we also assume that the A defined as in (2.1) satisfies (2.2).

The following notion of the geometrically doubling is well known in analysis on
metric measure spaces, which can be found in [6].
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Definition 2.2. A metric space (X, d) is said to be geometrically doubling if there
exists some Ny € N such that, for any ball B(z,r) C X with z € X and r € (0, 00),
there exists a finite ball covering {B(x;, 5)}: of B(x,r) such that the cardinality of
this covering is at most Ny, here i =1,2,--- | Ng.

Remark 2.2. Let (X,d) be a metric measure. T. Hytonen [15] showed that the
geometrically doubling is equivalent to the following statement: for every e € (0, 1),
any ball B(z,r) C X with z € X and r € (0,00) contains at most Noe~"° centers
of disjoint balls {B(x;,er)};(i = 1,2,---), here and in what follows, ny = logy Ny
and g is as in Definition 2.2.

For any ball B C X, we respectively denote its center and radius by cp and
rp and, moreover, for any ¢ € (0,00), we denote the ball B(cg,(rg) by (B. The
following definition of discrete coefficients K j(gp’)s, which is more close to the quantity
Kp s introduced by X. Tolsa in [42], is from [1].

Definition 2.3. For any p € (1,00) and any two balls B, S with B C S, define

e utB)
= - w(p*B
KW =1+ > (2.3)
ke —1oe, 2] e, pFrp)

Here and hereafter, for any a € R, |a] represents the largest integer smaller than

Q)
or equal to a, and N](; 25. is the smallest integer satisfying p’ 5s rp > rg. Moreover,

more properties on the coefficients Iz'](;))s can be seen Remark 2.8 in [22].

In [15], Hytonen introduced a (a, §)-doubling ball, i.e., let o, 8 € (1,00), a ball
B C X is said to be (o, 8)-doubling if u(aB) < Bu(B). The other properties on
the (a, f)-doubling ball can be seen Lemmas 3.2 and 3.3 in [15]. In what follows,
let v = log, C(») and ng = log, No. Throughout this article, for any a € (1,00) and
ball B, the smallest (o, 3, )-doubling ball of the form o’ B with j € N is denoted by
éa, where

B = max{a™,a”} 4+ 30" + 30”. (2.4)

In addition, if there is no special explanation in this paper, we always set a = 6 in
(2.4) and simply denote BS by B.
The following definition of the spaces RBMO with discrete coefficient is from [11].

Definition 2.4. Let p € (1,00) and 7 € [1,00). A real-valued function f € L (u)

loc
is said to belong to the space RBMO,, (1) if there exist a positive constant C' such
that, for any ball B C & and a number fp,

),
flx)— feldu(z) < C 2.5
(0B) BI() Bldu(z) (2.5)
and, for any two balls B and S such that B C S,
5~ fs| < CIRYS]", (2.6)

where fp represents the mean value of functions f over ball B, that is,

1
o =5 /B F@)du(y).
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The infimum of the positive constants C' satisfying (2.5) and (2.6) is defined to be
the RBMO, - (1) norm of f and simply denoted by Hf||R/B\M/OM(#).

et al. [11] showed that the space RT%\/MO,W (1) is independent of choices of p € (1, 00)
and v € [1,00). Hence, in this paper, the space RBMO,, (1) is simply denoted by
RBMO(u).

Furthermore, Fu

Now we recall the definition of a bilinear #-type Calderén-Zygmund operator in-
troduced in [48].

Definition 2.5. Let 6 be a non-negative and non-decreasing function defined on

(0, 00) and satisfy
! 1
/ 40 log ()dt < 00. (2.7)
0 i t

A kernel K(-,-,-) € Lj (X3\{(x, T,x):x € X}) is called a bilinear 6-type Calderén-

loc
Zygmund kernel if it satisfies the following conditions:

(i) For all (z,y1,y2) € X x X x X with « # y;, j =1, 2,

2 -2
K] <€ M@ dwn))] (2.)

=1

(ii) There exists a constant ¢ € (0, c0) such that, for all z, 2/, y1, yo with satisfying
cd(yy,y1) < max d(z,y;),
1<;j<2

K (eane) = K )| < 00 7800 S At

(2.9)

(iii) There exists a constant ¢ € (0, 00) such that, for all z,y, v}, y2 with satis-
fying cd(y1,v)) < max d(z,y;),
1<j<2

/ 2 -2
|K<$,y1,y2) - K(xvylhy?)' < Ce(d(ﬂ? jl(;gi?jll()l' y2)> |:Z)\($,d($(},y]>):| .

