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RELATIONAL GERAGHTY CONTRACTIONS
WITH AN APPLICATION TO A SINGULAR

FRACTIONAL BOUNDARY VALUE PROBLEM
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Abstract In this article, we present some results on fixed points employing
relational Geraghty contractions in the setting of metric space endued with
a class of transitive binary relations. Our results complement, sharpen and
improve several fixed point results of literature. By means of our findings,
we discuss an existence and uniqueness theorem regarding the positive solu-
tions of certain boundary value problems associated with a singular fractional
differential equations.
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1. Introduction

Banach Contraction principle (abbreviated as: BCP) is one of the fundamental and
powerful results of metric fixed point theory. Within the foregoing centaury, this
key result has been generalized by various authors employing different approaches.
In 1973, Geraghty [10] obtained a natural extension of BCP by introducing a new
family of test functions. Following Geraghty [10], S will indicate the collection of
functions α : [0,∞) → [0, 1) verifying

α(tn) → 1 ⇒ tn → 0.

Typical examples of such functions are α(t) = et and α(t) = 1/(1+ t). Using above
family, Geraghty [10] proved the following variant of BCP.

Theorem 1.1. [10] If (Z, σ) remains a complete metric space, T : Z → Z is a
map and ∃ α ∈ S verifying

σ(T z, T u) ≤ α(σ(z, u))σ(z, u), ∀ z, u ∈ Z,

then T possesses a unique fixed point.
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Alam and Imdad [3] presented a new variant of BCP in the framework of rela-
tional metric space. Afterwards, lots of fixed point results are obtained by many
researchers (cf. [1, 2, 4, 5, 7, 8, 13]). In such results, the underling contractions are
desired to satisfy for only comparative pair under the given binary relation. Be-
cause of the limiting nature, such results can be utilized to determine the unique
solutions of special types of matrix equations, integral equations and ordinary differ-
ential equations, whereas classical fixed point theorems cannot be utilized. Several
authors also studied for finding the unique solutions of certain fractional differen-
tial equations (abbreviated as: FDE) employing the certain fixed point theorems,
e.g., [6, 11,14,20,21].

The goal of the present paper is to prove the fixed point results for relational
Geraghty contractions and to utilize these results in solving a boundary value prob-
lem (abbreviated as: BVP) associated with a FDE satisfying certain additional
conditions. Intending to explain our finding, we incorporate an example.

2. Preliminaries

Throughout the paper, the set of: real numbers and natural numbers will be repre-
sented by R and N, respectively. Moreover, we’ll write N0 := N ∪ {0}. Given a set
Z, any subset of Z2 is named as a binary relation (or, a relation) on Z. Suppose
that Z remains a set, T : Z → Z is a map, S remains a relation on Z and σ is a
metric on Z. We call that:

Definition 2.1. [3] The elements z, u ∈ Z are S-comparative if (z, u) ∈ S or
(u, z) ∈ S. Such a pair is often denoted by [z, u] ∈ S.

Definition 2.2. [18] The relation S−1 := {(z, u) ∈ Z2 : (u, z) ∈ S} is inverse of S.

Definition 2.3. [18] The symmetric relation described by Ss := S ∪ S−1 is sym-
metric closure of S.

Definition 2.4. [5] S is locally T -transitive if for any S-preserving sequence
{zn} ⊂ T (Z) (having the range Y = {zn : n ∈ N}), S|Y remains transitive.

Definition 2.5. [3] A sequence {zn} ⊂ Z satisfying (zn, zn+1) ∈ S, ∀ n ∈ N, is
S-preserving.

Definition 2.6. [3] S is T -closed if for all z, u ∈ Z verifying (z, u) ∈ S, we have

(T z, T u) ∈ S.

Definition 2.7. [16] Given z, u ∈ Z, a subset {ω0, ω1, . . . , ωℓ} ⊂ Z is a path with
length ℓ in S between z to u if ω0 = z, ωℓ = u and (ωi, ωi+1) ∈ S, 0 ≤ i ≤ ℓ− 1.

Definition 2.8. [5] The set Y ⊆ Z is S-connected if any two elements of Z joins
a path in S.

Definition 2.9. [16] Given Y ⊆ Z, the relation S|Y on Y is the restriction of S
on Y, whereas

S|Y := S ∩Y2.

For every fixed z0 ∈ Z, the set OT (z0) := {T nz0 : n ∈ N} is termed as the
orbit of z0. If T is known, then we write O(z0) instead of OT (z0). A sequence is
referred as a T -orbital sequence if its range is O(z) for some z ∈ Z (c.f. [13]). In
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what follows, Z(O,S) denotes the set of T -orbital S-preserving sequences in Z. We
call that:

Definition 2.10. [13] (Z, σ) is (O,S)-complete metric space if any Cauchy se-
quence in Z(O,S) converges.

