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GENERAL DECAY OF SOLUTIONS OF A
WEAKLY COUPLED ABSTRACT EVOLUTION
EQUATIONS WITH ONE FINITE MEMORY

CONTROL

Aissa Guesmia1, Salim A. Messaoudi2 and Mostafa Zahri2,†

Abstract In this work, we consider the following abstract evolution system:
utt(t) +Au(t)−

∫ t

0

g(t− s)Aθu(s)ds+ αv(t) = 0, t > 0,

vtt(t) +Av(t) + αu(t) = 0, t > 0,

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1,

where A : D(A) ⊂ H −→ H is a linear positive definite self-adjoint operator,
H is a Hilbert space, g is a positive non-increasing function with some general
decay rate, θ ∈ [0, 1], α is a positive constant and u0, u1, v0 and v1 are fixed
initial data. Under appropriate conditions on g, α and the regularity of the
initial data, we establish a general decay rate of the solution energy which
generalizes some earlier results in the literature. We, also, illustrated our
results by performing several numerical tests.
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operator.

MSC(2010) 35L05, 35L15, 35L70, 93D15.

1. Introduction

Given a real separable Hilbert space H with associated inner product and norm
denoted, respectively, by ⟨·, ·⟩ and ∥ · ∥. The subject of this paper is to study the
following problem:

utt(t) +Au(t)−
∫ t

0

g(t− s)Aθu(s)ds+ αv(t) = 0, t > 0,

vtt(t) +Av(t) + αu(t) = 0, t > 0,

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1,

(1.1)
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where α is a positive constant, θ ∈ [0, 1], u0, u1, v0 and v1 are fixed initial data, and

A : D(A) ⊂ H −→ H

is a linear positive definite self-adjoint operator on H such that the embedding
D(Aβ) ↪→ D(Aσ) is compact, for any β > σ ≥ 0. This embedding guarantees the
existence of positive constants a0, a1 and a2 such that

∥w∥2 ≤ a0

∥∥∥A1/2w
∥∥∥2 and

∥∥∥Aθ/2w
∥∥∥2 ≤ a1

∥∥∥A1/2w
∥∥∥2 , ∀w ∈ D

(
A1/2

)
(1.2)

and ∥∥∥A1/2w
∥∥∥2 ≤ a2

∥∥∥A1−θ/2w
∥∥∥2 ∀w ∈ D

(
A1−θ/2

)
. (1.3)

Problem (1.1) describes the evolution of two interacting elastic membranes (or two
plates) through a force that attracts one membrane (or a plate) to the other one
with the coefficient α. Whereas, the integral term in the first equation acts as a
stabilizer.

Coupled wave systems have been considered in various contexts. In [14], the au-
thors studied a system of two compactly coupled wave equations, where the bound-
ary damping are effective on both equations, and obtained the exponential stability
in the linear-damping case and a polynomial stability for the case of polynomial-like
damping. Similar results were also established by Aassila [1] and [2]. More related
works, could be found in [6, 9]. In our context the authors in [16], looked into the
following weakly two coupled wave equations with one linear frictional damping ut:utt −∆u+ ut + αv = 0 in Ω× (0,∞),

vtt −∆v + αu = 0 in Ω× (0,∞)
(1.4)

together with initial and Dirichlet-boundary conditions, where Ω is a bounded do-
main of Rn with n ∈ N∗ and α is a positive and small parameter. They showed
that the solution of (1.4) decays polynomially and the decay rate is optimal. They
also gave some computational experiments in the one-dimensional setting. In [4],
the authors considered a coupled system in an abstract setting and showed that,
for sufficiently smooth initial conditions and for |α| > 0 and small enough, the
energy of the solution decays polynomially to zero as t → ∞. Najafi [22] studied
the following one-dimensional weakly two coupled wave equations with two linear
frictional dampings βut and βvt:utt − c2uxx = α(v − u) + β(vt − ut) in (0, 1)× (0,∞),

vtt − c2vxx = α(u− v) + β(ut − vt) in (0, 1)× (0,∞)
(1.5)

together with initial and mixed boundary conditions, and established, by using the
frequency-domain method, the exponential decay rate of solutions of (1.5).

