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Abstract In this paper, we study a fractional impulsive differential equa-
tion with mixed tempered fractional derivatives. We justify some fundamental
properties in the variational structure to fractional impulsive differential equa-
tions with the tempered fractional derivative operator. Finally, we study the
existence of weak solutions with critical point theory and variational methods
for the proposed problem. To prove the effectiveness of our main result, we
investigate an interesting example.
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1. Introduction

In applied science such as biology, physics, control theory, economics and mechanics
among other areas processes are frequently simulated using fractional differential
equations, for details, see [12, 22, 24, 29, 30, 47] and the references therein. The the-
ory of fractional differential equations has consequently attracted a lot of attention
in recent years. For example, existence and stability are studied in [1, 5], and sev-
eral resolution strategies are in [33,36,40]. In [13] the authors studied the nonlinear
time-fractional gas dynamics equation. On the other hand, in [28], it is proposed an
impulsive nonlinear differential equation with fractional derivative with interesting
applications to pest management and, besides, some contributions to the study of
option price governed by a Black-Scholes equation with a time-fractional derivative
can be found in [8]. Some recent important applications of fractional differential
models are those about time-fractional Schrödinger equation [16], Schrödinger equa-
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tion with fractional Laplacian [18], fractional wave equations [11], fractional damped
dynamical systems [4] and fractional Euler-Lagrange equation modeling a fractional
oscillator [6]. Some other recent application, these such equations are important and
are considered as a novel subject in the theory of fractional differential equations.
Using analytical methods such as fixed point theory, there have many results deal-
ing with the existence of solutions to nonlinear fractional differential equations in
this subject. For instance, we name here critical point theory and variational meth-
ods [3,20,21,46,48,49,51], topological degree theory [19], Leray-Schauder nonlinear
alternative [53], and so on.

The tempered fractional calculus is the generalized version of fractional calculus.
The tempered fractional derivatives and integrals are obtained when the fractional
derivatives and integrals are multiplied by an exponential factor [27, 43]. Recently,
it has been observed that the use of tempered fractional derivatives, which leads to
the so-called truncated Lévy flight, exhibits some important advantages compared
to the usual fractional derivatives, especially with regard to the spatial moments
[15, 23, 42, 54]. In this context, it should be noted that solutions obtained for the
tempered fractional derivative contain those for the untempered one as a special
case. Therefore, the truncated Lévy process can be seen as a generalization of
the conventional untempered one. Tempered fractional differential equations have
been applied in different fields of physics such as in geophysics, statistical physics,
plasma physics or in the context of astrophysics [10, 32, 45, 54]. Apart from the
physics field, the tempered fractional derivatives have also been applied in finance
for modeling price fluctuations with semi-heavy tails [42]. Recently, Almeida and
Morgado [2] studied variational problems where the cost functional involves the
tempered Caputo fractional derivative.

Differential equations with impulsive effects arise from many phenomena in the
real world and describe the dynamics of processes in which sudden, discontinuous
jumps occur. We refer to [9, 17, 25, 26, 44, 52] for some monographs and papers
including relevant information about this topic. In [7, 34, 35, 41], it is proved the
existence and multiplicity of weak solutions for a class of Dirichlet’s boundary value
problems for fractional differential equations with impulses by using a critical point
theory. More precisely, in [50], the authors studied the existence of weak solutions
by using new linking theorem due to Schechter included in [38].

The used method in this paper is standard, but its configuration and relations of
variational methods in the present paper is new. The obtained results in tempered
fractional derivatives are new and contribute to this new research topic concerning
the study of positive boundary value problems.

Motivated by these previous works, we would like to study variational structure
for the tempered fractional derivative operator and we have justified some funda-
mental properties in the variational structure. Also, we deal with the following
tempered fractional boundary value problem

Dα,σ
b− (CDα,σ

a+ u(x)) = f(x, u), x ̸= xj a.e. x ∈ (0, T ),

u(0) = u(T ) = 0,

∆
(
I1−α,σ
T−

CDα,σ
0+ u

)
(xj) = Ij(u(xj)), j = 1, 2, · · · , n,

(1.1)

where α ∈ ( 12 , 1) and σ > 0,

0 = x0 < x1 < x2 < · · · < xn < xn+1 = T,
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∆(I1−α,σ
T−

CDα,σ
0+ u)(xj) = lim

x→x+
j

I1−α,σ
T−

CDα,σ
0+ u(x)− lim

x→x−
j

I1−α,σ
T−

CDα,σ
0+ u(x),

f : (0, T ) × R → R and Ij : R → R, j = 1, 2, · · · , n are continuous functions
satisfying some suitable conditions. More precisely, we assume that Ij(s) and f
satisfy the following hypotheses:

(F1) There exists a constant η > 2 such that f(x, u) = o(|u|η) as |u| → ∞ and
f(x, u) = o(|u|) as |u| → 0 uniformly for x ∈ [0, T ].

(F2) There exist constant γ > 2 and ϑ0 > 0 such that

0 < γF (x, u) ≤ uf(x, u), for every (x, u) ∈ [0, T ]× R, |τ | ≥ ϑ0.

(I1) There exists a constant 1 < ϖ < γ − 1 such that Ij(u) = o(|u|ϖ) as |u| → ∞
and Ij(u) = o(|u|) as |u| → 0.

(I2) There exist constant 0 < γj < 2 and ϑ > 0 for any j = 1, . . . , n, such that

0 < γj

∫ τ

0

Ij(s)ds ≤ Ij(τ)τ, for every τ ∈ R, |τ | ≥ ϑ.

Our main results read as follows:

Theorem 1.1. Assume that the conditions (F1), (F2), (I1) and (I2) hold. More-
over, Ij(t) and F (x, t) about t are evens. Then problem (1.1) has infinitely many
weak solutions.

If we choose σ = 0, problem (1.1) reduce to the following boundary value prob-
lem 

Dα
b−(

CDα
a+u(x)) = f(x, u), x ̸= xj a.e. x ∈ (0, T ),

u(0) = u(T ) = 0,

∆
(
I1−α
T−

CDα
0+u

)
(xj) = Ij(u(xj)), j = 1, 2, · · · , n,

(1.2)

where Dα
b−u and CDα

a+u are the right Riemann-Liouville fractional derivative and
the left Caputo fractional derivative respectively. As a consequence of Theorem 4.1
we have the following result.