Definition 2.11. [13] T is (O,S)-continuous map at z ∈ Z if for each sequence

{zn} ⊂ Z(O,S) verifying zn
σ−→ z, one has T (zn)

σ−→ T (z).

Definition 2.12. [13] S is (O, σ)-self-closed if for each sequence {zn} ⊂ Z(O,S)
verifying zn

σ−→ z, ∃ a subsequence {znk
} satisfying [znk

, z] ∈ S, ∀ k ∈ N.

In Definitions 2.10,2.11,2.12, if the orbital concepts are ignored then we get
the Definitions of ‘S-complete metric space’, ‘S-continuous map’ and ‘σ-self-closed
relation’ respectively (cf. [4]).

Remark 2.1. [3] (z, u) ∈ Ss ⇐⇒ [z, u] ∈ S.

Proposition 2.1. [5] When S is T -closed, S is also T n-closed, ∀ n ∈ N0.

Proposition 2.2. For every α ∈ S, the following are equivalent:

(I) σ(T z, T u) ≤ α(σ(z, u))σ(z, u), ∀ z, u ∈ Z with (z, u) ∈ S.
(II) σ(T z, T u) ≤ α(σ(z, u))σ(z, u), ∀ z, u ∈ Z with [z, u] ∈ S.

Proof. The result (I) =⇒ (II) is straightforward. On the other hand, the conclu-
sion (II) =⇒ (I) is immediate owing to symmetric property of metric σ.

3. Main results

We shall prove the results on the existence and uniqueness of fixed point under
relational Geraghty contraction.

Theorem 3.1. Let (Z, σ) be a metric space endued with a relation S while T : Z →
Z a map. Moreover, suppose that

(a) (Z, σ) is (O,S)-complete,

(b) S is locally T -transitive and T -closed,

(c) ∃ ζ0 ∈ Z such that (ζ0, T ζ0) ∈ S,
(d) T remains (O,S)-continuous, or S is (O, σ)-self-closed,
(e) ∃ α ∈ S verifying

σ(T z, T u) ≤ α(σ(z, u))σ(z, u), ∀ z, u ∈ Z with (z, u) ∈ S.

Then, T admits a fixed point.

Proof. In lieu of (c), we have ζ0 ∈ Z. Define the following sequence {ζn} ⊂ Z:

ζn := T n(ζ0) = T (ζn−1), ∀ n ∈ N. (3.1)

Owing to assumption (c), T -closedness of S and Proposition 2.1, we obtain

(T nζ0, T n+1ζ0) ∈ S,
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which using (3.1) becomes

(ζn, ζn+1) ∈ S, ∀ n ∈ N0. (3.2)

Therefore, {ζn} is a S-preserving sequence.
Write σn := σ(ζn, ζn+1). Using (3.1), (3.2) and condition (e), we obtain

σ(ζn+1, ζn+2) = σ(T ζn, T ζn+1)

≤ α(σ(ζn, ζn+1))σ(ζn, ζn+1) (3.3)

≤ σ(ζn, ζn+1)

so that
σn+1 ≤ σn.

Thus, {σn} is a monotonic decreasing sequence. As it is also bounded below, we
have lim

n→∞
σn = r ≥ 0. We assert that r = 0. For if r > 0, then by (3.3), we have

σn+1

σn
≤ α(σn), n = 1, 2, · · ·

implying thereby lim
n→∞

α(σn) = 1, which contradicts to σn → r ̸= 0. Therefore, we

have

lim
n→∞

σn = 0. (3.4)

Now, we claim that {ζn} is Cauchy. On the contrary, suppose that

lim
m,n→∞

supσ(ζn, ζm) > 0. (3.5)

Using triangle inequality, we get

σ(ζn, ζm) ≤ σ(ζn, ζn+1) + σ(ζn+1, ζm+1) + σ(ζm+1, ζm). (3.6)

By (3.1), (3.2) and locally T -transitivity of S, we obtain (ζn, ζm) ∈ S. On applying
the contractivity condition (e), we get

σ(ζn+1, ζm+1) = σ(T ζn, T ζm) ≤ α(σ(ζn, ζm))σ(ζn, ζm). (3.7)

From (3.6) and (3.7), we have

σ(ζn, ζm) ≤ [1− α(σ(ζn, ζm))]−1[σ(ζn, ζn+1) + σ(ζm+1, ζm)].