In [5], the authors investigated the following weakly coupled two wave equations
with one infinite memory:

utt −∆u+

∫ ∞

0

g(s)∆u(t− s)ds+ αv = 0 in (0, 1)× (0,∞),

vtt −∆v + αu = 0 in (0, 1)× (0,∞)

(1.6)
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together with initial and Dirichlet-boundary conditions, where Ω is a bounded do-
main of Rn with n ∈ N∗, α is a positive and small parameter and the kernel decay
exponentially. They proved that the solution of (1.6) has a polynomial rate of
decay, but it does not have exponential decay. The optimality of the polynomial
decay has been recently established by Cordeiro et al. [8]. Guesmia [11] considered
the following coupled system of two linear abstract evolution equations with one
infinite memory:

utt(t) +Au(t)−
∫ ∞

0

g(s)Bu(t− s)ds+
∼
Bv(t) = 0, t > 0,

vtt(t) +
∼
Av(t) +

∼
Bu(t) = 0 t > 0

(1.7)

together with initial conditions, where

A : D(A) ⊂ H −→ H, B : D(B) ⊂ H −→ H and
∼
A : D(

∼
A) ⊂ H −→ H

are positive definite self-adjoint operators on H such that the embedding D(A) ⊂
D(B) ⊂ H and D(

∼
A) ⊂ H are dense. In addition,

∼
B is a self-adjoint linear bounded

operator. Under appropriate conditions on the kernel, the operators and the history
data, he proved that the stability of (1.7) holds for kernels with decay rates that
are much weaker than the exponential decay. In addition, he presented applications
to various distributed coupled systems of second-order with one infinite memory
acting only on the first equation. Some results, similar to the those of [11], were
proved in [7] in case of complementary frictional damping and infinite memory

Dut(t)−
∫ ∞

0

g(s)Bu(t− s)ds,

where D is a bounded operator. The results of [7] and [11] generalized those of [13]
and [17], where systems of coupled wave equations and coupled abstract equations,
respectively, have been discussed with kernels g having a negligible flat zone; i.e.

µ ({s ≥ 0 : g′(s) = 0}) = 0, (1.8)

where µ is the Lebesgue measure, or satsifying g′ ≤ −kg, for some positive constant
k (which implies that g converges exponentially to zero).

Jin et al. [12] treated the stability of the following coupled two abstract evolution
equations with one finite memory:utt(t) +Au(t)−

∫ t

0

g(s)Au(t− s)ds+ αu+ βBv(t) = f(u), t > 0,

vtt(t) +Av(t) + βBu(t) = 0, t > 0,

(1.9)

where A and B are given operators, α is a nonnegative constant, β is a positive
constant, f : R → R is a fixed function and g satisfies (1.8) and some smallness and
regularity conditions. Under specific conditions on A, B and f , and some smallness
conditions on the initial data, they proved that (1.9) is polynomially stable, where
the decay rate of energy at infinity is of order t−1. For recent works in this direction,
we cite [3] and [23].
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In this present work, we discuss the longtime behavior of solutions of (1.1) under
general conditions on g and establish a general decay result. Our result generalises
the ones of [12] to the case of presence of a fractional power θ. Moreover, in the
particular case where g converges exponentially to zero, our general decay result
covers the decay rate t−1 of [12].

Our paper contains five sections, in addition to the introduction and the con-
clusion. In Section 2, we set our hypotheses on g and α, introduce some “energy”
functionals, state an existence result and prove few related lemmas. Section 3 gives
certain necessary lemmas and in Section 4, we establish our main decay result. Sec-
tion 5 is devoted to some general comments and illustrating examples. In Section
6, we present a numerical analysis and perform six numerical tests.

2. Preliminaries

In this section, our hypotheses on g and α are given, some “energy” functionals
are introduced and related lemmas and the existence result are established. So, in
addition to (1.2) and (1.3), we consider the following conditions:

(H1) The strictly decreasing differentiable relaxation function g : [0,∞) −→
(0,∞) satisfies

g(0) > 0 and
∼
g :=

∫ +∞

0

g(s)ds <
1

a1
, (2.1)

and there exist 1 ≤ p < 3/2 and a non-increasing function ξ : [0,∞) −→ (0,∞)
such that

g′(t) ≤ −ξ(t)gp(t), ∀t ≥ 0. (2.2)

(H2) The constant α is such that

0 < α <

√
1− a1

∼
g

a0
, (2.3)

where a0 and a1 are defined in (1.2).
We state the existence, regularity and uniqueness theorem whose proof can be

established similarly to that in [21]. See also [20].

Theorem 2.1. Suppose that

(u0, u1), (v0, v1) ∈ D
(
Aσ+1/2

)
×D (Aσ) , (2.4)

for σ ≥ 0, and (H1) and (H2) hold. Then problem (1.1) has a unique global strong
solution satisfying

u, v ∈ C
(
R+;D

(
Aσ+1/2

))
∩C1 (R+;D (Aσ)) ∩C2

(
R+;D

(
Aσ−1/2

))
. (2.5)

For (u0, u1), (v0, v1) ∈ D
(
Aσ+1/2

)
×D (Aσ) such that

σ ≥ max

{
θ

2
,
1− θ

2

}
. (2.6)
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We define the following energy functionals associated with the solution (u, v) of
(1.1):

E(t) :=
1

2

 ∥ut(t)∥2 + ∥vt(t)∥2 +
∥∥A1/2u(t)