(2.10)

Let Ly°(u) be the spaces of all L (u) functions with bounded support. A bilin-

ear operator Ty is called a bilinear 6-type Calderén-Zygmund operator with kernels
K satisfying (2.8), (2.9) and (2.10) if for all fy, fo € Li°(p) and 2 € X'\ (supp(f1) N

supp(f2)),
Ty(f1, fo) (@) =/Xz K(z,y1,92) f1(y1) f2(y2)dp(y1)dp(yz2). (2.11)

Given by,by € R/B\M/O(u), the commutator fgybl,bQ generated by bi,by and the
Ty is defined by

Ty s (1, f2) (@) =b1(@)ba (@) To(f1, fo) (@) — b1(2)Tp(f1,b2(") fo)(x)
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= ba(@) Ty (b1 () frs fo) (@) + To(ba () fr, ba () fo) (@), (2.12)

Equivalently, the Tv.97b17b2 (f1, f2)(x) can be formally written as

2 K(x,y1, y2)(b1(x) - bl(yl)) (bz(x) - bz(l&))f1(yl)f2(y2)dﬂ(y1)dﬂ(y2)'

Also, the commutators Tg,bl and T97b2 are respectively defined by

Top, (1, f2)(@) = bi(2)To(f1, fo)(z) — Ty (b1 () f1, f2) () (2.13)
and
Topy (f1, f2)(@) = ba(@)Ty(f1, fo) (@) — Ty (f1,b2(-) fo) (). (2.14)
The following definition of a multiple AZ(u) weight is from [50].

Definition 2.6. Let 7 € [1,00), p = (p1,p2) and ]l? = p% + p% with p1,p2 € [1,00).
A multiple-weight ¢J with wy,ws being non-negative y-measurable functions is called
an A%(u) weight if there exists a positive constant C' such that, for any ball B C X,

e )

P

T <o, (2.15)

=

w8 Jy e [

Jj=1

where

and, when p; = 1,

l
S

g e )

is understood as (infp w;)~! for j € {1,2}.

Remark 2.3. (i) If we take (X,d, u) = (R",|+|,dz) and 7 = 1 in Definition 2.6, then
the AL(11) weight reduces to the multiple weight introduced by Lerner et al. [2 ]

11§ From the Holder inequality, it follows that, vz € A, if & € A% for p’ =
(p1,p2)-

(iii) If we take j = 1 in Definition 2.6, then the multiple weight AZ(4) is just the
A7 (1) weight introduced by Hu et al. in [14]. Namely, let 7 € [1,00) and p € (1, 00).
A non-negative y-measure function w is called an A7 (1) weight if there exists some
positive constant C' such that, for all balls B C X,

(o5 @ ){ 25 [ [w(x)}l—p’dw)}p_l <c. )

And a weight w is called an A7 () weight if there exists some positive constant C
such that, for all balls B C X,

1
Ten /B (@) < C inf w(y).

As in the classical setting, let AT (u) = U A} (1)
p=1
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The following definition of a reverse Holder class is from [17].

Definition 2.7. A weight w is said to belong to the reverse Holder class RH, (1)
with 7 € (1,00) if there exists a positive constant C' such that, for any ball B C X,

{5 ] [w(m)Vdm}}' <0(p [e@aw). e

Next, we recall the definition of a generalized weighted Morrey space introduced
in [28].

Definition 2.8. Let g € (1,00), p € [1,00) and w be a weight. Suppose that @ : (0,
00) = (0,00) is an increasing function. Then the generalized weighted Morrey space
LP:®:¢(11) is defined by

2700 = {1 € L) Wflegoeg < o0
where
IFllgeqn =supleea)] ([ r@Pu@ane) . @

Also, we denote by WLP:®¢(u) the weak generalized weighted Morrey space of all
locally integrable functions satisfying

_1 1
I llw g0y = Sgpjgg@(W(@B))] vtw({z € B:|f(x)] > })". (2.19)
Moreover, Lu [28] showed that the norms || - || zp.o.c(,) and || [y zpo.e(,) are inde-

pendent of the choice of o > 1.

Remark 2.4. (i) If we take w(-) = 1 in (2.18) and (2.19), then the generalized
weighted Morrey space £P;%:¢(11) and the weak generalized weighted Morrey space
W LP:®:2(11) are just the generalized Morrey space £P®¢(u) and the weak general-
ized Morrey space W LP'®:¢(11) introduced by Lu and Tao in [31].