Making use of (3.4) and (3.5), we find

lim sup
m,n→∞

[1− α(σ(ζn, ζm))]−1 = ∞,

implying thereby lim sup
m,n→∞

α(σ(ζn, ζm) = 1. Further as α ∈ S, we have

lim sup
m,n→∞

σ(ζn, ζm) = 0, which is a contradiction. Therefore, {ζn} is Cauchy. Since

{ζn} is also T -orbital and S-preserving, therefore using (O,S)-completeness of Z,

we can find z̄ ∈ Z such that ζn
σ−→ z̄.
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Finally, we conclude the proof utilizing the assumption (d). Assume the map
T is (O,S)-continuous. As {ζn} remains T -orbital and S-preserving satisfying

ζn
σ−→ z̄, by (O,S)-continuity of T , we get ζn+1 = T (ζn)

σ−→ T (z̄). By uniqueness
of convergence limit, we obtain T (z̄) = z̄.

Otherwise, let S be (O, σ)-self closed. As {ζn} remains T -orbital and

S-preserving satisfying ζn
σ−→ z̄, ∃ a subsequence {ζnk

} of {ζn} such that [ζnk
, z̄] ∈

S, ∀ k ∈ N. By condition (e), Proposition 2.2 and [ζnk
, z̄] ∈ S, we get

σ(ζnk+1, T z̄) = σ(T ζnk
, T z̄)

≤ α(σ(ζnk
, z̄))σ(ζnk

, z̄)

≤ σ(ζnk
, z̄).

Making use of limit in above inequality and due to ζnk

σ−→ z̄, we obtain ζnk+1
σ−→

T (z̄). By uniqueness of convergence limit, we conclude that T (z̄) = z̄. Thus, z̄
remains a fixed point of T .

Theorem 3.2. Under the assumptions of Theorem 3.1, if T (Z) is Ss-connected,
then T admits a unique fixed point.

Proof. Following Theorem 3.1, if ∃ z̄, ū ∈ Z verifying

T (z̄) = z̄ and T (ū) = ū. (3.8)

Since z̄, ū ∈ T (Z), therefore by Ss-connectedness of T (Z), ∃ a path {ω0, ω1, ω2, . . . ,
ωℓ} with length ℓ in Ss between z̄ to ū so that

ω0 = z̄, ωℓ = ū and [ωi, ωi+1] ∈ S, for each 0 ≤ i ≤ ℓ− 1. (3.9)

As S is T -closed, we find

[T nωi, T nωi+1] ∈ S, ∀ n ∈ N0 and for each 0 ≤ i ≤ ℓ− 1. (3.10)

Let us denote

τ in = σ(T nωi, T nωi+1).

We shall show that

lim
n→∞

τ in = 0. (3.11)

If for some n0 ∈ N0, τ
i
n0

= σ(T n0ωi, T n0ωi+1) = 0, then we have T n0(ωi) =
T n0(ωi+1), which yields that T n0+1(ωi) = T n0+1(ωi+1) and hence we obtain τ in0+1 =
σ(T n0+1ωi, T n0+1ωi+1) = 0. Using induction, we obtain τ in = 0 ∀ n ≥ n0, implying
thereby lim

n→∞
τ in = 0. Otherwise, we have τ in > 0, ∀ n ∈ N0. In this case, by (3.10)

condition (e) and Proposition 2.2, we find

τ in+1 = σ(T n+1ωi, T n+1ωi+1)

≤ α(σ(T nωi, T nωi+1))σ(T nωi, T nωi+1)

= α(τ in)τ
i
n (3.12)

≤ τ in.
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Thus for each 0 ≤ i ≤ ℓ− 1, {τ in} is a monotonic decreasing sequence. As it is also
bounded below, we have lim

n→∞
τ in = ϵi ≥ 0. Suppose that ϵi > 0. From (3.12) we

have
τ in+1

τ in
≤ α(τ in), n = 1, 2, · · · .

The above inequality implies that lim
n→∞

α(τ in) = 1. Further as α ∈ S, we obtain

ϵi = 0. Thus in all, (3.11) is verified for each 0 ≤ i ≤ ℓ − 1. By triangle inequality
and (3.11), we conclude

σ(z̄, ū) = σ(T nω0, T nωℓ)

≤ τ0n + τ1n + · · ·+ τ ℓ−1
n

→ 0 as n→ ∞

implying thereby z̄ = ū. Therefore, S possesses a unique fixed point.

4. Applications to fractional differential equations

Let us consider the following singular fractional three-point BVP:{
Dκ

0+v(s) + h(s, v(s)) = 0, ∀ s ∈ (0, 1),

v(0) = v′(0) = v′′(0) = 0, v′′(1) = λv′′(γ),
(4.1)

where 3 < κ ≤ 4, 0 < γ < 1, λγκ−3 < 1 and h : [0, 1] × [0,∞) → [0,∞) remains
continuous.

As usual, the classical gamma function and the classical beta function will be
represented by Γ(·) and β(·, ·) respectively. Motivated by [17] and [9], we shall
compute the unique positive solution of (4.1) under the assumption that h is singular
at s = 0 (i.e., lim

s→0+
h(s, ·) = ∞).