∥∥2 + ∥∥A1/2v(t)
∥∥2

−
(∫ t

0
g(s)ds

)∥∥Aθ/2u(t)
∥∥2 + 2α⟨u, v⟩+

(
g ◦Aθ/2u

)
(t)

 , (2.7)

E(t) := 1

2


∥∥Aθ/2ut(t)

∥∥2 + ∥∥Aθ/2vt(t)
∥∥2 + ∥∥A(1+θ)/2u(t)

∥∥2
+
∥∥A(1+θ)/2v(t)

∥∥2 − (∫ t

0
g(s)ds

)∥∥Aθu(t)
∥∥2

+2α⟨Aθ/2u,Aθ/2v⟩+
(
g ◦Aθu

)
(t)

 (2.8)

and

E∗(t) :=
1

2


∥∥A(1−θ)/2ut(t)

∥∥2 + ∥∥A(1−θ)/2vt(t)
∥∥2 + ∥∥A1−θ/2u(t)

∥∥2
+
∥∥A1−θ/2v(t)

∥∥2 − (∫ t

0
g(s)ds

)∥∥A1/2u(t)
∥∥2

+2α⟨A(1−θ)/2u,A(1−θ)/2v⟩+
(
g ◦A1/2u

)
(t)

 , (2.9)

where, for any t ≥ 0 and for any w ∈ L2
loc(R+;H),

(g ◦ w)(t) :=
∫ t

0

g(t− s)∥w(t)− w(s)∥2ds.

Observe that the regularity (2.5) and condition (2.6) guarantee that all terms in E,
E and E∗ make sense.

Lemma 2.1. Under the conditions (H1), (H2), (2.4) and (2.6), there exists a
constant c0 > 0 such that, for any t ≥ 0,

E(t) ≥ c0

∥ut(t)∥2 + ∥vt(t)∥2 +
∥∥A1/2u(t)

∥∥2 + ∥∥A1/2v(t)
∥∥2

+
(
g ◦Aθ/2u

)
(t)

 , (2.10)

E(t) ≥ c0

∥∥Aθ/2ut(t)
∥∥2 + ∥∥Aθ/2vt(t)

∥∥2 + ∥∥A(1+θ)/2u(t)
∥∥2

+
∥∥A(1+θ)/2v(t)

∥∥2 + (
g ◦Aθu

)
(t)

 (2.11)

and

E∗(t) ≥ c0

∥∥A(1−θ)/2ut(t)
∥∥2 + ∥∥A(1−θ)/2vt(t)

∥∥2 + ∥∥A1−θ/2u(t)
∥∥2

+
∥∥A1−θ/2v(t)

∥∥2 + (
g ◦A1/2u

)
(t)

 . (2.12)

Proof. By using the Cauchy-Schwarz and Young’s inequality and (1.2), we have,
for any ε > 0,

E(t) ≥ 1

2

 ∥ut(t)∥2 + ∥vt(t)∥2 + (1− ∼
ga1 − αa0ε)

∥∥A1/2u(t)
∥∥2

+(1− αa0

ε )
∥∥A1/2v(t)

∥∥2 + (
g ◦Aθ/2u

)
(t)

 .
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Recalling (2.1) and (2.3), we can choose ε so that

αa0 < ε <
1− a1

∼
g

a0α
,

and, hence, we obtain (2.10) with c0 = 1
2 min

{
1− αa0

ε , 1− ∼
ga1 − αa0ε

}
. The same

aruguments can be used to establish (2.11) and (2.12) with the same constant c0.

Lemma 2.2. Under the conditions of Lemma 2.2, the energy functionals (2.7),
(2.8) and (2.9) satisfy, for any t ≥ 0,

E′(t) = −1

2
g(t)

∥∥∥Aθ/2u(t)
∥∥∥2 + 1

2

(
g′ ◦Aθ/2u

)
(t), (2.13)

E ′(t) = −1

2
g(t)

∥∥Aθu(t)
∥∥2 + 1

2

(
g′ ◦Aθu

)
(t) (2.14)

and

E ′
∗(t) = −1

2
g(t)

∥∥∥A1/2u(t)
∥∥∥2 + 1

2

(
g′ ◦A1/2u

)
(t). (2.15)

Proof. By performing the H-inner product of ut and vt with (1.1)1 and (1.1)2,
respectively, and do routine calculations as in [21], we obtain (2.13).

Similarly, the H-inner product of Aθut and Aθvt with (1.1)1 and (1.1)2, respec-
tively, we get (2.14), for sufficiently regular solutions; that is, for

σ ≥ max {θ, 1− θ} .

By density arguments, the estimate (2.14) remains valid for solutions established in
Theorem 2.1.

Also, the H-inner product of A1−θut and A1−θvt with (1.1)1 and (1.1)2, respec-
tively, then routine calculations, together with density arguments as in the case of
(2.14), yield (2.15).