(i) If we take (X,d,pu) = (R™,|-|,dz) and w = 1 in Definition 2.8, then the
generalized weighted Morrey space £P;%:¢(1) and the weak generalized weighted
Morrey space W LP;®¢(p) are just the generalized Morrey space £P®:¢(u) and the
weak generalized Morrey space W LP:®:¢(11) introduced in [38].

(iii) If we take ®(£) = t'74 with ¢ > 0 and 1 < p < ¢ < oo in (2.18) and (2.19),
then the spaces £F;%¢(u) and WLP®€(u) are just the weighted Morrey spaces
LP%P(w) and the weighted weak Morrey spaces WLP"?(w) introduced in [49].
Furthermore, if we take w(-) = 1, then the spaces £7%®¢(u) and WLP:®:2(p) are
just the Morrey spaces MJ(x) and the weak Morrey spaces WM (p) in [2].

(iv) When ®(-) = 1, then £2%¢(u) = LP (1) and LP:®2(y) = L2 (p).

The following definition of an e-weak reverse doubling condition is from [31],
also see [12].

Definition 2.9. Let ¢ € (0,00). A dominating function A is said to satisfy e-weak
reverse doubling condition if, for all » € (0,2diam(X)) and a € (1, 2diam(X)/r),
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there exists some number C(a) € [1,00), depending only on a and X, such that, for
all z € X,

Az, ar) > C(a)\(z,r)
and, moreover,

= 1
> O < (2.20)

k=1

3. Estimate for T on spaces LP9 (1)

The main theorem of this section is stated as follows:

Theorem 3.1. Let % = 1%1 + p% for p1,p2 € [1,00), p = (p1,p2), & = (w1,wa) €
AZ(p), T € [1,00), vg € RH,(p) with r € [1,00), and ® : (0,00) — (0,00) be an
increasing function satisfying

Moreover, the mapping t — @

ant C' such that

18 almost decreasing: there is some positive const-

P(t P
o) _ 205) (3.2)
t s
holds for all s < t. Suppose that Ty defined as in (2.11) is bounded from product of
spaces L' () x L*(p) into spaces L= (). Then there exists some positive constant

C such that, for any f € L (u), i =1,2,

ITo(f1, )l epsqy < Ol sty foll g
To prove Theorem 3.1, we need to recall the following results.

Lemma 3.1 (Lemma 2.7(ii), [14]). Let g,p € [1,00), w € A7(u), and T € [50,00).
Then there exists a constant Cy € [1,00) such that, for any (6, Bs)-doubling ball B
and any p-measurable set E C B,

or [LE] < 22

I < o(B) (3.3)

n(B)

Lemma 3.2 (Lemma 2, [37]). Suppose that ¢ : (0,00) — (0,00) is a function and
satisfies

/OO lb(t)% < CY(s), forall s>0.

Then there exists a positive constant € such that, for all s > 0, the following equation

/ - w(t)te% < Cup(s)s*

holds. In particular, for every & € (—oo, 1], there exists a positive constant C' such
that, for all s > 0,

[ et < e
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Lemma 3.3 ( [40]). A weight w € RH,(p) for some r € (1,00) if and only if there
exist two positive constants Ca and k € (0,1) such that, for any ball B and any
p-measurable set E C B,

w(B) _ CQ[N(E)T. (3.4)

Also, we need the following lemma on the operator Ty.

Lemma 3.4 (Lemma 3.1, [50]). Let 7 € [1,00), p'= (p1,p2), & = (w1,w2) € A%(u),
Vi € RH, () with r € [1,00) and % = p% + p% for p1,pa € [1,00). Suppose that
Ty defined as in (2.11) is bounded from product of spaces L*(p) x LY () into spaces
L%"X’(u). Then there exists some positive constant C' such that, for all f; € LV (p),
i=1,2,

1To(f1: f2)llLze= ) < Cllfallzes gl f2llzz -

Lemma 3.5. Let p € [1,00), w € Ap(p) and ® : (0,00) — (0,00) be an increasing
function satisfying (3.1). Assume that the mapping t — ®(t)/t satisfies (3.2). Then
there exists a positive constant C' such that, for any ball B C X,

Sl o)

Remark 3.1. By applying Lemma 3.2 and a way similar to that used in the Lemma
2.8 in [5], it is easy to show that Lemma 3.5 holds. Hence, to avoid the repeatability,
we do not state the process of proof.