Theorem 1.2. Assume that the conditions (F1), (F2), (I1) and (I2) hold. More-
over, Ij(t) and F (x, t) about t are evens. Then problem (1.2) has infinitely many
weak solutions.

Remark 1.1. We recall that in Theorem 1.1 and Theorem 1.2 we just consider
the case α ∈ ( 12 , 1), because, in this case we can consider the classical Dirichlet
boundary conditions and we have the following characterization of our fractional
space

Hα,σ
0 (a, b) = {u ∈ L2(a, b) : CDα,σ

a+ u ∈ L2(a, b) and u(a) = u(b) = 0}.

The case α ∈ (0, 12 ) is an open problem yet.
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2. Some previous results

Let (a, b) be a bounded interval. For α ∈ (0, 1), σ > 0 and a suitable function u,
the left and right Riemann-Liouville tempered fractional derivatives of order α are
defined as

Dα,σ
a+ u(x) =

(
d

dx
+ σ

)
I1−α,σ
a+ u(x), x > a, (2.1)

and

Dα;σ
b− u(x) = −

(
d

dx
− σ

)
I1−α,σ
b− u(x), x < b, (2.2)

respectively, where Iα,σa+ u, Iα,σb− u are the left and right Riemann-Liouville tempered
fractional integrals of order α defined as

Iα,σa+ u(x) =
1

Γ(α)

∫ x

a

(x− s)α−1e−σ(x−s)u(s)ds, x > a, (2.3)

and

Iα,σb− u(x) =
1

Γ(α)

∫ b

x

(s− x)α−1e−σ(s−x)u(s)ds, x < b, (2.4)

respectively. An alternative approach in defining the tempered fractional derivatives
is based on the left-sided and right-sided tempered Caputo fractional derivatives of
order α, defined, respectively, as

CDα,σ
a+ u(x) = I1−α,σ

a+

(
d

dx
+ σ

)
u(x), x > a, (2.5)

and
CDα,σ

b− u(x) = −I1−α,σ
b−

(
d

dx
− σ

)
u(x), x < b, (2.6)

respectively. Note that, if u ∈ AC[a, b], then the following identities holds for
Riemann-Liouville and Caputo tempered fractional derivatives

Dα,σ
a+ u(x) = e−σx

aD
α
x e

σxu(x) and Dα,σ
b− u(x) = eσxxD

α
b e

−σxu(x), (2.7)

and

CDα,σ
a+ u(x) = e−σx · CaDα

x e
σxu(x) and Dα,σ

b− u(x) = eσx · CxDα
b e

−σxu(x). (2.8)

In what follows we consider some properties of tempered fractional operators
which are know in the literature.

Lemma 2.1. [48] Let α > 0, σ > 0 and u ∈ AC[a, b]. Then Iα,σa+ u, Iα,σb− u are well
defined. Moreover

Iα,σa+ u(x) =
u(a)

σαΓ(α)
γ(α, σ(x− a)) +

1

σαΓ(α)

∫ x

a

γ(α, σ(x− t))u′(t)dt, (2.9)

and

Iα,σb− u(x) =
u(b)

σαΓ(α)
γ(α, σ(b− x))− 1

σαΓ(α)

∫ b

x

γ(α, σ(t− x))u′(t)dt, (2.10)

where

γ(α, x) =

∫ x

0

tα−1e−tdt

is the lower incomplete Gamma function.
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Remark 2.1. The incomplete Gamma function has the following bounds

e−xx
α

α
≤ γ(α, x) ≤ xα

α
. (2.11)

Moreover, for each n ∈ N and −n < α < −n + 1, using integration by parts and
induction, we obtain

γ(α, x) =

∫ x

0

tα−1

(
e−t −

n−1∑
k=0

(−t)k

k!

)
dt+

n−1∑
k=0

(−1)k

(α+ k)k!
xα+k. (2.12)

This equality can be used to extend the definition of γ(α, x) to negative, non integer
values of α. For example, if α ∈ (−1, 0) and x > 0, then

γ(α, x) =
1

α
γ(α+ 1, x) +

1

α
xαe−x. (2.13)

For more details the reader’s can see [14].

Theorem 2.1. [48] Let α ∈ (0, 1), σ > 0, p ∈ [1,∞]. Then, the tempered frac-
tional integrals of Riemann-Liouville Iα,σa+ , Iα,σb− : Lp(a, b) → Lp(a, b) are bounded.
Moreover

∥Iα,σa+ u∥Lp(a,b) ≤
γ(α, σ(b− a))

σαΓ(α)
∥u∥Lp(a,b), (2.14)

and

∥Iα,σb− u∥Lp(a,b) ≤
γ(α, σ(b− a))

σαΓ(α)
∥u∥Lp(a,b). (2.15)

Lemma 2.2. [37] For α1, α2 > 0, σ ≥ 0 and for all u ∈ Lp(a, b) with p ∈ [1,∞]
we have

Iα1,σ
a+ · Iα2,σ

a+ u(x) = Iα1+α2,σ
a+ u(x) and Iα1,σ

b− · Iα2,σ
b− u(x) = Iα1+α2,σ

b− u(x).

Theorem 2.2. Let α ∈ (0, 1), σ > 0, p ∈ (1,∞), q ∈ (1,∞) and

1

p
+

1

q
≤ 1 + α.

If u ∈ Lp(a, b) and v ∈ Lq(a, b), then∫ b

a

Iα,σa+ u(x)v(x)dx =

∫ b

a

u(x)Iα,σb− v(x)dx. (2.16)

Now we consider some smoothness properties of the Riemann-Liouville tempered
fractional integrals.