Next, for the sake of completeness, we report here a result from [18].

Lemma 2.3. Under the conditions of Theorem 2.1, we have, for 1 ≤ p < 3/2,

ξ(t)(g ◦A1/2u)(t) ≤ C [−E ′
∗(t)]

1
2p−1 , ∀t ≥ 0, (2.16)

where the positive constant C depends continuously on E∗(0).

Proof. For the proof, we refer the reader to Corollary 2.1 of [18].

3. Technical Lemmas

In this section, we state and prove some lemmas necessary for the proof of our main
result. We use C to denote generic positive constants which may change from step
to step and depend on α, a0, a1, a2, g(0) and

∼
g .

Lemma 3.1. Let (H1) and (H2) hold. Then the functional

Φ(t) := ⟨u(t), ut(t)⟩+ ⟨v(t), vt(t)⟩
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satisfies, along the solutions of (1.1) and for any ε > 0,

Φ′(t) ≤ ∥ut(t)∥2 + ∥vt(t)∥2 − (1− ε)
∥∥∥A1/2u(t)

∥∥∥2 − ∥∥∥A1/2v(t)
∥∥∥2 (3.1)

−2α⟨u(t), v(t)⟩+ C

ε

(
g ◦Aθ/2u

)
(t) +

(∫ t

0

g(s)ds

)∥∥∥Aθ/2u(t)
∥∥∥2 .

Proof. Direct differentiations, using (1.1), gives

Φ′(t) = ∥ut(t)∥2 + ∥vt(t)∥2 −
∥∥∥A1/2u(t)

∥∥∥2 − ∥∥∥A1/2v(t)
∥∥∥2 (3.2)

+

(∫ t

0

g(s)ds

)∥∥∥Aθ/2u(t)
∥∥∥2 − 2α⟨u(t), v(t)⟩

+⟨Aθ/2u(t),

∫ t

0

g(t− s)(Aθ/2u(s)−Aθ/2u(t))ds⟩.

Now, we estimate the last term of (3.2), using the Cauchy-Schwarz and Young’s
inequalities, then Hölder’s inequality and (1.2) as follows:

⟨Aθ/2u(t),

∫ t

0

g(t− s)(Aθ/2u(s)−Aθ/2u(t))ds⟩ (3.3)

≤ ||Aθ/2u(t)||
∣∣∣∣∣∣∣∣∫ t

0

g(t− s)(Aθ/2u(s)−Aθ/2u(t))ds

∣∣∣∣∣∣∣∣
≤ ε

a1
||Aθ/2u(t)||2 + C

ε

∣∣∣∣∣∣∣∣∫ t

0

g(t− s)(Aθ/2u(s)−Aθ/2u(t))ds

∣∣∣∣∣∣∣∣2
≤ ε||A1/2u(t)||2 + C

ε

(
g ◦Aθ/2u

)
(t).

Inserting (3.3) in (3.2), we obtain (3.1).

Lemma 3.2. Let (H1) and (H2) hold. Then the functional

Ψ(t) := −⟨ut(t),

∫ t

0

g(t− s)(u(t)− u(s))ds⟩

satisfies, along the solutions of (1.1) and for any ε > 0,

Ψ′(t) ≤ −
(∫ t

0

g(s)ds− ε

)
∥ut(t)∥2 + ε

∥∥∥A1/2u(t)
∥∥∥2 + ε

∥∥∥A1/2v(t)
∥∥∥2 (3.4)

+C

(
1 +

1

ε

)(
g ◦A1/2u

)
(t)− C

ε

(
g′ ◦A1/2u

)
(t).

Proof. Direct differentiations, using (1.1), give

Ψ′(t) = −
(∫ t

0

g(s)ds

)
∥ut(t)∥2 − ⟨ut(t),

∫ t

0

g′(t− s)(u(t)− u(s))ds⟩

+⟨A1/2u(t),

∫ t

0

g(t− s)A1/2(u(t)− u(s))ds⟩

+

∥∥∥∥∫ t

0

g(t− s)Aθ/2(u(t)− u(s))ds

∥∥∥∥2 + α⟨v(t),
∫ t

0

g(t− s)(u(t)− u(s))ds⟩
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−
(∫ t

0

g(s)ds

)
⟨Aθ/2u(t),

∫ t

0

g(t− s)Aθ/2(u(t)− u(s))ds⟩.

By exploiting the Cauchy-Schwarz, Young’s and Hölder’s inequalities and (1.2), we
arrive at (3.4).