Definition 4.1. [19] Given a real valued function ϕ defined in (0,∞), the Riemann-
Liouville fractional integral of ϕ of order κ > 0 is

Iκ0+ϕ(s) =
1

Γ(κ)

∫ s

0

(s− ξ)κ−1ϕ(ξ)dξ,

for which R.H.S. is pointwise defined on (0,∞).

Definition 4.2. [15] Given a real valued function ϕ defined in (0,∞), the Riemann-
Liouville fraction derivative of ϕ of order κ > 0 is

Dκ
0+ϕ(s) =

1

Γ(n− κ)

(
d

ds

)n ∫ s

0

ϕ(ξ)

(s− ξ)κ−n+1
dξ.

Here n = [κ] + 1 and [κ] represents the integer part of κ.

Lemma 4.1. [15] If v ∈ L1(0, 1) ∩ C(0, 1) and κ > 0 then the FDE

Dκ
0+v(s) = 0

admits a unique solution of the form:

v(s) = a1s
κ−1 + a2s

κ−2 + · · ·+ ans
κ−n,

where ai ∈ R (i = 1, 2, . . . , n) and n = [κ] + 1.
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Lemma 4.2. [15] If v ∈ L1(0, 1) ∩ C(0, 1) has a κth order fractional derivative
(where κ > 0) which also belongs to L1(0, 1)∩C(0, 1), then ∃ ai ∈ R (i = 1, 2, . . . , n)
verifying

Iκ0+D
κ
0+v(s) = v(s) + a1s

κ−1 + a2s
κ−2 + · · ·+ ans

κ−n,

where n = [κ] + 1.

Employing the Lemma 4.2, Liang and Zhang [17] proved the following result.

Lemma 4.3. [17] The BVP

Dκ
0+v(s) + f(s) = 0, 0 < s < 1,

v(0) = v′(0) = v′′(0), v′′(1) = λv′′(γ), (4.2)

where 3 < κ ≤ 4, 0 < γ < 1, λγκ−3 < 1 and f : [0, 1] → [0,∞) remains continuous,
admits a unique solution of the form:

v(s) =

∫ 1

0

G(s, ξ)f(ξ)dξ + λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)f(ξ)dξ,

where

G(s, ξ) =


sκ−1(1− ξ)κ−3 − (s− ξ)κ−1

Γ(κ)
, 0 ≤ ξ ≤ s ≤ 1,

sκ−1(1− ξ)κ−3

Γ(κ)
, 0 ≤ s ≤ ξ ≤ 1

and

H(s, ξ) =
∂2G(s, ξ)
∂s2

=


(κ− 1)(κ− 2)

Γ(κ)

[
sκ−3(1− ξ)κ−3 − (s− ξ)κ−3

]
, 0 ≤ ξ ≤ s ≤ 1,

(κ− 1)(κ− 2)

Γ(κ)
sκ−3(1− ξ)κ−3, 0 ≤ s ≤ ξ ≤ 1.

Remark 4.1. Under the hypotheses of Lemma 4.3, G and H admits the following
properties:

• G remains continuous on [0, 1]× [0, 1],

• G(s, ξ) ≥ 0,

• G(s, 1) = 0,

• sup
0≤s≤1

∫ 1

0
G(s, ξ)dξ = 2

(κ−2)Γ(κ+1) ,

•
∫ 1

0
H(γ, ξ)dξ = γκ−3(κ−1)(1−γ)

Γ(κ) .

Lemma 4.4. [9] Assume 0 < ρ < 1, 3 < κ ≤ 4 and F : (0, 1] → R remains
continuous such that lim

s→0+
F (s) = ∞. If the function sρF (s) is continuous on [0, 1],

then

L(s) =
∫ 1

0

G(s, ξ)F (ξ)dξ (4.3)

is also continuous on [0, 1], whereas G(s, ξ) remains the Green’s function given in
Lemma 4.3.
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Lemma 4.5. [9] Assume 0 < ρ < 1, 3 < κ ≤ 4, 0 < βγκ−3 < 1, and F remains
a continuous real function defined on (0, 1] for which lim

s→0+
F (s) = ∞. If sρF (s)

remains a continuous function on [0, 1], then

N (s) =
βsκ−1

(κ− 1)(κ− 2)(1− βγκ−3)

∫ 1

0

H(γ, ξ)F (ξ)dξ (4.4)

is also a continuous function on [0, 1], whereas H(s, ξ) is the function given in
Lemma 4.3.