Theorem 2.3. [48] Let α ∈ (0, 1), σ > 0 and u ∈ C[a, b]. Then the tempered
fractional integrals of Riemann-Liouville Iα,σa+ u, Iα,σb− are continuos on [a, b] and

lim
x→a+

Iα,σa+ u(x) = 0 and lim
x→b−

Iα,σb− u(x) = 0. (2.17)

Moreover

∥Iα,σa+ u∥∞ ≤ 1

σαΓ(α)
γ(α, σ(b− a))∥u∥∞,

and

∥Iα,σb− u∥∞ ≤ 1

σαΓ(α)
γ(α, σ(b− a))∥u∥∞.
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The following result were considered by Torres et al. [48, Theorem 3.9]. More
precisely, assuming that α ∈ ( 12 , 1), σ > 0 and u ∈ L2(a, b), then Torres et al.
proved that Iα,σa+ u, Iα,σb− u ∈ C[a, b]. We note that under a carefully analysis we are
able to prove that the Riemann-Liouville fractional tempered integrals Iα,σa+ u, Iα,σb− u
are Hölder continuous with order α− 1

2 . To state our result we need the following
inequality: For any x1 ≥ x2 ≥ 0 and q ≥ 1

(x1 − x2)
q ≤ xq1 − xq2. (2.18)

Theorem 2.4. Let α ∈ ( 12 , 1) and σ > 0. Then, for each u ∈ L2(a, b), Iα,σa+ u ∈
Hα− 1

2 ,σ
0 (a, b) Defined in Section 3) and

lim
x→a+

Iα,σa+ u(x) = 0,

where Hα− 1
2 ,σ

0 (a, b) denotes the Hölder space of order α− 1
2 > 0.

Proof. Let a < x1 < x1 ≤ b and u ∈ Lp(a, b), then by Hölder inequality

|Iα,σa+ u(x1)− Iα,σa+ u(x2)|

≤ 1

Γ(α)

[∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x1−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣ |u(s)|ds

+

∫ x2

x1

(x2 − s)α−1e−σ(x2−s)|u(s)|ds
]

≤ 1

Γ(α)

(∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣2 ds)1/2

∥u∥L2(a,x1)

+
1

Γ(α)

(∫ x2

x1

(x2 − s)2α−2e−2σ(x2−s)ds

)1/2(∫ x2

x1

|u(s)|2ds
)1/2

.

(2.19)
Doing the change of variable t = 2σ(x2 − s) and using (2.11) we get

∫ x2

x1

(x2 − s)2α−2e−2σ(x2−s)ds =
1

(2σ)2α−1
γ(2α− 1, 2σ(x2 − x1)) ≤

(x2 − x1)
2α−1

2α− 1
.

Hence(∫ x2

x1

(x2 − s)2α−2e−2σ(x2−s)ds

)1/2

≤ 1

(2α− 1)1/2
(x2 − x1)

α− 1
2 . (2.20)

On the other hand, the change of variable t = x1−s
x2−x1

yields that

∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x1−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣2 ds

=(x2 − x1)
2α−1

∫ x1−a
x2−x1

0

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt. (2.21)
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So, if x1−a
x2−x1

≤ 1, by (2.18) we derive

∫ x1−a
x2−x1

0

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

≤
∫ 1

0

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

≤
∫ 1

0

(
t2α−2e−2σt(x2−x1) − (1 + t)2α−2e−2σ(1+t)(x2−x1)

)
dt

=
1

[2σ(x2 − x1)]2α−1

(
2γ(2α− 1, 2σ(x2 − x1))− γ(2α− 1, 4σ(x2 − x1))

)
.

Now, note that by (2.11) we obtain

γ(2α− 1, 2σ(x2 − x1)) ≤
[2σ(x2 − x1)]

2α−1

2α− 1

and

e−4σ(x2−x1)
[4σ(x2 − x1)]

2α−1

2α− 1
≤ γ(2α− 1, 4σ(x2 − x1)),

consequently

2γ(2α− 1, 2σ(x2 − x1))− γ(2α− 1, 4σ(x2 − x1))

≤ [2σ(x2 − x1)]
2α−1

2α− 1

(
2− 22α−1e−4σ(x2−x1)

)
.

Therefore, replacing in (2.19) we obtain∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x1−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣2 ds

≤ (x2 − x1)
2α−1

2α− 1

(
2− 22α−1e−4σ(x2−x1)

)
≤ 2

2α− 1
(x2 − x1)

2α−1.

(2.22)

On the other hand, if x1−a
x2−x1

> 1, then

∫ x1−a
x2−x1

0

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

=

∫ 1

0

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

+

∫ x1−a
x2−x1

1

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

≤ 2

2α− 1
+

∫ x1−a
x2−x1

1

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt.

(2.23)
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The mean value theorem and the change of variable λ = 2σt(x2 − x1) yield that∫ x1−a
x2−x1

1

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

=

∫ x1−a
x2−x1

1

(
(1− α)rα−2e−σt(x2−x1) + σ(x2 − x1)t

α−1e−σt(x2−x1)
)2
dt

≤2(1− α)2
∫ x1−a

x2−x1

1

t2α−4e−2σt(x2−x1)dt

+ 2σ2(x2 − x1)
2

∫ x1−a
x2−x1

1

t2α−2e−2σt(x2−x1)dt

=
2(1− α)2

(2σ)2α−3
(x2 − x1)

3−2α

∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−4e−λdλ

+
2σ2

(2σ)2α−1
(x2 − x3)

3−2α

∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ.

Note that, integrating by parts the first integral of the last expression we get∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−4e−λdλ

=
(2σ)2α−3

2α− 3

(
(x1 − a)2α−3e−2σ(x1−a) − (x2 − x1)

2α−3e−2σ(x2−x1)
)

+
(2σ)2α−2

(2α− 3)(2α− 2)

(
(x1 − a)2α−2e−2σ(x1−a) − (x2 − x1)

2α−2e−2σ(x2−x1)
)

+
1

(2α− 2)(2α− 3)

∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ.