Lemma 3.3. Let (H1) and (H2) hold. Then the functional

χ(t) := ⟨utt(t), vt⟩ − ⟨vtt(t), ut⟩

satisfies, along the solutions of (1.1) and for any ε > 0,

χ′(t) ≤ − (α− ε) ∥vt(t)∥2+α ∥ut(t)∥2+
C

ε
g(t)

∥∥Aθu(t)
∥∥2− C

ε

(
g′ ◦Aθu

)
(t). (3.5)

Proof. Differentiate the first equation of (1.1), with respect to t then perform its
H-inner product with vt(t), to obtain

d

dt
⟨utt(t), vt(t)⟩ = ⟨utt(t), vtt(t)⟩ − ⟨Aut(t), vt(t)⟩+ g(t)⟨Aθu(t), vt(t)⟩

−α ∥vt(t)∥2 − ⟨vt(t),
∫ t

0

g′(t− s)Aθ(u(t)− u(s))ds⟩.

Similarly, a differentiation of the second equation of (1.1), with respect to t then
performing its H-inner product with ut(t) lead to

− d

dt
⟨vtt(t), ut(t)⟩ = −⟨vtt(t), utt(t)⟩+ ⟨Avt(t), ut(t)⟩+ α ∥ut(t)∥2 .

Addition of the last two identities gives

χ′(t) = g(t)⟨Aθu(t), vt(t)⟩ − α ∥vt(t)∥2

+α ∥ut(t)∥2 − ⟨vt(t),
∫ t

0

g′(t− s)Aθ(u(t)− u(s))ds⟩.

Then Young’s inequality yields (3.5).

4. Decay results

In this section we state and prove our main decay result. For this purpose we
introduce the following functional:

L(t) := N [E(t) + E(t) + E∗(t)] +N1Φ(t) +N2Ψ(t) + χ(t). (4.1)

Lemma 4.1. Let (H1) and (H2) hold. Then, for any t0 > 0, there exist positive
constants N,N1, N2 and ε such that the functional L satisfies, along the solutions
of (1.1),

L′(t) ≤ −α

2
E(t) + C(g ◦A1/2u)(t), ∀t ≥ t0 (4.2)

and
L ∼ E + E + E∗. (4.3)
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Proof. Combining (2.13), (2.15), (2.14), (3.1), (3.4) and (3.5), and using the
second inequality in (1.2), we easily get

L′(t) ≤ −[α− ε−N1] ∥vt(t)∥2 −
[(∫ t

0

g(s)ds− ε

)
N2 −N1 − α

]
∥ut(t)∥2

− [N1(1− ε)− εN2]
∥∥∥A1/2u(t)

∥∥∥2 − [N1 − εN2]
∥∥∥A1/2v(t)

∥∥∥2
−2N1α⟨u(t), v(t)⟩+N1

(∫ t

0

g(s)ds

)∥∥∥Aθ/2u(t)
∥∥∥2

−
[
N

2
− C

ε

]
g(t)

∥∥Aθu(t)
∥∥2 − N

2
g(t)

[∥∥∥Aθ/2u(t)
∥∥∥2 + ∥∥∥A1/2u(t)

∥∥∥2]
+

[
N

2
− N2C

ε

](
g′ ◦A1/2u

)
(t) +

[
N

2
− C

ε

] (
g′ ◦Aθu

)
(t)

+
N

2

(
g′ ◦Aθ/2u

)
(t) +

[
N1C

ε
+N2

(
C +

C

ε

)](
g ◦A1/2u

)
(t).

Let t0 > 0 fixed and g0 :=
∫ t0
0

g(s)ds, take N1 = α/2 and N2 = 2α/g0. Hence,

using (2.7) and (2.10) and noticing that g′ ≤ 0 and g0 ≤
∫ t

0
g(s)ds for any t ≥ t0,

we get, for some positive constants c1 and c2,

L′(t) ≤ − (α− c1ε)E(t)−
[
N

2
− c2

ε

]
g(t)

∥∥Aθu(t)
∥∥2

+

[
N

2
− c2

ε

](
g′ ◦A1/2u

)
(t) +

[
N

2
− c2

ε

] (
g′ ◦Aθu

)
(t)

+

(
C +

C

ε

)(
g ◦A1/2u

)
(t), ∀t ≥ t0.

We choose ε = α/2c1 and notice again that g′ ≤ 0, we obtain (4.2), for any N ≥
2c2/ε.

On the other hand, using (1.2), (2.10), (2.11) and (2.12), and exploiting the
Young’s and the Cauchy-Schwarz inequalities, we see that

|Φ| ≤ CE, |Ψ| ≤ C(E + E∗) and |χ| ≤ C(E + E + E∗),

therefore, we find, for some positive constant c3 (which does not depend on N),

(N − c3)(E + E + E∗) ≤ L ≤ (N + c3)(E + E + E∗),

so, by choosing N > max {2c2/ε, c3}, we get also (4.3).