It is now position to state the proof of Theorem 3.1 as follows:
Proof. Without loss of generality, we may assume that ¢ = 6 in (2.18) and (2.19).
And let B = B(cp,rp) be a fixed doubling ball centered at cp € X with its radius
rp > 0. Represent functions f;(i = 1,2) as

fi= [+ ° = fixes + fixa\en. (3.5)

Then, by the property of the distribution function, write

||T9(f17 f2)HW,C£;>’Q(M)

= supsupl@(v5(6B))] 5 ({x € B 1Ty(f1. f2)(@)] > )77

< supsup(@(5(63))] s ({x € B+ [Ty(f1. 3)(x)| > 1/4))”

B =

+ supsup|®(vs (6B))] 7 tvs (v € B: |To(fl, £5°)(@)] > t/4})

B t>0
+supsupl@(va(68))] Ftvs({x € B (To(f*, f1)(a)] > 1/4))7
+supsupl®(u5(63))] v ({x € B+ [Ty( 7% f5°) ()| > 1/4})”

= Dy + Dy + D3 + Dy.
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From (2.15), Remark 2.3 (ii), (2.18), (3.2) and % = p% + p%, it then follows that

2

1
Di < ngp[(b(l/w(ﬁB))} P ||f1X6B||L511(;L)||f2X6B||Lg2 (1)

1

< C|fx H[;gllsr,g(“) ||f2||££22,<1’,9(u) sgp[@(z/@(GB))] v [é(wl(GB))]ﬁ [‘P(wg(GB))]i

1

1

®(w1(6B))

P P

(wi* (6B)w;” (6B))

< Ol zymo ol F2l gz m e s

1

P2

B(ws(6B))

B(w!" (6B)wi” (6B))

P1

w1(6B)
Sc”flﬁiﬁ’“m)||f2||af;§‘>=9<u>Sup[ A
B |wr (6B)ws? (6B)

1
P2

X [ D w2(63p)
wit ( 2

7' (6B)w,? (6B)

< Ol g oo f2ll g ey

To estimate Dy, we first consider |Ty(f}, f5°)(z)| for # € B. By applying (2.1),
(2.8), (2.15), (2.18), (2.20), the Holder inequality and Lemma 3.5, we have

I To (1, f5°) ()]

> [fa(2)]
< C/GB f1(?/1)|d,u(yl){ ;/ﬁskHBkam [/\(CB,d(CB,yz))]QdM(m)}

< C(/GB |fl(yl)|P1wl(?Jl)dM(?Jl))p1 </63[w1(y1)]1_p/1dﬂ<y1)) P
c- 1 1 _ 1
’ {Z B T s 200 d~<yz>}
2 TNCTS et ) P
< Ol gzg e [2(1(6 X 6B)]75 (2 x 6B)[ewr (6B)] {; Nea 0 rp)P

(Lt - ([ st auten) v }

1

< C”fl||[,511’q>79(u)Hf2||ﬁgév¢,e(u) [‘I’(wl(G X 63))}5/},(2 X GB)[L«H(GB)]_H

) { i W[¢<w2(6 x 651 B))|72 [w2(6k+13)]52}

k=1 )\(037 GkTB)]Z

B(w, (62B))] 71 [wi(62B)] 7t
= CHfl||5511'q>’g(u)Hf2||ﬁﬁé'q>’9(u) [ w1 (62B) w1(6B)

X { i w(2 x 68+1B) {@(w2(6k+23))] = {WQ(GI“QB)} ;2}

1 Mg, 6Fr)]2 | wa(6KF2B) w2 (6FH1B)
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®(w1(62B))] 1

< Ollfllzymelifell ezg oo {c(:il((@B)))]
X, u(2 x 651 B) [B(wn(6"2B))] 72 u(64+2B)

* ;wc&ﬁ%m{ w2(6772B) ] #(6F1B)

1
®(w1(62B))] 71 | (6512B))] =
< C”flHggll‘q’»@(u)Hf2||5522v‘1’>9(u) |:62B:| { Z |:u)26k+23)

SC||f1||[;511*q"‘-’(u)|f2||£522'q”9(u){ (1(( )))rll[ wz((B)))] 7

wa (6

2z
further, from (3.2), (3.4), vz = [] w;” and % = —~ + =, it follows that

j=1

supsup|®(v3(68))] "7tz ({z € B+ [Ty(f1, £5°)(2)| > t/4})

1 4 1
P1 p2’