Consequently, replacing in the last inequality we derive∫ x1−a
x2−x1

1

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

≤2(1− α)2

(2σ)2α−3
(x2 − x1)

3−2α

∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−4e−λdλ

+
2σ2

(2σ)2α−1
(x2 − x3)

3−2α

∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ

=
2(1− α)2

(2σ)2α−3
(x2 − x1)

3−2α

×
[
(2σ)2α−3

2α− 3

(
(x1 − a)2α−3e−2σ(x1−a) − (x2 − x1)

2α−3e−2σ(x2−x1)
)

+
(2σ)2α−2

(2α− 3)(2α− 2)

(
(x1 − a)2α−2e−2σ(x1−a) − (x2 − x1)

2α−2e−2σ(x2−x1)
)]

+

(
2σ2

(2σ)2α−1
+

2(1− α)2

(2σ)2α−3(2α− 2)(2α− 3)

)
(x2 − x3)

3−2α

×
∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ
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≤2(1− α)2

2α− 3
(x2 − x1)

3−2α
(
(x1 − a)2α−3e−2σ(x1−a) − (x2 − x1)

2α−3e−2σ(x2−x1)
)

+

(
2σ2

(2σ)2α−1
+

2(1− α)2

(2σ)2α−3(2α− 2)(2α− 3)

)
(x2 − x3)

3−2α

×
∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ.

By other side, (2.11) yields that∫ 2σ(x1−a)

2σ(x2−x1)

λ2α−2e−λdλ

=γ(2α− 1, 2σ(x1 − a))− γ(2α− 1, 2σ(x2 − x1))

≤ (2σ)2α−1

2α− 1
(x2 − x1)

2α−1

((
x1 − a

x2 − x1

)2α−1

− e−2σ(x2−x1)

)
.

Hence ∫ x1−a
x2−x1

1

∣∣∣tα−1e−σt(x2−x1) − (1 + t)α−1e−σ(1+t)(x2−x1)
∣∣∣2 dt

≤2(1− α)2

2α− 3

((
x1 − a

x2 − x1

)2α−3

e−2σ(x1−a) − e−2σ(x2−x1)

)

+

(
2σ2

2α− 1
+

8(1− α)2σ2

(2α− 1)(2α− 2)(2α− 3)

)
(x2 − x1)

2

×

((
x1 − a

x2 − x1

)2α−1

− e−2σ(x2−x1)

)
.

(2.24)

Finally, combining (2.21) with (2.23) and (2.24) we derive∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x1−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣2 ds ≤ M(x2 − x1)

2α−1, (2.25)

where

M =
2

2α− 1
+

2(1− α)2

2α− 3

((
x1 − a

x2 − x1

)2α−3

e−2σ(x1−a) − e−2σ(x2−x1)

)

+

(
2σ2

2α− 1
+

8(1− α)2σ2

(2α− 1)(2α− 2)(2α− 3)

)
(x2 − x1)

2

×

((
x1 − a

x2 − x1

)2α−1

− e−2σ(x2−x1)

)
.

Therefore, by (2.19), (2.20), (2.22) and (2.25) we get

|Iα,σa+ u(x1)− Iα,σa+ u(x2)|

≤ 1

Γ(α)

(∫ x1

a

∣∣∣(x1 − s)α−1e−σ(x−s) − (x2 − s)α−1e−σ(x2−s)
∣∣∣2 ds)1/2

×
(∫ x1

a

|u(s)|2ds
)1/2
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+
1

Γ(α)

(∫ x2

x1

(x2 − s)2α−2e−2σ(x2−s)ds

)1/2(∫ x2

x1

|u(s)|2ds
)1/2

≤M1/2

Γ(α)
(x2 − x1)

α− 1
2 ∥u∥L2(a,b) +

1

(2α− 1)1/2Γ(α)
(x2 − x1)

α− 1
2 ∥u∥L2(a,b)

=
1

Γ(α)

(
M1/2 +

1

(2α− 1)1/2

)
∥u∥L2(a,b)(x2 − x1)

α− 1
2 ,

which implies that Iα,σx+ u ∈ Hα− 1
2 ,σ

0 (a, b).
To finish with the proof, note that for any u ∈ L2(a, b) and Hölder inequality

we get

|Iα,σa+ u(x)| ≤
1

Γ(α)

∫ x

a

(x− s)α−1e−σ(x−s)|u(s)|ds

≤ 1

Γ(α)

(∫ x

a

(x− s)2(α−1)e−σ2(x−s)ds

)1/2(∫ x

a

|u(s)|2ds
)1/2

≤ 1

2α−
1
2Γ(α)

[γ(2α− 1, 2σ(x− a))]1/2

σα− 1
2

∥u∥L2(a,b).

Furthermore, (2.11) yields that

e−σ(x−a) 2α−
1
2

(2α− 1)1/2
(x− a)α−

1
2 ≤ (γ(2α− 1, 2σ(x− a)))1/2

σα− 1
2

≤ 2α−
1
2

(2α− 1)1/2
(x− a)α−

1
2 ,

which implies

lim
x→a+

(γ(2α− 1, 2σ(x− a)))1/2

σα− 1
2

= 0.

So, combining this limit with the last inequality we get

lim
x→a+

Iα,σa+ u(x) = 0.

Considering the Riemann-Liouville and Caputo tempered fractional derivative
we have the following result:

Theorem 2.5. Let α ∈ (0, 1), σ > 0 and u ∈ AC[a, b]. Then

Dα,σ
a+ u(x) =

u(a)

Γ(1− α)
(x− a)−αe−σ(x−a) + CDα,σ

a+ u(x), (2.26)

and

Dα,σ
b− u(x) =

u(b)

Γ(1− α)
(b− x)−αe−σ(b−x) + CDα,σ

b− u(x). (2.27)

The following result are the fundamental theorem of calculus for Caputo tem-
pered fractional derivative.

Theorem 2.6. For α ∈ (0, 1), σ > 0 and u ∈ AC[a, b], we have
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1.
CDα,σ

a+ · Iα,σa+ u(x) = u(x),
CDα,σ

b− · Iα,σb− u(x) = u(x).

2.
Iα,σa+ · CDα,σ

a+ u(x) = u(x)− e−σ(x−a)u(a),

Iα,σb− · CDα,σ
b− u(x) = u(x)− e−σ(x−b)u(b).

In our next result we are dealing with the integration by parts theorem for
Riemann-Liouville tempered fractional derivative.