Theorem 4.1. Assume that (H1) and (H2) hold. Let

(u0, u1), (v0, v1) ∈ D
(
Aσ+1/2

)
×D (Aσ)

such that

σ ≥ max

{
θ

2
,
1− θ

2

}
.
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Then, for any t0 > 0, there exists a positive constant K such that the energy E of
the soution of (1.1) satisfies

E(t) ≤ K


(
E2p−2(E + E + E∗) + E∗

)
(t0)∫ t

t0

ξ2p−1(s)ds


1/(2p−1)

, ∀t > t0. (4.4)

Proof. Case p = 1. We multiply (4.2) by ξ(t) and exploit (2.2) and (2.15), to get

ξ(t)L′(t) ≤ −α

2
ξ(t)E(t)− C(g′ ◦A1/2u)(t)

≤ −α

2
ξ(t)E(t)− CE ′

∗(t), ∀t ≥ t0.

Recalling that ξ′ ≤ 0 and L ≥ 0, we easily see that

(ξ(t)L(t))′ ≤ ξ(t)L′(t) ≤ −α

2
ξ(t)E(t)− CE ′

∗(t), ∀t ≥ t0

which yields

ξ(t)E(t) ≤ − 2

α
(ξL+ CE∗)′(t) , ∀t ≥ t0.

Simple integration over (t0, t) leads to

E(t)

∫ t

t0

ξ(s)ds ≤
∫ t

t0

ξ(s)E(s)ds

≤ − 2

α

∫ t

t0

(ξL+ CE∗)′(s) ds

≤ 2

α
(ξL+ CE∗) (t0), ∀t ≥ t0.

Using (4.3), estimate (4.4), with p = 1, is established.

Case 1 < p < 3/2. We multiply (4.2) by ξ(t) and use (2.2), (2.15) and (2.16) to
get

ξ(t)L′(t) ≤ −α

2
ξ(t)E(t) + Cξ(t)(g ◦A1/2u)(t) (4.5)

≤ −α

2
ξ(t)E(t) + C (−E ′

∗(t))
1/(2p−1)

, ∀t ≥ t0.

We then multiply this last inequality by ξβ(t)Eβ(t), for β > 0 to be chosen properly.
Thus, (4.5) becomes

Eβ(t)ξβ+1(t)L′(t) ≤ −α

2
ξβ+1(t)Eβ+1(t)

+Cξβ(t)Eβ(t) (−E ′
∗(t))

1/(2p−1)
, ∀t ≥ t0. (4.6)

Applying Young’s inequality for the last term of (4.6) we obtain, for any ε > 0,

Eβ(t)ξβ+1(t)L′(t) ≤ −α

2
ξβ+1(t)Eβ+1(t) + εξβ+1(t)Eβ+1(t)
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+Cε (−E ′
∗(t))

(β+1)/(2p−1)
, ∀t ≥ t0.

By choosing ε = α/4 and taking β = 2p− 2, we arrive at

E2p−2(t)ξ2p−1(t)L′(t) ≤ −α

4
ξ2p−1(t)E2p−1(t)− CE ′

∗(t), ∀t ≥ t0.

This, in turns, yields

ξ2p−1(t)E2p−1(t) ≤ − 4

α

(
E2p−2ξ2p−1L+ CE∗

)′
(t), ∀t ≥ t0.

Again, a simple integration over (t0, t) and use of (4.3) lead to

E2p−1(t)

∫ t

t0

ξ2p−1(s)ds ≤
∫ t

t0

ξ2p−1(s)E2p−1(s)ds

≤ − 4

α

∫ t

t0

(
E2p−2ξ2p−1L+ CE∗

)′
(s)ds

≤ 4

α

(
E2p−2ξ2p−1L+ CE∗

)
(t0)

≤ K2p−1
(
E2p−2(E + E + E∗) + E∗

)
(t0),

for some K > 0. Therefore, (4.4) follows for 1 < p < 3/2.

5. General comments and examples

1. If ξ ≡ 1, then we have

E(t) ≤ K

[(
E2p−2(E + E + E∗) + E∗

)
(t0)

t− t0

]1/(2p−1)

, ∀t > t0. (5.1)

If, in addition, p = 1 (which implies that g converges exponentially to zero), we
get from (5.1) the decay rate t−1 obtained in [12] for (1.9). The following examples
illustrate our result.

Example 5.1. Let g(t) = a
(1+t)ν , ν > 2, where a > 0 is a constant so that∫ ∞

0

g(t)dt <
1

a1
. (5.2)

We have

g′(t) = − aν

(1 + t)ν+1
= −b

(
a

(1 + t)ν

) ν+1
ν

= −bgp(t), p =
ν + 1

ν
<

3

2
, b = νa−1/ν .