S =

B >0
SClFill gy e 12l 2z e Sup :Q(Zi((?J)B))} { c::16615 r{ wofﬁif )}
_ L =
SCHf1||/;gll=“”9(p)”fQHI:ﬁQQ’q”Q(u) Sl,;p igiigggiﬂ i [ Eb:j(gg);] i
] S
SCHf1||£gllvq>v@(u)||f2Hggg>‘I’vQ(u) Sup iiggi;] ) [j;gggﬂ

SCHflnggllvq”@(M)Hfﬂ‘ggg’q’v@(u)'
With an argument similar to that used in the estimate for Do, it is easy to get
Ds < C\|f1||[;gll~(1’,9(u)||f2\|[;522~<1>ve(#)~

Now we turn Dy. For any « € B, applying (2.1), (2.8), (2.16), (2.18), the Holder
inequality, (2.20), (3.3) and Lemma 3.5, we obtain

To(f5°, £5°) ()]

72 () 11£5° (y2)]
=¢ X2 [)\(l’, d(l’,lyl)) + Az(x,d(x, y2))}2dﬂ(yl)du(y2>

= 1
= C(; Nep.67g) /6k+1B Ifl(yl)ldu(y1)>
>

1
m ,/67:+1B f2(y2)|d“(y2)>

< c{ > s ([ e .
(

X /GkHB[wl(yl)]lp’ldM(yl)) Pt }

N e L )

=1

L
P2
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X (/6i+13[%(y2)]1_p/2dﬂ(y2)> © }

X (61 B) [B(wi (6 x 651 B))]7T
< Ol fill s vveg I ol prame Z ; T
)\ 0376 TB) [wl(Q X 6k+1B)]p1

— u(6"B) w16><6’+1B 7z
{ZM (6 x 6 >>1]}

(cB,6'rp) [w1(2 x 6i+1B)]72

1 1
o [ (w1 (6¥72B)) )71 [ wi(6*72B) |7t
< C||f1||L£1]7(I)«Q(,L)||f2||Lg22~(I)vQ(IL){ Z l: w1(6k+2B) w1(2 X 6k+1B)

k=1
gbl=ce e

sl

< Ol gy Vel o |

2 P
further, by applying (3.2), (3.4), vz = [] w;)j and % = p% + p%, we deduce
j=1

=

Dy = supsup[® (v (6B))]#tvg({x € B [Ty(fi°, f5°)(@)] > t/4})

B t>0
B(w1(6B)) 77 [®(w2(6B))] 7
SC”fl'Lia*‘b~g<u>||f2|Lz%*‘b"ws‘ép{é(m(w»] bl
w (6B)]71 [wa(6B)] 72
< Cllfill gy well foll zg ey 5 [l/i(GB)} L2(GB)

< Cllfl HLgll-r‘I”@(M) ||f2HL522=‘I”9(M)'

Which, combining the estimates for D1, Do and Dg, yields the desired results. Hen-
ce, the proof of Theorem 3.1 is finished. O

4. Estimate for Tj,, ,, on spaces £7%¢(y)

The main theorem of this section is stated as follows:

Theorem 4.1. Let by, by € R/B-\M/O(‘LL), T € [l,00), P = (p1,p2), & = (w1,ws) €
A%(w), vs € RH, () withr € (1,00), % = ;%"‘p%, forpi,p2 € [1,00), and @ :~(0,oo)
— (0,00) be an increasing function satisfying (3.1) and (3.2). Suppose that Ty defi-

ned as in (2.11) is bounded from product of spaces L* (1) x L' (1) into space Lz (1).
Then there exists some positive constant C' such that, for all f € Eﬁi’q)’g(u), 1=1,2,

1T,6:.00 (f1s F2) e )

<C61 1| gm0 (o 102 lgmwto o 1M1l 22 w0 o 12l gz e -

To prove the above theorem, we need to recall the following results on the max-
ximal operators N and M, ..
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Lemma 4.1 (Lemma 2.5, [12]). (i) Let p € (1,00), s € (1,p) and ¢ € [5,00). The
following mazimal operators defined, respectively, by setting, for all f € L (1) and
r e X,

1 . :
Mecfa) = sup (mm [ 1) du(y)> , (4.1)
1
Nf($> - B>z, ;ug)oubling m /B |f(y)|d'u(y)
and
Mef@) = swp s [ 17 lan (12)

are bounded on LP(u) and also bounded from spaces L'(p) into spaces L1 (u).
(ii) For all f € Li (), it holds true that |f(z)| < N f(x) for p-a.e. v € X.