Remark 4.2. [9] The function H(s, ξ) (given in Lemma 4.3) defined by

H(s, ξ) =


(κ− 1)(κ− 2)

Γ(κ)

[
sκ−3(1− ξ)κ−3 − (s− ξ)κ−3

]
, 0 ≤ ξ ≤ s ≤ 1,

(κ− 1)(κ− 2)

Γ(κ)
sκ−3(1− ξ)κ−3, 0 ≤ s ≤ ξ ≤ 1,

(4.5)

is continuous on [0, 1]2. Also, we have H(s, ξ) ≥ 0.
For 0 ≤ s ≤ ξ ≤ 1, obviously one has H(s, ξ) ≥ 0. Also in case 0 ≤ ξ ≤ s ≤ 1,

we have

H(s, ξ) =
(κ− 1)κ− 2

Γ(κ)

[
sκ−3(1− ξ)κ−3 − (s− ξ)κ−3

]
=

(κ− 1)(κ− 2)

Γ(κ)

[
(s− ts)κ−3 − (s− ξ)κ−3

]
≥ 0.

This shows the nonnegative character of H on [0, 1]2.

Lemma 4.6. [9] If 0 < ρ < 1, then

sup
0≤s≤1

∫ 1

0

G(s, ξ)ξ−ρdξ =
1

Γ(κ)
(β(1− ρ, κ− 2)− β(1− ρ, κ)), (4.6)

whereas G(s, ξ) remains the Green’s function given in Lemma 4.3

Lemma 4.7. [9] If 0 < ρ < 1, then∫ 1

0

H(γ, ξ)ξ−ρdξ =
(κ− 1(κ− 2)

Γ(κ)

(
γκ−3 − γκ−ρ−2β(1− ρ, κ− 2)

)
, (4.7)

whereas H(s, ξ) remains the function given in Lemma 4.3.

Remark 4.3. Denote

K :=
1

Γ(κ)

[(
1 +

β(γκ−3 − γκ−ρ−2)

1− βγκ−3

)
β(1− ρ, κ− 2)− β(1− ρ, κ)

]
.

In what follows, by Ψ, we denote the family of functions ψ : [0,∞) → [0,∞)
verifying that:

(i) ψ is monotone increasing,

(ii) ψ(t) < t, ∀ t > 0,
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(iii) ∀ t ∈ (0,∞), α(t) := ψ(t)/t, where α ∈ S.

Now, we’ll show the main result of this section.

Theorem 4.1. Let 0 < ρ < 1, 3 < κ ≤ 4, 0 < γ < 1, 0 < λγκ−3 < 1. Also,
suppose that h : (0, 1] × [0,∞) → [0,∞) remains a continuous function verifying
lim

s→0+
h(s, ·) = ∞ and that sρh(s, y) is continuous on [0, 1]×[0,∞). If ∃ 0 < µ ≤ 1/K

and ψ ∈ Ψ such that ∀ x, y ∈ [0,∞) verifying x ≥ y and ∀ s ∈ [0, 1], one has

0 ≤ sρ[h(s, x)− h(s, y)] ≤ µψ(x− y), (4.8)

then BVP (4.1) has a unique positive solution.

Proof. Consider the following metric on Banach space C[0, 1]

σ(z, u) = sup
0≤s≤1

|z(s)− u(s)|.

Define the cone
Z = {z ∈ C[0, 1] : z(s) ≥ 0}.

On Z, consider the relation

S = {(z, u) ∈ Z2 : z(s) ≤ u(s), for each s ∈ [0, 1]}.

Now, define the map T : Z → Z by

(T z)(s) =
∫ 1

0

G(s, ξ)h(ξ, z(ξ))dξ

+
λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)h(ξ, z(ξ))dξ.

We’ll now verify all the hypotheses of Theorems 3.1 and 3.2.

(a) Clearly, Z being a closed set of C[0, 1] forms a complete metric space under the
metric σ and hence an (O,S)-complete metric space.

(b) Take (z, u) ∈ S implying thereby z(s) ≤ u(s), for each s ∈ [0, 1]. Consequently,
we have

(T z)(s) =
∫ 1

0

G(s, ξ)h(ξ, z(ξ))dξ

+
λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)h(ξ, z(ξ))dξ.

=

∫ 1

0

G(s, ξ)ξ−ρξρh(x, z(ξ))dξ

+
λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)ξ−ρξρh(ξ, z(ξ))dξ

≤
∫ 1

0

G(s, ξ)ξ−ρξρh(ξ, u(ξ))dξ

+
λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)ξ−ρξρh(ξ, u(ξ))dξ



Relational Geraghty contractions with an application · · · 3489

=

∫ 1

0

G(s, ξ)h(ξ, u(ξ))dξ

+
λκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)h(ξ, u(ξ))dξ

=(T u)(s)

yielding (T z, T u) ∈ S. Therefore, S is T -closed.