Therefore (4.4), with ξ(t) = b, yields

E(t) ≤ C

(t− t0)
1

2p−1

=
C

(t− t0)
ν

ν+2
, ∀t > t0.
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Example 5.2. Let g(t) = ae−(1+t)ν , 0 < ν ≤ 1, where 0 < a < 1 is chosen so that
(5.2) holds. Then

g′(t) = −aν(1 + t)ν−1e−(1+t)ν = −ξ(t)g(t),

where ξ(t) = ν(1 + t)ν−1, so ξ is a decreasing function, ξ(0) > 0 and (2.2) holds
with p = 1. Therefore we can use (4.4) to deduce

E(t) ≤ C

(1 + t)ν − (1 + t0)ν
, ∀t > t0.

Notice that, for ν = 1, we again get the decay rate obtained in [12] for (1.9).

2. Our results hold true if −
√

1−a1
∼
g

a0
< α < 0. Indeed, it is enought to replace v by

w := −v to get (1.1) with (u,w,−α, u0, u1,−v0,−v1) instead of (u, v, α, u0, u1, v0,
v1).

3. Similar results to ours can be proved for the more general system than (1.1),
where the operator A in (1.1)2 and αId are, respectively, replaced by operators Ã
and B̃ satisfying similar conditions to those considered in [11].

4. Our abstract system (1.1) includes several practical applications such as, for
example, coupled wave-wave equations (i.e. A = −a∆) and coupled plate-plate
equations (i.e. A = a∆2), where a is a positive constant.

6. Numerical tests

In the following section, we examine the computational behavior of the system
(1.1) using the finite volume method by discretizing the system on the space-time
domain [0, 1] × [0, 60] using second order finite difference method. We implement
Lax-Wendroff method. For a similar construction, we refer to [10,15,19]. The choice
of the function g will be based on examples 1. and 2. We implement these two cases
by choosing the exponential function g(t) = e−10(1+t) and the polynomial function
g(t) = 1

10(2+t)
5
2
. At any grid point (xi, tj) for i = 1, . . . , n and j = 1, . . . ,m, the

temporal evolution of the waves u and v are approximated using the first order
forward finite difference method:

ut ≈
u(xi, tj +∆tj)− u(xi, tj)

∆tj
and vt ≈

v(xi, tj +∆tj)− v(xi, tj)

∆tj
. (6.1)

At any grid point (xi, tj) for i = 1, . . . , n and j = 1, . . . ,m, the spacial evolution of
the waves u and v are approximated using the second order finite difference method:

ux ≈ u(xi +∆xi, tj)− u(xi, tj)

(∆xi)2
and vx ≈ v(xi +∆xi, tj)− v(xi, tj)

(∆xi)2
. (6.2)

The temporal Laplacian operators are approximated using the second order centred
method

utt ≈
u(xi, tj +∆tj)− 2u(xi, tj) + u(xi, tj −∆tj)

(∆tj)2
(6.3)
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and

vtt ≈
v(xi, tj +∆tj)− 2v(xi, tj) + v(xi, tj −∆tj)

(∆tj)2
. (6.4)

Similarly, we approximate the spacial using the following second order finite differ-
ence method:

∆u = uxx ≈ u(xi +∆xi, tj)− 2u(xi, tj) + u(xi −∆xi, tj)

(∆xi)2
(6.5)

and

∆v = vxx ≈ v(xi +∆xi, tj)− 2v(xi, tj) + v(xi −∆xi, tj)

(∆xi)2
, (6.6)

and for the bi-laplacian, we use the following recurrence.

∆2u = ∆(∆u) and ∆2v = ∆(∆v). (6.7)

For the memory term ∫ t

0

g(t− s)Aθu(s)ds, (6.8)

we use the accurate Simpson’s Rule over each time interval [tj , tj +∆tj ]. First, we
use the following notation for the sub-inegrals

Ij =

∫ tj+∆tj

tj

g(tj +∆tj − s)Aθ(u(s)) ds.

The Simpson’s approximation of Ij is given by,

Ij ≈
∆tj
6

[
g(∆tj)A

θ(u(tj)) + 4g

(
∆tj
2

)
Aθ

(
u

(
tj +

∆tj
2

))
+g(0)Aθ(u(tj +∆tj))

]
.

Thus, we obtain from the cumulative sum the numerical approximation of (6.8):∫ tn

0

g(t− s)Aθu(s)ds ≈
j=n∑
j=0

Ij . (6.9)

Finally, for updating the numerical solutions of the waves, we combine (6.1)-(6.9)
in the conservative Lax-Wendroff Schemes,

u(xi, tj +∆tj) =
Cu

2
(1 + Cu)u(xi, tj −∆tj) + (1− C2

u)u(xi, tj)

+
Cu

2
(Cu − 1)u(xi +∆xi, tj)

=α1u(xi, tj −∆tj) + α1u(xi, tj) + α1u(xi +∆xi, tj)

and

v(xi, tj +∆tj) =
Cv

2
(1 + Cv)v(xi, tj −∆tj) + (1− C2

v )v(xi, tj)
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+
Cv

2
(Cv − 1)u(xi +∆xi, tj)

=β1v(xi, tj −∆tj) + β1v(xi, tj) + β1u(xi +∆xi, tj),

where C is the so-called diffusion and dispersion coefficient, which results from the
numerical discretization of the differential system. Moreover, it should be stressed
that at each step the convex combination of the parameters above satisfy the fol-
lowing equality:

3∑
s=1

αs = 1 =

3∑
s=1

βs. (6.10)

Now, we present six tests for our numerical simulations:

TEST 1. In the first test, we examine the case A = ∆2 for g(t) =
1

10(1 + t)
5
2

.