Lemma 4.2 (Lemma 3.1, [14]). Let p € [1,00), ¢ € [5p,0), s € (1,00) and M,

be defined as in (4.1). For p= (p1,p2), % = p% + p% with p1,ps2 € [1,00), & = (w1,

wo) € Ag(u), vg € RH,. (1), the operators M . is bounded from product of spaces
L2 (p) x LE2 (1) into spaces LL>°(u).
The following lemma on the operators f@bhbz is sightly modified from [24,48,50].

Lemma 4.3. Let by, bQE].:{/BS\M/O( ), 1<s<oo,5=p%+p%f0r1§p17p2<oo

and 5 < 6,61 < oo with ¢ < ¢. Assume that Ty defined as in (2.11) is bounded
from product of spaces L* (1) x L'(11) to spaces L%"X’(u), and X\ satisfies the e-weak
reverse doubling condition. Then there exists some positive constant C' such that,
forany 6 € (0,3), v€(6,5), € X, fi e LP(n), i=1,2,

M 5 (To b, 0, (f1, 12)) ()
<Cl 570 P2 ist0 oy Mo (T (1 £2))()
+ Cliballiino (o Mo (To.ba (f1s f2)) ()
+ Clallgito o Me (Ton (1, £2)) (@)
+ Ol 70 192 0 o M08 23,01 (1 £2) (@),
Mcﬁ,a(TG,bl (f1, f2)) ()
<0 o | Moo (T 2)0) + Mo 1 1 )0

and
M 5 (To b, (f1, f2)) (@)
<Clb2ll 3570 |:M<,7(T6(f1» f2))(@) + Mpog 1),p, (f1, fQ)(x)] ’

where the sharp maximal function MF(f) is defined by
M(f) (@)
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BBx ,U' / |f —Mpep (f)ld/‘(y) + sup

z€BCS 7 (p)
B,S (P‘szp)fdoubling KB,S

M S(f)(@) = [ME(|f1°)(@)]5 for any § € (0,00), and
Mo 1), (f1, f2)(x SupHHszL(logL) 0,B

Lemma 4.4 (Lemma 5.5, [50]). Let § € (0,3), 0 € [1,00) and ¢ € [50,00). Then,
for any p € [1,00) and w € A5, (1), there exits some positive constant C, depending
only on 0, such that, for any suitable function f and t € (0, 00),

w{z e X Mes(f)(x) >t}) <Ct7P sup Pw({z € X : [f(z)] > t}). (4.3)

s>Ct
Also, we need to establish the following lemma modified from [27].

Lemma 45 Let 0 € [1,00), § € (0,1), w be a weight, and f € Li (w) sat-
isfy v f x)du(x) = 0 when ||u|| = p(X) < co. Assume that inf{l, N5} €
W LP ( ) for some p satisfying 1 < p < oo. Then there exists some positive
constant C' being independent of f, such that,

IN6(F)llyy epvey < CIME 5(F)lypee (4.4)

where Ns(f)(x) = [N(|f]°)(z)]7.
The proof of Theorem 4.1 is stated as follows:

2 2
Proof. By applying (3.2), vz = [] wfj and Lemmas 4.2, 4.3, 4.4 and 4.5, we get
j=1

||T9,b1,b2 (f17 f2> ||WLE»¢,Q(M)
§||N5 (T97b1,b2 (flv fZ)) HWﬁE’(b’Q(M)
SC”Mg,(S (Tﬂ,b1,b2 (fh f2)) ||W£5,¢,e(#)

<Csupsupl@(va(65))|Ftva({x € Bt M2 5(Thau (1. f2)@)] > 1)

=

<C'supsup|[®(vz(6B))] " »t
B t>0

x vz ({z € B+ ClIball 0 (0 1021l imigo o Mevy (To (frs f2)) () > t/4})
+ C'sup sup[®(v5(6B))] 7t
B t>0

D=

™=

x vz ({x € B : Cllball g (o Mer (o, (1, f2)) () > t/4})?
+Cs%p§1>118[ (v3(6B))] 7t

=

X V@‘({l‘ €B: O||b2HR73T\/[/0(H)M<7’Y(T97b1 (fla fQ))(l') > t/4}>
+ Csup sup[q)(ug,(GB))ﬁt
B >0

Vg ({.’E €B: CHblHRBMO || 2||RBMO( )ML(logL),pl (f17f2)(x) > t/4});
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_1 —1
SCHblHRBMO(M)H 2||RBMO( )Sup Sup[(I)(VQ((}B))} ptLS;lcl?tt L
1
XVQ({$€B¢|T9(f1,f2 x|>L})”
+ Cb1 || s supsup[ (Uw(GB))]%t sup t 1y