(c) Let 0 ∈ Z be zero function. Then for each s ∈ [0, 1], we have 0(s) ≤ (T 0)(s)
yielding thereby (0, T 0) ∈ S.
(d) Let {zn} ⊂ Z be an T -orbital S-preserving sequence converging to z ∈ Z. Then
∀ s ∈ [0, 1], {zn(s)} is an increasing sequence of reals converging to z(s). This
implies that ∀ n ∈ N and ∀ s ∈ [0, 1], zn(s) ≤ z(s) so that (zn, z) ∈ S, ∀ n ∈ N.
Consequently, S remains (O, σ)-self-closed.
(e) Take (z, u) ∈ S implying thereby z(s) ≤ u(s), for each s ∈ [0, 1]. Thus

σ(T z, T u) = sup
0≤s≤1

|(T z)(s)− (T u)(s)|

= sup
0≤s≤1

[(T u)(s)− (T z)(s)]

= sup
0≤s≤1

[∫ 1

0

G(s, ξ)(h(ξ, u(ξ))− h(ξ, z(ξ))) dξ

+
λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)(h(ξ, u(ξ))− h(ξ, z(ξ))dξ

]
≤ sup

0≤s≤1

∫ 1

0

G(s, ξ)ξ−ρξρ[h(ξ, u(ξ))− h(ξ, z(ξ))]dξ

+
λ

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)ξ−ρξρ[h(ξ, u(ξ))− h(ξ, z(ξ))]dξ

≤ sup

∫ 1

0

G(s, ξ)ξ−ρµψ(u(ξ)− z(ξ))dξ

+
λ

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)ξ−ρµψ(u(ξ)− z(ξ))dξ.

Using increasing property of ψ, above relation becomes

σ(T z, T u) ≤ µψ(σ(z, u)) sup
0≤s≤0

∫ 1

0

G(s, ξ)ξ−ρdξ

+
λ

(κ− 1)(κ− 2)(1− λγκ− 3)
µψ(σ(u, v))

∫ 1

0

H(γ, ξ)ξρdξ

= µψ(σ(z, u))

[
sup

0≤s≤0

∫ 1

0

G(s, ξ)ξ−ρdξ

+
λ

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)ξ−ρdξ

]
. (4.9)
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Using Lemmas 4.6 and 4.7, (4.9) reduces to

σ(T z, T u)

≤µψ(σ(z, u))
[

1

Γ(κ)
(β(1− ρ, κ− 2)− β(1− ρκ))

+
λ

(κ− 1)(κ− 2)(1− λγκ−3)
× (κ− 1)(κ− 2)

Γ(κ)

(
γκ−3 − γκ−ρ−2

)]
=µψ(σ(z, u))

[
1

Γ(κ)
(β(1− ρ, κ− 2)− β(1− ρ, κ))

+
λ(γκ−3 − γκ−ρ−2)

(1− λγκ−3)Γ(κ)
β(1− ρ, κ− 2)

]
=µψ(σ(z, u))

[
1

Γ(κ)

[(
1 +

λ(γκ−3 − γκ−ρ−2)

1− λ− λγκ−3

)
β(1− ρ, κ− 2)− β(1− ρ, κ)

]]
=µψ(σ(z, u))K.

As 0 < µ ≤ 1/K, the last inequality becomes

σ(T z, T u) ≤ µψ(σ(z, u))K ≤ ψ(σ(z, u)). (4.10)

If z ̸= u, then (4.10) can be expressed as

σ(T z, T u) ≤ ψ(σ(z, u))

σ(z, u)
σ(z, u)

so that
σ(T z, T u) ≤ α(σ(z, u))σ(z, u), ∀ z, u ∈ Z with (z, u) ∈ S.

In case z = u, above inequality is obviously satisfied.
All assumptions of Theorem 3.1 thus hold; subsequently T possesses a fixed

point. Choose z, u ∈ T (Z). Define ω := max{z, u} ∈ Z. Then {z, ω, u} forms a
path in Ss from z to u. It follows that T (Z) is Ss-connected. Consequently in view
of Theorem 3.2, the fixed point of T , say v̄ ∈ (Z, remains unique, which indeed
forms a unique nonnegative solution of BVP (4.1).

Finally, we shall have to prove that v̄ is a positive solution. On contrary, suppose
that ∃ 0 < s∗ < 1 verifying v̄(s∗) = 0. As, the nonnegative solution v̄ of (4.1)
remains fixed point of T , we have

v̄(s) =

∫ 1

0

G(s, ξ)h(ξ, x(ξ))dξ + λsκ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)h(ξ, v̄(ξ))dξ.