Theorem 2.7. Let α ∈ (0, 1), σ > 0 and u, v ∈ AC[a, b], then∫ b

a

u(x)Dα,σ
b− v(x)dx

= lim
x→a+

u(x)I1−α,σ
b− v(x)− lim

x→b−
u(x)I1−α,σ

b− v(x) +

∫ b

a

CDα,σ
a+ u(x)v(x)dx. (2.28)

Proof. Note that, as in Lemma 2.1 we can show that, if φ ∈ AC[a, b], then

aI
α
xφ, xI

α
b φ ∈ AC[a, b]. Hence, xI

1−α
b e−σ·v ∈ AC[a, b] and then

xD
α
b e

−σxv(x) = − d

dx
xI

1−α
b e−σxv(x) ∈ L1[a, b].

Consequently∫ b

a

|Dα,σ
b− v(x)|dx =

∫ b

a

|eσxxDα
b e

−σxv(x)|dx ≤ eσb
∫ b

a

|xDα
b e

−σxv(x)|dx <∞.

By other side, as u ∈ AC[a, b], then u ∈ C[a, b]. Therefore∫ b

a

u(x)Dα,σ
b− v(x)dx ≤

∣∣∣∣∣
∫ b

a

u(x)Dα,σ
b− v(x)dx

∣∣∣∣∣ ≤ ∥u∥∞
∫ b

a

|Dα,σ
b− v(x)|dx <∞.

Now we are going to show (2.28). In fact, by using integration by parts and Theorem
2.2 we get∫ b

a

u(x)Dα,σ
b− v(x)dx =

∫ b

a

u(x)eσxxD
α
b e

−σxv(x)dx

= −
∫ b

a

u(x)eσx
d

dx
xI

1−α
b e−σxv(x)dx

= −

[
u(x)I1−α,σ

b− v(x)
∣∣∣b
a
−
∫ b

a

[eσxu(x)]′xI
1−α
b e−σxv(x)dx

]
= lim

x→a+
u(x)I1−α,σ

b− v(x)− lim
x→b−

u(x)I1−α,σ
b− v(x)

+

∫ b

a

CDα,σ
a+ u(x)v(x)dx.
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3. Tempered fractional space of Sobolev type

In this section we introduce the tempered fractional space of Sobolev type Hα,σ
0 (a, b)

defined as

Hα,σ
0 (a, b) = C∞

0 (a, b)
∥·∥α,σ

,

where

∥u∥α,σ =

(∫ b

a

|u(x)|2dx+

∫ b

a

|CDα,σ
a+ u(x)|2dx

)1/2

, (3.1)

and endowed with the inner product

⟨u, v⟩α,σ =

∫ b

a

u vdx+

∫ b

a

CDα,σ
a+ u

CDα,σ
a+ vdx. (3.2)

Hα,σ
0 (a, b) is a Hilbert space. In fact. Let (un)n∈N be a Cauchy sequence in

Hα,σ
0 (a, b). Then (un)n∈N and (CDα,σ

a+ un)n∈N are Cauchy sequences in L2(a, b) and
there are u, v ∈ L2(a, b) such that

un → u and CDα,σ
a+ un → v in L2(a, b) as n→ ∞.

Let φ ∈ C∞
0 (a, b), then by Theorem 2.2 and definition of Caputo tempered fractional

derivative we have∫ b

a

CDα,σ
a+ un(x)φ(x)dx =

∫ b

a

(
e−σx · CaDα

x e
σxun(x)

)
φ(x)dx

=

∫ b

a
aI

1−α
x (eσxun(x))

′e−σxφ(x)dx

=

∫ b

a

(eσxun(x))
′
xI

1−α
b e−σxφ(x)dx

= eσxun(x)xI
1−α
b e−σxφ(x)

∣∣∣b
a

−
∫ b

a

eσxun(x)
d

dx
xI

1−α
b e−σxφ(x)dx

=

∫ b

a

un(x)Dα,σ
b− φ(x)dx

→
∫ b

a

u(x)Dα,σ
b− φ(x)dx

=

∫ b

a

CDα,σ
a+ u(x)φ(x)dx,

as n→ ∞. Then u ∈ Hα,σ
0 (a, b), CDα,σ

a+ u = v and

∥un − u∥α,σ → 0 as n→ ∞.

Considering this function space, we have the following properties.

Lemma 3.1. For any u ∈ Hα,σ
0 (a, b), we have

Iα,σa+ · CDα,σ
a+ u(x) = u(x), a.e. in (a, b).
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Proof. By definition, there exists (φn)n∈N ⊂ C∞
0 (a, b) such that

lim
n→∞

∥u− φn∥α,σ = 0.

Hence

lim
n→∞

∥u− φn∥L2(a,b) = 0 and lim
n→∞

∥CDα,σ
a+ (u− φn)∥L2(a,b) = 0. (3.3)

Fatou’s Lemma yields that∫ b

a

|u(x)|2dx ≤ lim inf
n→∞

∫ b

a

|φn(x)|2dx <∞ and∫ b

a

|CDα,σ
a+ u(x)|2dx ≤ lim inf

n→∞

∫ b

a

|CDα,σ
a+ φn(x)|2dx < +∞.

(3.4)

By other side

∥Iα,σa+ · CDα,σ
a+ u− u∥L2(a,b)

≤∥Iα,σa+ · CDα,σ
a+ (u− φn)∥L2(a,b) + ∥Iα,σa+ · CDα,σ

a+ φn − φn∥L2(a,b) + ∥φn − u∥L2(a,b).
(3.5)

Since φn(a) = 0, Theorem 2.6 implies that

Iα,σa+ · CDα,σ
a+ φn(x) = φn(x),

next
∥Iα,σa+ · CDα,σ

a+ φn − φn∥L2(a,b) = 0 ∀n ∈ N. (3.6)

By other side, Theorem 2.1 yields that

∥Iα,σa+ · CDα,σ
a+ (u− φn)∥L2(a,b) ≤

γ(α, σ(b− a))

σαΓ(α)
∥CDα,σ

a+ (u− φn)∥L2(a,b). (3.7)

Therefore, by (3.3), (3.6), (3.7) and (3.5) we obtain that

∥Iα,σa+ · CDα,σ
a+ u− u∥L2(a,b) = 0,

which implies the desired result.
As an immediate consequence of this result we have the following version of

Poincaré inequality:

Corollary 3.1. Let α ∈ (0, 1), σ > 0. Then,

∥u∥L2(a,b) ≤
γ(α, σ(b− a))

σαΓ(α)
∥CDα,σ

a+ u∥L2(a,b), (3.8)

for any u ∈ Hα,σ
0 (a, b).