RBNO () 2o

=

X Vg({l’ € B : [Ty, (f1, f2)(x)] > L})

+ C'HszRBMO( )bupbup[q)(V@‘(ij))]Pt s>uptt_
x vg({z € B: Ty, (f1, f2)(z)| > L});

1
+OHb1HRBMO(u ||b2HRBMO( )bupbulg[@( (6B))]pt

% vs ({2 € B+ Myog 1y p (f1, f2)(@) > 1})7

<Oyl Sup sup[® ®(v5(61))] "7t sup ¢4

RBMO(M)H 2”RBMO( ) >Ct

X vg({x € B: |Ty(f1, f2)(x)| > 1})

L -1
+ Ol o) SUP SUPL (s (6B sup 1

xvg({z € B: |Mc’5(T9,b2(flaf2))(x)| > 1})

+ C||bo]| e Supsup[ B (vz(6B))]7t sup t e
>C't

< vg({z € B+ |M{ 5(To, (1, f2)) ()| > ¢})
+Clb| s%pigg[«b(uﬁ(esB»ﬁt

Sl

S

RBMO ()

S

55310 () 122/ 55310 ()

X V@({m € B: Mpaog1),p, (f1, f2)(x) > t})
<Cllba |

=

1 —1
RBMO(M)H 2||RBMO(H)Supsup[ (VQ(GB))} pth;ICI))tt t

Sl

X vg({x € B: |Ty(f1, f2)(x)| > 1})

+ O|b1 || oo supsup[ O (v5(6B))] 7t sup t L

RBMO(u) >t

=

X VW({x € B C||b2HRBMO )M§7’Y(T9(f17f2))(m) > [‘/2})

+ C||b1]| e supsup[CI)(VQ(GB))]%t sup t g
B >0

RBMO (1) 1>Ct

o=

% ({x € B : Cllbzll g1 oy Mrtog 1)1 (f1 f2) (@) > 1/2})

ol — supsup[ O (v5(6B))] 7t sup t L

RBMO(u) SOt

X VW({'Qj € B CHblHRBMO )M§7’Y(T9(f17f2))(x) > [‘/2})

+ C||b2]| e supsup[CI)(Vg(GB))]%t sup t 1y
B t>0 1 >Ct

B =

RBMO(p)

S =

vs({z € B: C||b1HR’B‘M/O(#)ML(1ogL),m(fhfz)(ﬂﬂ) > 1/2})
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+ Cllo1 | 5537

1
revio( 102 xBR0) Sup sup[®(vg(6B))] 7t

t>0

% v3({2 € B+ Mpgog 1y p (1. f2) (@) > £})7

<C|ba]| sup sup[® ®(v5(6B))] "t sup 4

RBMO(M)H 2||RBMO( ) '>Ct

X V@;({.’L‘ € B :|Ty(f1, f2)(x)] > L});

+ C[b1]| 3 6B))]%t sup 1 sup lw

RBMO(M)”bQHRBMO( )supbup[ (vl 1>Ct w>Cl

x vg({z € B: |Ty(f1, f2))(z)| > w});

+ C|by || e Sup Sup[( vs(6B))]7t sup ¢\

RBMO(u) ”bQHRBMO(A ) >Ct

-

X V@‘({.’E eB: ML(logL pl(flaf2)<x) > L})p

+ Clb1 ] imie '

Supsup[ (V@(GB))]%t sup t'u sup

RBMO(p) ” 2HRBMO( ) 1>Ct w>CL

x vg({z € B: |Ty(f1, f2))(z)| > "U})5

+ C|lby] =i sup sup[&( vs(6B))|rt sup t 1

RBMO(y) ||bZHRBMO( 1) >Ct

X vg({& € B: Mpaogr),p, (f1, f2)(x) > 1})
+Cllbu | sup sup[® (v (63))] 7t
B t>0

3 =

RBMO (1) b2 HR/B\M/O(;L)

X Vg ({1‘ € B: ML(logL),p1 (fl,fQ)(x) > t})

<C||b1]| s%pi;l;o)[@(ug(GB))}_%t sugtt_lL
L>

=

RBMO(p) 162 ”R?M“O(H)

x vs({z € B [Ty(f1, f2) ()| > 1}) 7

1
+ C||bs 2 sup sup[®(vg(6B))]7t sup t ¢ sup ¢ ‘w
H HRBMO || HRBMO() B t>0[ (W( ))] >Ct >>Cu