In particular, we have

v̄(s∗) =

∫ 1

0

G(s∗, ξ)h(ξ, v̄(ξ))dξ

+
λs∗κ−1

(κ− 1)(κ− 2)(1− λγκ−3)

∫ 1

0

H(γ, ξ)h(ξ, x(ξ))dξ

= 0.

As both summands in RHS are nonnegative, by Remarks 4.1 and 4.2, we get∫ 1

0

G(s∗, ξ) · h(ξ, v̄(ξ))dξ = 0,
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0

H(γ, ξ) · h(ξ, ξ(ξ))dξ = 0.

Due to nonnegative character of G(s, ξ), H(γ, ξ) and h(ξ, v̄), we get{
G(s∗, ξ) · h(ξ, v̄(ξ)) = 0, a.e. (ξ),

H(γ, ξ) · h(ξ, v̄(ξ)) = 0, a.e (ξ).
(4.11)

Using the fact lim
s→0+

h(s, 0) = ∞, it follows that for given M > 0, ∃ δ > 0 such that

h(ξ, 0) > M , for every ξ ∈ J := [0, 1] ∩ (0, δ). Note that

J ⊂ {ξ ∈ [0, 1] : h(ξ, x(ξ)) > M}

and
m(J) > 0,

where m remains the Lebesque measure. Therefore, (4.11) gives rise to{
G(s∗, ξ) = 0, a.e. (ξ),

H(γ, ξ) = 0, a.e. (ξ)

which arises a contradiction as G(s∗, ξ) and H(γ, ξ) are rational functions of ξ.
Consequently, we have v̄(s) > 0 for all s ∈ (0, 1). This completes the proof.

5. An illustrative example

Now, we present an example intending to illustrate Theorem 4.1. Before consider
this, we are required to prove some results on hyperbolic tangent function. Let us
recall some definitions.

Definition 5.1. A function ζ : [0,∞) is called subadditive if

ζ(t+ t′) ≤ ζ(t) + ζ(t′), ∀ t, t′ ∈ [0,∞), (5.1)

e.g., the square root function ζ(t) =
√
t is a subadditive function.

Remark 5.1. If ζ : [0,∞) → [0,∞) is subadditive and t ≥ t′, then

ζ(t)− ζ(t′) ≤ ζ(t− t′).

Obviously, we have

ζ(t) = ζ(t− t′ + t′) ≤ ζ(t− t′) + ζ(t′)

so that
ζ(t)− ζ(t′) ≤ t− t′.

Definition 5.2. We call that a function ζ : [0,∞) → [0,∞) is concave if for each
λ ∈ [0, 1].

ζ(λt+ (1− λ)t′) ≥ λζ(t) + (1− λ)ζ(t′), ∀ t, t′ ∈ [0,∞).
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Proposition 5.1. Assume that ζ : [0,∞) → [0,∞) is a concave function such that
ζ(0) = 0. Then ζ remains subadditive.

Proof. Take t, t′ ∈ [0,∞). As ζ is concave and ζ(0) = 0, we have

ζ(t) = ζ

(
t′

t+ t′
0 +

t

t+ t′
(t+ t′)

)
≥ t′

t+ t′
ζ(0) +

t

t+ t′
ζ(t+ t′) =

t

t+ t′
ζ(t+ t′),

ζ(t′) = ζ

(
t

t+ t′
0 +

t′

t+ t′
(t+ t′)

)
≥ t

t+ t′
ζ(0) +

t′

t+ t′
ζ(t+ t′) =

t′

t+ t′
ζ(t+ t′).

Adding above, we get

ζ(t) + ζ(t′) ≥ t

t+ t′
ζ(t+ t′) +

t′

t+ t′
ζ(t+ t′) = ζ(t+ t′).

Lemma 5.1. The hyperbolic tangent function ζ(t) = tanh t verifies the following
properties:

(i) ζ ∈ Ψ.

(ii) ζ is subadditive.

Proof. (i) By definition, we have

tanh t =
sinh t

cosh t
=

(et − e−t)/2

(et + e−t)/2
=
e2t − 1

e2t + 1

so that ζ(t) = e2t−1
e2t+1 . Now, as ζ ′(t) = 4e2t/(e2t + 1)2 > 0, ∀ t > 0, ζ is monotonic

increasing. Also, the function θ(t) = t − tanht = t − e2t−1
e2t+1 has as derivative

θ′(t) = (e2t−1)2

(e2t+1)2 > 0, ∀ t > 0. It follows that θ is strictly increasing on (0,∞). As

θ(0) = 0, we have 0 = θ(0) < ζ(t), ∀ t > 0. Consequently, one has ζ(t) = tanh t <
t, ∀ t > 0.