Remark 3.1. By Corollary 3.1 we can endowed Hα,σ
0 (a, b) with the norm

∥u∥ =

(∫ b

a

|CDα,σ
a+ u(x)|2dx

)1/2

,
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which is equivalent with ∥ · ∥α,σ. In fact, note that

∥u∥ ≤ ∥u∥α,σ.

By other side, Corollary 3.1 yields that

∥u∥2α,σ =

∫ b

a

|u(x)|2dx+

∫ b

a

|CDα,σ
a+ u(x)|2dx

≤

([
γ(α, σ(b− a))

σαΓ(α)

]2
+ 1

)∫ b

a

|CDα,σ
a+ u(x)|2dx.

Therefore, we get the desired result.

In the following result we are able to show that Hα,σ
0 (a, b) is continuously em-

bedded into C(a, b), more precisely we have:

Theorem 3.1. Let α ∈ ( 12 , 1) and σ > 0, then Hα,σ
0 (a, b) is continuously embedded

into C(a, b).

Proof. Let u ∈ Hα,σ
0 (a, b), Lemma 3.1 yields that u,CDα,σ

a+ u ∈ L2(a, b) and

u(x) = Iα,σa+ · CDα,σ
a+ u(x) a.e. x ∈ (a, b).

Hence, by Theorem 2.4 we obtain

∥u∥∞ = ∥Iα,σa+ · CDα,σ
a+ u∥∞

≤ 1

(2σ)α−
1
2Γ(α)

[γ(2α− 1, 2σ(b− a))]1/2∥CDα,σ
a+ u∥L2(a,b)

=
1

(2σ)α−
1
2Γ(α)

[γ(2α− 1, 2σ(b− a))]1/2∥u∥,

which implies the desired result.
The following compactness result will be crucial for our purpose.

Theorem 3.2. Let α ∈ ( 12 , 1) and σ > 0. Then the embedding

Hα,σ
0 (a, b) ↪→ C(a, b)

is compact.

Proof. Let B be a bounded subset of Hα,σ
0 (a, b), then we need to show that B is

relative compact in C(a, b). By virtue of the Arzelá-Ascoli theorem, the conclusion
will be achieved by proving that B is equibounded and equicontinuous in C(a, b).
In fact, by the previous theorem Hα,σ

0 (a, b) is continuously embedded in C(a, b),
and

∥u∥∞ ≤ [γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

∥u∥, for every u ∈ B. (3.9)

Hence, the set B is equibounded in C(a, b). Moreover, by Theorem 2.4 and Lemma
3.1 there is a positive constant K such that

|u(x)− u(y)| = |Iα,σa+ · CDα,σ
a+ u(x)− Iα,σa+ · CDα,σ

a+ u(y)|

≤ K∥CDα,σ
a+ u∥L2(a,b)|x− y|α− 1

2 ,



3510 H. A. Cuti Gutierrez, N. Nyamoradi & C. E. Torres Ledesma

which implies the equicontinuity of B. This completes the proof of Theorem 3.2.

Remark 3.2. If α ∈ ( 12 , 1) and σ > 0, then for every u ∈ Hα,σ
0 (a, b), there exists

(ϕn)n∈N ⊂ C∞
0 (a, b) such that

lim
n→∞

∥u− ϕn∥ = 0.

Combining this limit with Theorem 3.1 we arrive to

0 ≤ |u(a)|
= |u(a)− ϕn(a)|

≤ 1

(2σ)α−
1
2Γ(α)

[γ(2α− 1, 2σ(b− a))]1/2∥u− ϕn∥

→ 0 as n→ ∞.

Consequently u(a) = 0. Similarly we can obtain that u(b) = 0.
By other side, Lemma 3.1 yields that

CDα,σ
a+ u ∈ L2(a, b).

Therefore, Hα,σ
0 (a, b) can be rewritten as

Hα,σ
0 (a, b) = {u ∈ L2(a, b) : CDα,σ

a+ u ∈ L2(a, b) and u(a) = u(b) = 0}.

4. Proof of Theorem 1.1

In this section we are going to give the prove of Theorem 1.1. In this direction, in
what follows we consider a = 0, b = T and

0 = x0 < x1 < x2 < · · · < xn < xn+1 = T.

Hence, for u ∈ Hα,σ
0 (0, T ) next∫ T

0

CDα,σ
0+ u(x)CDα,σ

0+ φ(x)dx

=

∫ T

0

CDα,σ
0+ u(x)

(
e−σx · C0 Dα

x e
σxφ(x)

)
dx

=

∫ T

0

e−σx · CDα,σ
0+ u(x)0I

1−α
x (eσxφ(x))

′
dx

=

∫ T

0
xI

1−α
T

(
e−σx · CDα,σ

0+ u(x)
)
(eσxφ(x))

′
dx

=

n∑
j=0

∫ xj+1

xj

xI
1−α
T

(
e−σx · CDα,σ

0+ u(x)
)
(eσxφ(x))

′
dx

=
n∑

j=0

(
lim

x→x−
j+1

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)− lim
x→x+

j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)
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+

∫ xj+1

xj

Dα,σ
T−

(
CDα,σ

0+ u(x)
)
φ(x)dx

)
. (4.1)

Note that

n∑
j=0

(
lim

x→x−
j+1

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)− lim
x→x+

j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)

)
= lim

x→x−
n+1

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x)− lim
x→x+

n

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x)

+ lim
x→x−

1

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x)− lim
x→x+

0

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x)

+

n−1∑
j=1

(
lim

x→x−
j+1

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)− lim
x→x+

j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)

)
=− lim

x→x+
n

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x) + lim
x→x−

1

φ(x)I1−α,σ
T− · CDα,σ

0+ u(x)

+

n−1∑
j=1

(
lim

x→x−
j+1

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)− lim
x→x+

j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)

)

=−
n∑

j=1

(
lim

x→x+
j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)− lim
x→x−

j

I1−α,σ
T− · CDα,σ

0+ u(x)φ(x)

)
.