TEST 2. In the second test, we examine the case A = ∆2 for g(t) = e−10(1+t).

TEST 3. In the third test, we examine the case A = −∆ for g(t) =
1

(1 + t)
5
2

.

TEST 4. In the fourth test, we examine the case A = −∆ for g(t) = e−10(1+t).

TEST 5. In the fifth test, we examine the case A = Id for g(t) =
1

(1 + t)
5
2

.

TEST 6. In the sixth test, we examine the case A = Id for g(t) = e−10(1+t).

In order to ensure the stability of the numerical scheme, we use a temporal and spa-
tial steps satisfying the Courant-Friedrichs-Lewy (CFL) inequality ∆t = 0.0075 <
∆x = 0.02, where ∆t represents the time step and ∆x is the spatial step. The spa-
tial interval [0, 1] is subdivided into 200 subintervals and the temporal interval [0, 1]
is deduced from the stability condition above. We run our code for 8000 = 60/∆t
time steps taking the following initial conditions:

u(x, 0) = ut(x, 0) = sin(πx); in [0, 1],

v(x, 0) = vt(x, 0) = x(1− x); in [0, 1]. (6.11)
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Figure 1. Damping behavior of the waves u and v for Test 1.
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Figure 2. Damping behavior of the waves u and v for Test 2:
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Figure 3. Energy functions for Tests 1. and 2.
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Figure 4. Damping behavior of the waves u and v for Test 3.

In Figures 1, 2, 4, 5, 7 and 8, we plot the damping behavior of the two waves u
and v for the cross sections x = 0.25, x = 0.5 and x = 1. In Figures 3, 6 and 9, we
plot and compare the decay behavior of resulting energies. As a final conclusion,
it should be stressed that, we performed several tests for two types of decaying
relaxation functions; namely the exponential decay and the polynomial decay types.
We noticed that the energy, in each test, decays at least in a polynomial rate. this
comes in agreement with our theoretical results.

In Figures 1, 2, 4, 5, 7 and 8, we plot the damping behavior of the two waves u
and v for the cross sections x = 0.25, x = 0.5 and x = 1. In Figures 3, 6 and 9, we
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Figure 5. Damping behavior of the waves u and v for Test 4.
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Figure 6. Energy functions for Tests 3. and 4.
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Figure 7. Damping behavior of the waves u and v for Test 5.

plot and compare the decay behavior of resulting energies. As a final conclusion,
it should be stressed that, we performed several tests for two types of decaying
relaxation functions; namely the exponential decay and the polynomial decay types.
We noticed that the energy, in each test, decays at least in a polynomial rate. this
comes in agreement with our theoretical results.



Weakly coupled abstract evolution equations 3555

0 10 20 30 40 50 60

t

-1

0

1

u
0
.2
5
(t
)

u0.25 cut at 0.25

0 10 20 30 40 50 60

t

-1

0

1

u
0
.5
(t
)

u0.5 cut at 0.5

0 10 20 30 40 50 60

t

-1

0

1

u
0
.7
5
(t
)

u0.75 cut at 0.75

0 10 20 30 40 50 60

t

-0.2

0

0.2

v
0
.2
5
(t
)

v0.25 cut at 0.25

0 10 20 30 40 50 60

t

-0.5

0

0.5

v
0
.5
(t
)

v0.5 cut at 0.5

0 10 20 30 40 50 60

t

-0.2

0

0.2

v
0
.7
5
(t
)

v0.75 cut at 0.75

Figure 8. Damping behavior of the waves u and v for Test 6.
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Figure 9. Energy functions for Tests 5. and 6.

7. Conclusions

In this work, we discussed the longtime behavior of solutions of a viscoelastic system
of two linear wave or two linear plate equations, where only one equation is con-
trolled by the presence of a viscoelastic term. We showed that the decay of energy
is weaker than that of the relaxation function. Our decay result is of a general type
and gives as particular case, for instance, the results of [12], when f = 0. It would
be very interesting to establish the same result for the nonlinear system treated
in [12]. In addition, we gave several illustrative numerical examples to support our
theoretical findings. These numerical graphs came in agreement with the theoreti-
cal results, however, they did not show any significant difference for different values
of fractional power θ.
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