Next, we verify that α(t) = tanh t/t ∈ S. If α(sn) → 1, then we shall have to
verify that the sequence {sn} must be bounded. Let on contrary sn → ∞. Then
we have

α(sn) =
tanh sn
sn

→ 0

which contradicts the fact that α(sn) → 1.
Now, we assume that α(sn) → 1 and sn → 0. Then, ∃ ε > 0 such that for every

n ∈ N, we can find τn ≥ n verifying τn ≥ ε. As the sequence (sn) is bounded (due
to λ(sn) → 1), ∃ a subsequence of sτn (denoting in same way), verifying sτn → l.
Since α(sn) → 1, therefore we get

α(sϱn
) =

tanh sϱn

sϱn

→ tanh l

l
= 1.

As t0 = 0 remains the (unique) solution of tanh t = t on [0,∞), we have l = 0.
Hence, sϱn → 0, which yields that ∃ n0 ∈ N verifying sϱn < ε for n ≥ n0. This
contradicts sϱn ≥ ε, ∀ n ∈ N. Thus, sn → 0. This concludes that α(t) = tanh t/t ∈
S and hence ζ ∈ Φ.

(ii) As tanh 0 = 0 and (tanh t)′′ = 8e2t(1−e2t)
(e2t+1)3 < 0, ∀ t > 0. This implies that

ζ(t) = tanh t is concave tanh 0 = 0. Consequently by Proposition 5.1, ζ(t) = tanh t
is subadditive.
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Remark 5.2. Owing to Remark 5.1 and item (ii) of Lemma 5.1, ∀ t, t′ ∈ [0,∞)
with t ≥ t′, one has

tanh t− tanh t′ ≤ tanh(t− t′). (5.2)

Example 5.1. Let us consider the following singular fractional BVP:

D
7/2
0+ v(s) +

µ(s2 + 1) tanhv(s)

s1/2
= 0, 0 < s < 1,

v(0) = v′(0) = v′′(0) = 0, v′′(1) = v′′
(
1

4

)
. (5.3)

Here, ρ = 1/2, γ = 1/4, λ = 1 and κ = 7/2. Also, we have

h(s, x) = µ(s2 + 1) tanhx/s2, ∀ (s, x) ∈ (0, 1]× [0,∞).

Clearly, h is continuous in (0, 1]× [0,∞) and lim
s→0+

h(s, ·) = ∞.

Now, we shall verify that h satisfies assumptions mentioned in Theorem 4.1.
Clearly, the function s1/2h(s, x) = µ(s2 + 1) tanhx remains continuous on [0, 1] ×
[0,∞). Also, by Lemma 5.1 and Remark 5.2, for all x ≥ y and s ∈ [0, 1], we have

0 ≤ s1/2
[
h(s, x)− h(s, y)

]
= µ

(
s2 + 1

)
(tanhx− tanh y)

≤ µ
(
s2 + 1

)
tanh(x− y)

≤ 2µ tanh(x− y),

where the function ζ(t) = tanh t belongs to S (due to Lemma 5.1). Now,

2µ ≤ 1

K

=
Γ(7/2)[

1 +
(
(1/4)1/2 − 1/4

)
/
(
1− (1/4)1/2

)]
· β(1/2, 3/2)− β(1/2, 7/2)

⇒ µ ≤ 15
√
π/7.

Thus, in view of Theorem 4.1, BVP (5.3) enjoys a unique positive solution for
µ ≤ 15

√
π/7.

6. Discussions

This article concludes the results on fixed points employing relational Geraghty con-
tractions in the setting of metric space indued with a locally T -transitive relation.
Under full relation S = Z2, Theorem 3.2 deduces Theorem 1.1. In case S :=⪯ (a
partial ordering), Theorems 3.1 and 3.2 deduce the fixed point theorems of Harandi
and Emami [12]. For α(t) := 1

tϕ(t) for t > 0, where ϕ is comparison function, our
results reduce to corresponding results of Arif et al. [8]. Furthermore, our results
sharpen the recent results of Almarri et al. [7] in the following respects:

• ‘S-completeness’ of metric space is replaced by ‘(O,S)-completeness’;

• ‘S-continuity’ requirement on map is replaced by ‘(O,S)-continuity’;
• ‘σ-self-closed relation’ is replaced by ‘(O, σ)-self-closed relation’.
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7. Conclusions

In the hypotheses of our results, the orbital as well as relational analogues of fre-
quently used metrical concepts are adopted. In practice, we determined a unique
positive solution for certain singular nonlinear FDE prescribed by three-point
boundary conditions, which shown the efficiency of our findings. Using our results,
we deduce several known fixed point theorems, which substantiates the utility of
our results over certain existent results in the literature. Inspired by the novelty of
the relation metric space, in future, readers can prove the same results for different
types of contractions or in the frameworks of generalized metrical structures (e.g.,
dislocated space, symmetric space etc).
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