Combining this equality with (4.1) we derive∫ T

0

CDα,σ
0+ u(x)CDα,σ

0+ φ(x)dx

=

∫ T

0

Dα,σ
T−

(
CDα,σ

0+ u(x)
)
φ(x)dx−

n∑
j=1

∆
(
I1−α,σ
T− · CDα,σ

0+ u
)
(xj)φ(xj).

Now we introduce the notion of solutions that we consider in this paper.

Definition 4.1. A function

u ∈

{
u ∈ AC[0, T ] :

∫ xj+1

xj

|CDα,σ
0+ u(x)|2dx <∞, j = 0, · · · , n

}
is said to be a classical solution of problem (1.1), if u satisfies the equation a.e. on
(0, T ) \ {x1, x2, · · · , xn}, the limits

lim
x→x+

j

I1−α,σ
T− · CDα,σ

0+ u(x) and lim
x→x−

j

I1−α,σ
T− · CDα,σ

0+ u(x)

exist and satisfy the impulsive condition ∆
(
I1−α,σ
T− · CDα,σ

0+ u
)
(xj) = Ij(u(xj)) and

boundary condition u(0) = u(T ) = 0.

Definition 4.2. A function u ∈ Hα,σ
0 (0, T ) is said to be a weak solution of problem

(1.1), if for every φ ∈ Hα,σ
0 (0, T ), the following identity holds∫ T

0

CDα,σ
0+ u(x)CDα,σ

0+ φ(x)dx+

n∑
j=1

Ij(u(xj))φ(xj) =

∫ T

0

f(x, u(x))φ(x)dx.
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As in [7, Lemma 2.1] we can show the following result.

Lemma 4.1. The function u ∈ Hα,σ
0 (0, T ) is a weak solution of (1.1), if and only

if u is a classical solution of (1.1).

Note that the problem (1.1) has a variational structure and its solution are
critical points of a suitable functional I defined on the fractional space Hα,σ

0 (0, T )
as follows

I(u) =
1

2
∥u∥2 −

∫ T

0

F (x, u(x))dx+

n∑
j=1

∫ u(xj)

0

Ij(s)ds. (4.2)

To prove our main result we need the following lemma:

Lemma 4.2. ( [39, Theorem 9.12]). Let X be an infinite dimensional real Banach
space and Φ ∈ C1(X,R) be even, satisfying the (PS)-condition and Φ(0) = 0. If
X = X1 ⊕X2 with k := dimX2 <∞ and Φ satisfies the following conditions:
(i) There exist constants ρ, σ > 0 such that Φ|∂Bρ∩X1

≥ σ;
(ii) For each finite dimensional subspace V ⊂ X, there is an R = R(V ) such that
Φ(u) ≤ 0 for every u ∈ V with ∥u∥ > R.
Then Φ has an unbounded sequence of critical values.

Proof of Theorem 1.1. We shall apply Lemma 4.2 to I. We know that Hα,σ
0 (0, T )

is a Banach space and I ∈ C1(Hα,σ
0 (0, T ),R). We can easily that, I(0) = 0 and I

is even. Next, we prove that I satisfies the (PS)-condition. Assume that {un} is a
(PS)-sequence of I such that {I(un)} is bounded and I ′(un) −→ 0, as n −→ ∞.

By (I2), we have
γj
τ

≤ Ij(τ)∫ τ

0
Ij(s)ds

, ∀ τ ≥ ϑ,

γj
τ

≥ Ij(τ)∫ τ

0
Ij(s)ds

, ∀ τ ≤ −ϑ.

By integrating the above relations respect to τ on [ϑ, τ ] and [τ,−ϑ], respectively,
one can get

γj ln
τ

ϑ
≤ ln

∫ τ

0
Ij(s)ds∫ ϑ

0
Ij(s)ds

, ∀ τ ≥ ϑ,

γj ln
ϑ

−τ
≥ ln

∫ −ϑ

0
Ij(s)ds∫ τ

0
Ij(s)ds

, ∀ τ ≤ −ϑ.

Consequently, ∫ τ

0

Ij(s)ds ≥
( τ
ϑ

)γj
∫ ϑ

0

Ij(s)ds, ∀ τ ≥ ϑ,∫ τ

0

Ij(s)ds ≥
(
−τ
ϑ

)γj
∫ −ϑ

0

Ij(s)ds, ∀ τ ≤ −ϑ.

So there exist constants mj = mj(γj , ϑ) > 0 such that
∫ τ

0
Ij(s)ds ≥ mj |τ |γj , for

all |τ | ≥ ϑ. By the continuity of
∫ τ

0
Ij(s)ds, there exist positive constants Kj , such

that ∫ τ

0

Ij(s)ds ≥ −Kj ≥ mj |τ |γj −mjϑ
γj −Kj , ∀ |τ | ≤ ϑ.
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Therefore, we get ∫ τ

0

Ij(s)ds ≥ mj |τ |γj − m̂j , ∀ τ ∈ R, (4.3)

where m̂j = mjϑ
γj +Kj .

Suppose that {I(un)} be a bounded sequence and I ′(un) −→ 0 as n → ∞.
Hence

I(un)−
1

γ
⟨I ′(un), un⟩ =

(
1

2
− 1

γ

)
∥un∥2

+
1

γ

∫ T

0

f(x, un(x))un(x)dx−
∫ T

0

F (x, un(x))un(x)dx

+
1

γ

n∑
j=1

Ij(un(xj))un(xj)−
n∑

j=1

∫ un(xj)

0

Ij(s)ds.

So, by straightforward calculation, for some positive constant C0 > 0, we obtain

I(un) ≥
(
1

2
− 1

γ

)
∥un∥2 +

1

γ
∥I ′(un)∥(Hα,σ

0 (0,T )∗)∥un∥+ C0.