% vs({z € B+ |Ty(fr, f2))(@)| > =}) 7

1
+ C|b sup sup[® (v (6B))]#t sup t .
161 1 i S0P sup (3 6B)) 1 s
1
x vg({z € Bt Mp(og 1), (f1, fo) () > 1}) 7
. S -1 -1
+ Ol 5370 (1) 122l B30 (1 )S%pigg[‘b(vw(@))] tff&t Lsup
1
x vz({z € B:|To(f1, f2))(z)| > w})®
1
+ C||b sup sup|®(vz(6B))]»t sup t ¢
161 o2 o Supsupl®(va(6 Bt sup

X V@‘({ZL’ € B: ML(logL) p1(f17f2)(1') > L})5
+ C||b b sup sup|®(v5(6B vt
1911l 5570 ) 12l 53370 ) Bpt>1g[ (v5(6B))]
x vg({z € B: Mpgogr),p (f1, fo)(x) > t})”

<C1et i 102 o 1l e oo 12l g
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sup sup[®(vz(6B))] vt sup ¢t

+CHbl‘IR/}gM/O(N)”bﬂ‘REK/I/O(N) B t>0 1>Ct

Tl=

X Vg ({x € B:CM, ¢, (f1, fa(x)) > L})
+ 1ol el v SupsupER (6B

x va({x € B: OM,c, (f, fa(z)) > 1)

<C101 537000 102 510 M1 22 -0 g 12 0

where we use the following fact introduced in [24]

ML(logL),;n (f17 fQ)(l‘) < CMS,Cl (f17 fg(l‘))

Which is our desired result. Hence, we complete the proof of Theorem 4.1. O

5. Estimate for Tj and fg’bl’bQ on spaces LP%¢(y)

The main results of this section are stated as follows:

Theorem 5.1. Let % = p% + p% for p1,p2 € [1,00), ® : (0,00) — (0,00) be
an increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2).
Suppose that Ty defined as in (2.11) is bounded from product of spaces L*(u) x L (1)

into spaces L%’Oo(u), Then there exists some positive constant C' such that, for all
fie £ri®e(n), i=1,2,

| To(f1, f2)lwer ey < Cllfillzoreeull foll zraee -

Theorem 5.2. Let by, by € R/];M/O(u), % = p% + p% with p1,p2 € [1,00), @ : (0,00)
— (0,00) be an increasing function satisfying (3.1), and the mapping t — ®(t)/t
satisfy (3.2). Suppose that Ty defined as in (2.11) is bounded from the product of

spaces L*(p) x L*(p) into spaces L%"’o(u). Then there exists some positive constant
C such that, for all f; € LP>®2(p), i = 1,2,

1T, s £l ) Sl s 192 it | F o ool 2oty

Remark 5.1. By applying Definition 2.8 and Lemmas 3.3 and 3.4 in [34], it is easy
to show that Theorems 5.1 and 5.2 hold. Thus, in this paper, we omit the process
of proofs.

Also, with a way similar to that used in the estimates for Theorems 1.1 and 1.4
in [34], it is easy to obtain the strong type results for the Ty and Ty, », on product
of spaces LP1®:¢(1) x LP2®:¢(p) for py,pe € (1,00).

Theorem 5.3. Let % = p% + p% for p1,p2 € [1,00), ® : (0,00) — (0,00) be
an increasing function satisfying (3.1), and the mapping t — ®(t)/t satisfy (3.2).
Suppose that Ty defined as in (2.11) is bounded from the product of spaces L*(p) x

L'(1) into spaces L2>°(u). Then there exits some positive constant C such that,
for all f; € LPo®2(p), i = 1,2,

| To(f1, f2)lcreequy < Cllfillzoreequll f2ll oaiee (-
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Theorem 5.4. Let by, by € R/B\M/O(u), % = p% + p% with p1,p2 € [1,00), @ : (0, 00)
— (0,00) be an increasing function satisfying (3.1), and the mapping t — ®(t)/t
satisfy (3.2). Suppose that Ty defined as in (2.11) is bounded from the product of
spaces L' () x L*(p) into spaces L=°°(p). Then there exists some positive constant

C such that, for all f; € LP®2(u), i = 1,2,

||T9,b1,b2 (f1, f2) ”[l”v‘bvg(u) < CHbl HR/E;K/I/O(M) ||b2||R/]§F/[/0(,J) ”fl Hl)plvq”g(u) ||f2||£:”2*q>*‘—’(u)'
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