Since {I(un)} is bounded then the sequence {un} ⊂ Hα,σ
0 (0, T ) is bounded. Since

Hα,σ
0 (0, T ) is a reflexive Banach space and so by passing to a subsequence (for

simplicity denoted again by {un}) if necessary, by Theorem 3.2, we may assume
that {

un ⇀ u, weakly in Hα,σ
0 (0, T ),

un −→ u, strongly in C(0, T ).
(4.4)

So, we get

∥un − u∥2 ≤ ⟨I ′(un)− I ′(u), un − u⟩

−
∫ T

0

(
f(x, un(x))− f(x, u(x)), un(x)− u(x)

)
dx

+

n∑
j=1

[
Ij(un(xj))− Ij(u(xj))

]
(un(xj)− u(xj)). (4.5)

For any j = 1, . . . , n, we have that un(xj) −→ u(xj) as n −→ ∞. Thus it follows
from the continuity of all Ii that

n∑
j=1

[
Ij(un(xj))− Ij(u(xj))

]
(un(xj)− u(xj)) −→ 0 as n −→ ∞. (4.6)

By (4.4), we have∫ T

0

(f(x, un(x))− f(x, u(x)))(un(x)− u(x))dx −→ 0, as n −→ ∞. (4.7)

Since I ′(un) −→ 0, then by using (4.5), (4.6) and (4.7), we have that ∥un − u∥ −→ 0,
which means that I(u) satisfies the (PS)-condition.
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On the other hand, by (F1), for any ε > 0, there exists C0(ε) such that

F (x, u) ≤ ε|u|2 + C0(ε)|u|η+1, ∀ (x, u) ∈ [0, T ]× R. (4.8)

In view of (3.9), (4.3) and (4.8), we get

c ≥ I(u)

=
1

2
∥u∥2 +

n∑
j=1

∫ u(xj)

0

Ij(s)ds−
∫ T

0

F (x, u(x))dx

≥ 1

2
∥u∥2 +

n∑
j=1

(mj |u(xj)|γj − m̂j)−
∫ T

0

(ε|u|2 + C0(ε)|u|η+1)dx

≥ 1

2
∥u∥2 −

n∑
j=1

(mj∥u|γj
∞ − m̂j)− εT∥u∥2∞ − C0(ε)T∥u∥η+1

∞ )dx

≥

(
1

2
− εT

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)2
)
∥u∥2

−
n∑

j=1

mj

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)γj

∥u∥γj +

n∑
j=1

m̂j

−C0(ε)T

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)η+1

∥u∥η+1dx. (4.9)

By (4.9) and (I2), one can get

I(u) =
1

2
∥u∥2 −

∫ T

0

F (x, u(x))dx+

n∑
j=1

∫ u(xj)

0

Ij(s)ds

≥ 1

2
∥u∥2 −

∫ T

0

F (x, u(x))dx

≥

(
1

2
− εT

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)2
)
∥u∥2

−C0(ε)T

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)η+1

∥u∥η+1. (4.10)

Let

ε =
1

4T

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)−2

,

ρ =

(
8C0(ε)T

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)η+1
) 1

1−η

,

and Bρ = {u ∈ Eα : ∥u∥α < ρ}. Therefore,

I|∂Bρ ≥ 1

8
ρ2 := σ > 0. (4.11)



Boundary value problem with impulsive effects 3515

Hα,σ
0 (0, T ) has a countable orthogonal basis {ei}. Set Yk = span {e1, e2, . . . ek} and

Zk = Y ⊥
k . Then Hα,σ

0 (0, T ) = Yk ⊕ Zk. Hence,

I|∂Bρ∩Zk
≥ σ > 0. (4.12)

Furthermore, for any finite dimensional subspace V ⊂ Hα,σ
0 (0, T ), there is a positive

constant m such that V ⊂ Ym. Since all norms in a finite dimensional space are
equivalent, then there is a constant ϱ > 0 such that

∥u∥γ ≥ ϱ∥u∥, ∀u ∈ Ym. (4.13)

By similar method in (4.3) and (F2), we can get

F (x, u) ≥ m|u|γ − m̂, ∀ (x, u) ∈ [0, T ]× R. (4.14)

From (I1), for any ε > 0, there exists C1(ε) such that∫ u

0

Ij(s)ds ≤ ε|u|2 + C1(ε)|u|ϖ+1, ∀ u ∈ R. (4.15)

In view of (3.9), (4.15) and (4.14) , we have

I(u) =
1

2
∥u∥2 −

∫ T

0

F (x, u(x))dx+

n∑
j=1

∫ u(xj)

0

Ij(s)ds

≤ 1

2
∥u∥2 +

n∑
j=1

(ε|u(xj)|2 + C1(ε)|u(xj)|ϖ+1)−m

∫ T

0

|u(x)|γdx+ m̂T

≤

(
1

2
+ εn

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)2
)
∥u∥2

+C1(ε)n

(
[γ(2α− 1, 2σ(b− a))]1/2

(2σ)α−
1
2Γ(α)

)ϖ+1

∥u∥ϖ+1

−mϱγ∥u∥γ + m̂T, (4.16)

for all u ∈ Ym. Since 2 < ϖ + 1 < γ then there is a large r1 > 0 such that I < 0
on V \Br1 . Consequently, there is a point e ∈ Hα,σ

0 (0, T ) with ∥e∥α > ρ such that
I(e) < 0. By Lemma 4.2, I possesses infinitely many critical points, i.e. the problem
(1.1) has infinitely many weak solutions.

Example 4.1. Let α = 3
4 , σ = 1 and n = T = 1. Consider the boundary value

problem of the fractional differential equation with impulsive effects
D

3
4 ,1

b− (CD
3
4 ,1

a+ u(x)) = f(x, u), x ̸= xj a.e. x ∈ (0, 1),

u(0) = u(T ) = 0,

∆
(
I1−α,σ
1−

CDα,σ
0+ u

)
(x1) = I1(u(x1)).

(4.17)

Let

F (x, u) =

{
(x+ 2)|u|8 |u| > 1,

(x+ 3)(|u|4 − |u|6) |u| ≤ 1,

and I1(t) = t4. we have that (F2) holds with γ = 7 and ϑ0 = 1. By choosing η = 9,
(F1) holds. Also (I1) and (I2) hold by choosing ϖ = 5 and ϑ = 1. Hence, Theorem
yields that the problem (4.17) has infinitely many weak solutions.
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